Cardiac Pathology in Myotonic Dystrophy Type 1
Abstract
:1. Introduction
2. History of Cardiac Disease in DM1
3. ECG and Conduction Defects in DM1
4. Pathology of the Heart in DM1
5. Molecular Markers of DM1 in the Heart
6. Imaging Studies and the DM1 Heart
7. Cell and Drosophila Model Systems for Studying Cardiac RNA Toxicity in DM1
8. Mouse Models of RNA Toxicity in DM1 with Cardiac Phenotypes
9. Clinical Care Guidelines for the Management of Cardiac Issues in DM1
- (1)
- Baseline 12 lead ECGs and annual ECGs in asymptomatic individuals;
- (2)
- Cardiac imaging (either Echocardiography or CMR) at baseline and every one to five years;
- (3)
- Ambulatory monitoring (e.g., Holter monitoring) to detect asymptomatic arrhythmias;
- (4)
- Invasive electrophysiology if other tests show high risk conduction defects;
- (5)
- Patient and family education for signs and symptoms of heart disease and coronary artery disease (e.g., angina);
- (6)
- Awareness of risk for hyperlipidemia, metabolic syndrome (role of exercise?);
- (7)
- Treatment of atrial fibrillation;
- (8)
- Control of blood pressure;
- (9)
- Heart failure treatment in patients with LV ejection fraction <50%;
- (10)
- Pacemakers or ICD (implantable cardioverter-defibrillators) for patients at risk for sudden death;
- (11)
- Cardiac resynchronization therapy for select patients.
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wenninger, S.; Montagnese, F.; Schoser, B. Core Clinical Phenotypes in Myotonic Dystrophies. Front. Neurol. 2018, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, J.E.; Barohn, R.J.; Clemens, P.R.; Luebbe, E.A.; Martens, W.B.; McDermott, M.P.; Parkhill, A.L.; Tawil, R.; Thornton, C.A.; Moxley, R.T., 3rd. National Registry Scientific Advisory. High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2. Neurology 2017, 89, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Hilton-Jones, D. The myotonic dystrophies: Diagnosis and management. J. Neurol. Neurosurg. Psychiatry 2010, 81, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Howeler, C.J.; Busch, H.F.; Geraedts, J.P.; Niermeijer, M.F.; Staal, A. Anticipation in myotonic dystrophy: Fact or fiction? Brain J. Neurol. 1989, 112, 779–797. [Google Scholar] [CrossRef]
- Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.P.; Hudson, T.; et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992, 69, 385. [Google Scholar] [CrossRef]
- Fu, Y.H.; Pizzuti, A.; Fenwick, R.G., Jr.; King, J.; Rajnarayan, S.; Dunne, P.W.; Dubel, J.; Nasser, G.A.; Ashizawa, T.; de Jong, P.; et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992, 255, 1256–1258. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, M.; Tsilfidis, C.; Sabourin, L.; Shutler, G.; Amemiya, C.; Jansen, G.; Neville, C.; Narang, M.; Barcelo, J.; O’Hoy, K.; et al. Myotonic dystrophy mutation: An unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992, 255, 1253–1255. [Google Scholar] [CrossRef]
- Hunter, A.; Tsilfidis, C.; Mettler, G.; Jacob, P.; Mahadevan, M.; Surh, L.; Korneluk, R. The correlation of age of onset with CTG trinucleotide repeat amplification in myotonic dystrophy. J. Med. Genet. 1992, 29, 774–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, C.A.; Johnson, K.; Moxley, R.T., 3rd. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 1994, 35, 104–107. [Google Scholar] [CrossRef]
- Steinert, H. Myopathologische Beirträge 1. Über das klinische und anatomische bild des muskelschwunds der myotoniker. Deutsche Zeitsch. Nervenheilkunde 1909, 37, 58–104. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, S.; Lee, B.; Khosa, S.; Moheb, N.; Tandon, V.A. “Dystrophia Myotonica” and the Legacy of Hans Gustav Wilhelm Steinert. Ann. Ind. Acad. Neurol. 2018, 21, 116–118. [Google Scholar] [CrossRef]
- Griffith, T.W. On myotonia. Quart. J. Med. 1911, 5, 229–247. [Google Scholar]
- Spillane, J.D. The heart in myotonia atrophica. Br. Heart J. 1951, 13, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisch, C. The heart in dystrophia myotonica. Am. Heart J. 1951, 41, 525–538. [Google Scholar] [CrossRef]
- Miller, H.; Drew, D.W. The heart in dystrophia myotonica: Report of three cases in a single family. Rhode Island Med. J. 1952, 35, 483–486. [Google Scholar]
- Litchfield, J.A. A-V dissociation in dystrophia myotonica. Br. Heart J. 1953, 15, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Soffer, A. Delayed conduction in dystrophica myotonia. Dis. Chest 1961, 40, 594. [Google Scholar] [PubMed]
- Cannon, P.J. The heart and lungs in myotonic muscular dystrophy. Am. J. Med. 1962, 32, 765–775. [Google Scholar] [CrossRef]
- Miller, P.B. Myotonic dystrophy with electrocardiographic abnormalities. Report of a case. Am. Heart J. 1962, 63, 704–707. [Google Scholar] [CrossRef]
- Payne, C.A.; Greenfield, J.C., Jr. Electrocardiographic abnormalities associated with myotonic dystrophy. Am. Heart J. 1963, 65, 436–440. [Google Scholar] [CrossRef]
- Arnason, G.; Berge, T.; Dahlberg, L. Myocardial Changes in Dystrophia Myotonica. Acta Med. Scand. 1964, 176, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.M.; Lambert, E.H. Heart Disease as the Presenting Feature in Myotonia Atrophica. Br. Heart J. 1964, 26, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Orndahl, G.; Thulesius, O.; Enestroem, S.; Dehlin, O. The Heart in Myotonic Disease. Acta Med. Scand. 1964, 176, 479–491. [Google Scholar] [CrossRef]
- Petkovich, N.J.; Dunn, M.; Reed, W. Myotonia Dystrophica with a-V Dissociation and Stokes-Adams Attacks: A Case Report and Review of the Literature. Am. Heart J. 1964, 68, 391–396. [Google Scholar] [CrossRef]
- Church, S.C. The heart in myotonia atrophica. Arch. Intern. Med. 1967, 119, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, A.; Paradiso, M.; Antonini, G.; Paoletti, V.; De Matteis, A.; Basili, S.; Donnarumma, L.; Labbadia, G.; Di Franco, M.; Musca, A. Natural history of cardiac involvement in myotonic dystrophy (Steinert’s disease): A 13-year follow-up study. Adv. Ther. 2000, 17, 238–251. [Google Scholar] [CrossRef]
- Groh, W.J.; Groh, M.R.; Saha, C.; Kincaid, J.C.; Simmons, Z.; Ciafaloni, E.; Pourmand, R.; Otten, R.F.; Bhakta, D.; Nair, G.V.; et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N. Engl. J. Med. 2008, 358, 2688–2697. [Google Scholar] [CrossRef] [PubMed]
- Petri, H.; Vissing, J.; Witting, N.; Bundgaard, H.; Kober, L. Cardiac manifestations of myotonic dystrophy type 1. Int. J. Cardiol. 2012, 160, 82–88. [Google Scholar] [CrossRef]
- Wahbi, K.; Babuty, D.; Probst, V.; Wissocque, L.; Labombarda, F.; Porcher, R.; Becane, H.M.; Lazarus, A.; Behin, A.; Laforet, P.; et al. Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1. Eur. Heart J. 2017, 38, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Wahbi, K.; Meune, C.; Porcher, R.; Becane, H.M.; Lazarus, A.; Laforet, P.; Stojkovic, T.; Behin, A.; Radvanyi-Hoffmann, H.; Eymard, B.; et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA 2012, 307, 1292–1301. [Google Scholar] [CrossRef] [Green Version]
- Petri, H.; Witting, N.; Ersboll, M.K.; Sajadieh, A.; Duno, M.; Helweg-Larsen, S.; Vissing, J.; Kober, L.; Bundgaard, H. High prevalence of cardiac involvement in patients with myotonic dystrophy type 1: A cross-sectional study. Int. J. Cardiol. 2014, 174, 31–36. [Google Scholar] [CrossRef]
- Fragola, P.V.; Ruscitti, G.C.; Autore, C.; Antonini, G.; Capria, A.; Fiorito, S.; Vichi, R.; Pennisi, E.; Cannata, D. Ambulatory electrocardiographic monitoring in myotonic dystrophy (Steinert’s Disease). A study of 22 patients. Cardiology 1987, 74, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, H.; Olofsson, B.O.; Andersson, S.; Henriksson, A.; Bjerle, P. 24-hour electrocardiographic study in myotonic dystrophy. Cardiology 1988, 75, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, B.O.; Forsberg, H.; Andersson, S.; Bjerle, P.; Henriksson, A.; Wedin, I. Electrocardiographic findings in myotonic dystrophy. Br. Heart J. 1988, 59, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Stollberger, C. Atrial fibrillation/flutter in myopathies. Int. J. Cardiol. 2008, 128, 304–310. [Google Scholar] [CrossRef]
- Russo, V.; Papa, A.A.; Lioncino, M.; Rago, A.; Di Fraia, F.; Palladino, A.; Politano, L.; Golino, P.; Nigro, G. Prevalence of atrial fibrillation in myotonic dystrophy type 1: A systematic review. Neuromuscul. Disord. 2021, 31, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Benhayon, D.; Lugo, R.; Patel, R.; Carballeira, L.; Elman, L.; Cooper, J.M. Long-term arrhythmia follow-up of patients with myotonic dystrophy. J. Cardiovasc. Electrophysiol. 2015, 26, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Rago, A.; Ciardiello, C.; Russo, M.G.; Calabro, P.; Politano, L.; Nigro, G. The Role of the Atrial Electromechanical Delay in Predicting Atrial Fibrillation in Myotonic Dystrophy Type 1 Patients. J. Cardiovasc. Electrophysiol. 2016, 27, 65–72. [Google Scholar] [CrossRef]
- Brembilla-Perrot, B.; Schwartz, J.; Huttin, O.; Frikha, Z.; Sellal, J.M.; Sadoul, N.; Blangy, H.; Olivier, A.; Louis, S.; Kaminsky, P. Atrial flutter or fibrillation is the most frequent and life-threatening arrhythmia in myotonic dystrophy. Pacing Clin. Electrophysiol. 2014, 37, 329–335. [Google Scholar] [CrossRef]
- Russo, V.; Rago, A.; Atripaldi, L.; Leonardi, S.; Papa, A.A.; Politano, L.; Golino, P.; Potpara, T.S.; Nigro, G. SERUM cardiac-specific biomarkers and atrial fibrillation in myotonic dystrophy type I. J. Cardiovasc. Electrophysiol. 2019, 30, 2914–2919. [Google Scholar] [CrossRef]
- Valaperta, R.; De Siena, C.; Cardani, R.; Lombardia, F.; Cenko, E.; Rampoldi, B.; Fossati, B.; Brigonzi, E.; Rigolini, R.; Gaia, P.; et al. Cardiac involvement in myotonic dystrophy: The role of troponins and N-terminal pro B-type natriuretic peptide. Atherosclerosis 2017, 267, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Bassez, G.; Lazarus, A.; Desguerre, I.; Varin, J.; Laforet, P.; Becane, H.M.; Meune, C.; Arne-Bes, M.C.; Ounnoughene, Z.; Radvanyi, H.; et al. Severe cardiac arrhythmias in young patients with myotonic dystrophy type 1. Neurology 2004, 63, 1939–1941. [Google Scholar] [CrossRef] [PubMed]
- Halawa, A.; Iskandar, S.B.; Brahmbhatt, V.; Fahrig, S.A. Atrial flutter and myotonic dystrophy in a male adolescent treated with radiofrequency catheter ablation. Rev. Cardiovasc. Med. 2007, 8, 118–122. [Google Scholar] [PubMed]
- Forsberg, H.; Olofsson, B.O.; Eriksson, A.; Andersson, S. Cardiac involvement in congenital myotonic dystrophy. Br. Heart J. 1990, 63, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Stokes, M.; Varughese, N.; Iannaccone, S.; Castro, D. Clinical and genetic characteristics of childhood-onset myotonic dystrophy. Muscle Nerve 2019, 60, 732–738. [Google Scholar] [CrossRef]
- Chong-Nguyen, C.; Wahbi, K.; Algalarrondo, V.; Becane, H.M.; Radvanyi-Hoffman, H.; Arnaud, P.; Furling, D.; Lazarus, A.; Bassez, G.; Behin, A.; et al. Association Between Mutation Size and Cardiac Involvement in Myotonic Dystrophy Type 1: An Analysis of the DM1-Heart Registry. Circ. Cardiovasc. Genet. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Clarke, N.R.; Kelion, A.D.; Nixon, J.; Hilton-Jones, D.; Forfar, J.C. Does cytosine-thymine-guanine (CTG) expansion size predict cardiac events and electrocardiographic progression in myotonic dystrophy? Heart 2001, 86, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Melacini, P.; Villanova, C.; Menegazzo, E.; Novelli, G.; Danieli, G.; Rizzoli, G.; Fasoli, G.; Angelini, C.; Buja, G.; Miorelli, M.; et al. Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J. Am. Coll. Cardiol. 1995, 25, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Merlevede, K.; Vermander, D.; Theys, P.; Legius, E.; Ector, H.; Robberecht, W. Cardiac involvement and CTG expansion in myotonic dystrophy. J. Neurol. 2002, 249, 693–698. [Google Scholar] [CrossRef]
- Mathieu, J.; Allard, P.; Potvin, L.; Prevost, C.; Begin, P. A 10-year study of mortality in a cohort of patients with myotonic dystrophy. Neurology 1999, 52, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Rakocevic Stojanovic, V.; Peric, S.; Paunic, T.; Pavlovic, S.; Cvitan, E.; Basta, I.; Peric, M.; Milicev, M.; Lavrnic, D. Cardiologic predictors of sudden death in patients with myotonic dystrophy type 1. J. Clin. Neurosci. 2013, 20, 1002–1006. [Google Scholar] [CrossRef]
- Bucci, E.; Testa, M.; Licchelli, L.; Frattari, A.; El Halabieh, N.A.; Gabriele, E.; Pignatelli, G.; De Santis, T.; Fionda, L.; Vanoli, F.; et al. A 34-year longitudinal study on long-term cardiac outcomes in DM1 patients with normal ECG at baseline at an Italian clinical centre. J. Neurol. 2018, 265, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Hisamatsu, T.; Tamura, T.; Segawa, K.; Takahashi, T.; Takada, H.; Kuru, S.; Wada, C.; Suzuki, M.; Suwazono, S.; et al. Cardiac Conduction Disorders as Markers of Cardiac Events in Myotonic Dystrophy Type 1. J. Am. Heart Assoc. 2020, 9, e015709. [Google Scholar] [CrossRef]
- Sabovic, M.; Medica, I.; Logar, N.; Mandic, E.; Zidar, J.; Peterlin, B. Relation of CTG expansion and clinical variables to electrocardiogram conduction abnormalities and sudden death in patients with myotonic dystrophy. Neuromuscul. Disord. 2003, 13, 822–826. [Google Scholar] [CrossRef]
- Fisch, C.; Evans, P.V. The heart in dystrophia myotonica; report of an autopsied case. N. Engl. J. Med. 1954, 251, 527–529. [Google Scholar] [CrossRef] [PubMed]
- Franks, A.J. Cardiac pathology in chronic myopathy, with particular reference to dystrophia myotonica. J. Pathol. 1978, 125, 213–217. [Google Scholar] [CrossRef]
- Uemura, N.; Tanaka, H.; Niimura, T.; Hashiguchi, N.; Yoshimura, M.; Terashi, S.; Kanehisa, T. Electrophysiological and histological abnormalities of the heart in myotonic dystrophy. Am. Heart J. 1973, 86, 616–624. [Google Scholar] [CrossRef]
- Ludatscher, R.M.; Kerner, H.; Amikam, S.; Gellei, B. Myotonia dystrophica with heart involvement: An electron microscopic study of skeletal, cardiac, and smooth muscle. J. Clin. Pathol. 1978, 31, 1057–1064. [Google Scholar] [CrossRef]
- Motta, J.; Guilleminault, C.; Billingham, M.; Barry, W.; Mason, J. Cardiac abnormalities in myotonic dystrophy. Electrophysiologic and histopathologic studies. Am. J. Med. 1979, 67, 467–473. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Wolfe, J.T., 3rd; Holmes, D.R., Jr.; Edwards, W.D. Pathology of the cardiac conduction system in myotonic dystrophy: A study of 12 cases. J. Am. Coll. Cardiol. 1988, 11, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Rakocevic-Stojanovic, V.; Pavlovic, S.; Seferovic, P.; Vasiljevic, J.; Lavrnic, D.; Marinkovic, Z.; Apostolski, S. Pathohistological changes in endomyocardial biopsy specimens in patients with myotonic dystrophy. Panminerva Med. 1999, 41, 27–30. [Google Scholar] [PubMed]
- Christensen, A.H.; Bundgaard, H.; Schwartz, M.; Hansen, S.H.; Svendsen, J.H. Cardiac myotonic dystrophy mimicking arrhythmogenic right ventricular cardiomyopathy in a young sudden cardiac death victim. Circ. Arrhythm. Electrophysiol. 2008, 1, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Muraoka, H.; Negoro, N.; Terasaki, F.; Nakakoji, T.; Kojima, S.; Hoshiga, M.; Sugino, M.; Hosokawa, T.; Ishihara, T.; Hanafusa, T. Re-entry circuit in ventricular tachycardia due to focal fatty-fibrosis in a patient with myotonic dystrophy. Intern. Med. 2005, 44, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Taneja, K.L.; McCurrach, M.; Schalling, M.; Housman, D.; Singer, R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 1995, 128, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Mankodi, A.; Lin, X.; Blaxall, B.C.; Swanson, M.S.; Thornton, C.A. Nuclear RNA foci in the heart in myotonic dystrophy. Circ. Res. 2005, 97, 1152–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahadevan, M.S.; Yadava, R.S.; Yu, Q.; Balijepalli, S.; Frenzel-McCardell, C.D.; Bourne, T.D.; Phillips, L.H. Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Nat. Genet. 2006, 38, 1066–1070. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.Y.; Barefield, D.Y.; Vo, A.H.; Gacita, A.M.; Schuster, E.J.; Wyatt, E.J.; Davis, J.L.; Dong, B.; Sun, C.; Page, P.; et al. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.T.; Treacy, D.; Eichinger, K.; Struck, A.; Estabrook, J.; Olafson, H.; Wang, T.T.; Bhatt, K.; Westbrook, T.; Sedehizadeh, S.; et al. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum. Mol. Genet. 2019, 28, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Freyermuth, F.; Rau, F.; Kokunai, Y.; Linke, T.; Sellier, C.; Nakamori, M.; Kino, Y.; Arandel, L.; Jollet, A.; Thibault, C.; et al. Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat. Commun. 2016, 7, 11067. [Google Scholar] [CrossRef]
- Li, W.; Yin, L.; Shen, C.; Hu, K.; Ge, J.; Sun, A. SCN5A Variants: Association with Cardiac Disorders. Front. Physiol. 2018, 9, 1372. [Google Scholar] [CrossRef]
- Onkal, R.; Mattis, J.H.; Fraser, S.P.; Diss, J.K.; Shao, D.; Okuse, K.; Djamgoz, M.B. Alternative splicing of Nav1.5: An electrophysiological comparison of ‘neonatal’ and ‘adult’ isoforms and critical involvement of a lysine residue. J. Cell. Physiol. 2008, 216, 716–726. [Google Scholar] [CrossRef]
- Pang, P.D.; Alsina, K.M.; Cao, S.; Koushik, A.B.; Wehrens, X.H.T.; Cooper, T.A. CRISPR-Mediated Expression of the Fetal Scn5a Isoform in Adult Mice Causes Conduction Defects and Arrhythmias. J. Am. Heart Assoc. 2018, 7, e010393. [Google Scholar] [CrossRef] [Green Version]
- Venco, A.; Saviotti, M.; Besana, D.; Finardi, G.; Lanzi, G. Noninvasive assessment of left ventricular function in myotonic muscular dystrophy. Br. Heart J. 1978, 40, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Reeves, W.C.; Griggs, R.; Nanda, N.C.; Thomson, K.; Gramiak, R. Echocardiographic evaluation of cardiac abnormalities in Duchenne’s dystrophy and myotonic muscular dystrophy. Arch. Neurol. 1980, 37, 273–277. [Google Scholar] [CrossRef]
- Gottdiener, J.S.; Hawley, R.J.; Gay, J.A.; DiBianco, R.; Fletcher, R.D.; Engel, W.K. Left ventricular relaxation, mitral valve prolapse, and intracardiac conduction in myotonia atrophica: Assessment by digitized echocardiography and noninvasive His bundle recording. Am. Heart J. 1982, 104, 77–85. [Google Scholar] [CrossRef]
- Badano, L.; Autore, C.; Fragola, P.V.; Picelli, A.; Antonini, G.; Vichi, R.; Cannata, D. Left ventricular myocardial function in myotonic dystrophy. Am. J. Cardiol. 1993, 71, 987–991. [Google Scholar] [CrossRef]
- Tokgozoglu, L.S.; Ashizawa, T.; Pacifico, A.; Armstrong, R.M.; Epstein, H.F.; Zoghbi, W.A. Cardiac involvement in a large kindred with myotonic dystrophy. Quantitative assessment and relation to size of CTG repeat expansion. JAMA 1995, 274, 813–819. [Google Scholar] [CrossRef]
- Sonaglioni, G.; Curatola, L.; Bollettini, G.; Agostini, L.; Franchetta, G.; Palestini, N.; Pignotti, M.; Floris, B. Echocardiographic findings in dystrophia myotonica (Steinert’s disease). G Ital. Cardiol. 1984, 14, 551–556. [Google Scholar]
- Berlit, P.; Stegaru-Hellring, B. The heart in muscular dystrophy: An electrocardiographic and ultrasound study of 20 patients. Eur. Arch. Psychiatry Clin. Neurosci. 1991, 241, 177–180. [Google Scholar] [CrossRef]
- Fragola, P.V.; Calo, L.; Luzi, M.; Mammarella, A.; Antonini, G. Doppler echocardiographic assessment of left ventricular diastolic function in myotonic dystrophy. Cardiology 1997, 88, 498–502. [Google Scholar] [CrossRef]
- Fung, K.C.; Corbett, A.; Kritharides, L. Myocardial tissue velocity reduction is correlated with clinical neurologic severity in myotonic dystrophy. Am. J. Cardiol. 2003, 92, 177–181. [Google Scholar] [CrossRef]
- Vinereanu, D.; Bajaj, B.P.; Fenton-May, J.; Rogers, M.T.; Madler, C.F.; Fraser, A.G. Subclinical cardiac involvement in myotonic dystrophy manifesting as decreased myocardial Doppler velocities. Neuromuscul. Disord. 2004, 14, 188–194. [Google Scholar] [CrossRef]
- Parisi, M.; Galderisi, M.; Sidiropulos, M.; Fiorillo, C.; Lanzillo, R.; D’Errico, A.; Grieco, M.; Innelli, P.; Santoro, L.; de Divitiis, O. Early detection of biventricular involvement in myotonic dystrophy by tissue Doppler. Int. J. Cardiol. 2007, 118, 227–232. [Google Scholar] [CrossRef]
- Lindqvist, P.; Morner, S.; Olofsson, B.O.; Backman, C.; Lundblad, D.; Forsberg, H.; Henein, M.Y. Ventricular dysfunction in type 1 myotonic dystrophy: Electrical, mechanical, or both? Int. J. Cardiol. 2010, 143, 378–384. [Google Scholar] [CrossRef]
- Di Cori, A.; Bongiorni, M.G.; Zucchelli, G.; Soldati, E.; Falorni, M.; Segreti, L.; Gemignani, C.; Siciliano, A.; Bovenzi, F.M.; Di Bello, V. Early left ventricular structural myocardial alterations and their relationship with functional and electrical properties of the heart in myotonic dystrophy type 1. J. Am. Soc. Echocardiogr. 2009, 22, 1173–1179. [Google Scholar] [CrossRef]
- Turkbey, E.B.; Gai, N.; Lima, J.A.; van der Geest, R.J.; Wagner, K.R.; Tomaselli, G.F.; Bluemke, D.A.; Nazarian, S. Assessment of cardiac involvement in myotonic muscular dystrophy by T1 mapping on magnetic resonance imaging. Heart Rhythm 2012, 9, 1691–1697. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Monti, C.B.; Melazzini, L.; Cardani, R.; Fossati, B.; Cavalli, M.; Chow, K.; Secchi, F.; Meola, G.; Sardanelli, F. Rare Disease: Cardiac Risk Assessment with MRI in Patients with Myotonic Dystrophy Type 1. Front. Neurol. 2020, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Cardona, A.; Arnold, W.D.; Kissel, J.T.; Raman, S.V.; Zareba, K.M. Myocardial fibrosis by late gadolinium enhancement cardiovascular magnetic resonance in myotonic muscular dystrophy type 1: Highly prevalent but not associated with surface conduction abnormality. J. Cardiovasc. Magn. Reson. 2019, 21, 26. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, L.; Bietenbeck, M.; Patrascu, A.; Rosch, S.; Sechtem, U.; Yilmaz, A.; Florian, A.R. Non-invasive evaluation of the relationship between electrical and structural cardiac abnormalities in patients with myotonic dystrophy type 1. Clin. Res. Cardiol. 2019, 108, 857–867. [Google Scholar] [CrossRef]
- Petri, H.; Ahtarovski, K.A.; Vejlstrup, N.; Vissing, J.; Witting, N.; Kober, L.; Bundgaard, H. Myocardial fibrosis in patients with myotonic dystrophy type 1: A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2014, 16, 59. [Google Scholar] [CrossRef]
- Luetkens, J.A.; von Landenberg, C.; Isaak, A.; Faron, A.; Kuetting, D.; Gliem, C.; Dabir, D.; Kornblum, C.; Thomas, D. Comprehensive Cardiac Magnetic Resonance for Assessment of Cardiac Involvement in Myotonic Muscular Dystrophy Type 1 and 2 Without Known Cardiovascular Disease. Circ. Cardiovasc. Imag. 2019, 12, e009100. [Google Scholar] [CrossRef]
- Hermans, M.C.; Faber, C.G.; Bekkers, S.C.; de Die-Smulders, C.E.; Gerrits, M.M.; Merkies, I.S.; Snoep, G.; Pinto, Y.M.; Schalla, S. Structural and functional cardiac changes in myotonic dystrophy type 1: A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2012, 14, 48. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, P.; Nandakumar, R.; Greig, H.; Broadhurst, P.; Dean, J.; Puranik, R.; Celermajer, D.S.; Hillis, G.S. Structural and electrical cardiac abnormalities are prevalent in asymptomatic adults with myotonic dystrophy. Heart 2016, 102, 1472–1478. [Google Scholar] [CrossRef]
- Sanchez, F.; Weitz, C.; Gutierrez, J.M.; Mestroni, L.; Hanneman, K.; Vargas, D. Cardiac MR Imaging of Muscular Dystrophies. Curr. Probl. Diagn. Radiol. 2021. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Peker, E.; Chandrashekhar, Y.; Nagel, E. T1 Mapping in Characterizing Myocardial Disease: A Comprehensive Review. Circ. Res. 2016, 119, 277–299. [Google Scholar] [CrossRef]
- Valbuena-Lopez, S.; Hinojar, R.; Puntmann, V.O. Cardiovascular Magnetic Resonance in Cardiology Practice: A Concise Guide to Image Acquisition and Clinical Interpretation. Rev. Esp. Cardiol. 2016, 69, 202–210. [Google Scholar] [CrossRef]
- Lindsey, M.L.; Kassiri, Z.; Virag, J.A.I.; de Castro Bras, L.E.; Scherrer-Crosbie, M. Guidelines for measuring cardiac physiology in mice. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H733–H752. [Google Scholar] [CrossRef] [Green Version]
- Vandsburger, M.H.; Epstein, F.H. Emerging MRI methods in translational cardiovascular research. J. Cardiovasc. Transl. Res. 2011, 4, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: A comprehensive review. J. Cardiovasc. Magn. Reson. 2016, 18, 89. [Google Scholar] [CrossRef] [Green Version]
- Bing, R.; Dweck, M.R. Myocardial fibrosis: Why image, how to image and clinical implications. Heart 2019, 105, 1832–1840. [Google Scholar] [CrossRef] [Green Version]
- De Ambroggi, L.; Raisaro, A.; Marchiano, V.; Radice, S.; Meola, G. Cardiac involvement in patients with myotonic dystrophy: Characteristic features of magnetic resonance imaging. Eur. Heart J. 1995, 16, 1007–1010. [Google Scholar] [CrossRef]
- Nazarian, S.; Bluemke, D.A.; Wagner, K.R.; Zviman, M.M.; Turkbey, E.; Caffo, B.S.; Shehata, M.; Edwards, D.; Butcher, B.; Calkins, H.; et al. QRS prolongation in myotonic muscular dystrophy and diffuse fibrosis on cardiac magnetic resonance. Magn. Reson. Med. 2010, 64, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dastidar, S.; Majumdar, D.; Tipanee, J.; Singh, K.; Klein, A.F.; Furling, D.; Chuah, M.K.; VandenDriessche, T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol. Ther. 2021. [Google Scholar] [CrossRef] [PubMed]
- Poulin, H.; Mercier, A.; Djemai, M.; Pouliot, V.; Deschenes, I.; Boutjdir, M.; Puymirat, J.; Chahine, M. iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Sci. Rep. 2021, 11, 2500. [Google Scholar] [CrossRef]
- Chakraborty, M.; Selma-Soriano, E.; Magny, E.; Couso, J.P.; Perez-Alonso, M.; Charlet-Berguerand, N.; Artero, R.; Llamusi, B. Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction. Dis. Model Mech. 2015, 8, 1569–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerro-Herreros, E.; Chakraborty, M.; Perez-Alonso, M.; Artero, R.; Llamusi, B. Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Sci. Rep. 2017, 7, 2843. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Llamusi, B.; Artero, R. Modeling of Myotonic Dystrophy Cardiac Phenotypes in Drosophila. Front. Neurol. 2018, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Sellier, C.; Ney, M.; Pascal, V.; Charlet-Berguerand, N.; Artero, R.; Llamusi, B. Daunorubicin reduces MBNL1 sequestration caused by CUG-repeat expansion and rescues cardiac dysfunctions in a Drosophila model of myotonic dystrophy. Dis. Model Mech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Auxerre-Plantie, E.; Nakamori, M.; Renaud, Y.; Huguet, A.; Choquet, C.; Dondi, C.; Miquerol, L.; Takahashi, M.P.; Gourdon, G.; Junion, G.; et al. Straightjacket/alpha2delta3 deregulation is associated with cardiac conduction defects in myotonic dystrophy type 1. eLife 2019, 8. [Google Scholar] [CrossRef]
- Gladman, J.T.; Mandal, M.; Srinivasan, V.; Mahadevan, M.S. Age of onset of RNA toxicity influences phenotypic severity: Evidence from an inducible mouse model of myotonic dystrophy (DM1). PLoS ONE 2013, 8, e72907. [Google Scholar] [CrossRef]
- Yadava, R.S.; Yu, Q.; Mandal, M.; Rigo, F.; Bennett, C.F.; Mahadevan, M.S. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3’UTR RNA. Human Mol. Genet. 2020, 29, 1440–1453. [Google Scholar] [CrossRef]
- Wang, G.S.; Kearney, D.L.; De Biasi, M.; Taffet, G.; Cooper, T.A. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J. Clin. Investig. 2007, 117, 2802–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.N.; Campbell, H.M.; Guan, X.; Word, T.A.; Wehrens, X.H.; Xia, Z.; Cooper, T.A. Reversible cardiac disease features in an inducible CUG repeat RNA-expressing mouse model of myotonic dystrophy. JCI Insight 2021, 6. [Google Scholar] [CrossRef]
- Tylock, K.M.; Auerbach, D.S.; Tang, Z.Z.; Thornton, C.A.; Dirksen, R.T. Biophysical mechanisms for QRS- and QTc-interval prolongation in mice with cardiac expression of expanded CUG-repeat RNA. J. Gen. Physiol. 2020, 152. [Google Scholar] [CrossRef] [PubMed]
- Mankodi, A.; Logigian, E.; Callahan, L.; McClain, C.; White, R.; Henderson, D.; Krym, M.; Thornton, C.A. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 2000, 289, 1769–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huguet, A.; Medja, F.; Nicole, A.; Vignaud, A.; Guiraud-Dogan, C.; Ferry, A.; Decostre, V.; Hogrel, J.Y.; Metzger, F.; Hoeflich, A.; et al. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1000 CTG repeats from the human DM1 locus. PLoS Genet. 2012, 8, e1003043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algalarrondo, V.; Wahbi, K.; Sebag, F.; Gourdon, G.; Beldjord, C.; Azibi, K.; Balse, E.; Coulombe, A.; Fischmeister, R.; Eymard, B.; et al. Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscul. Disord. 2015, 25, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Berul, C.I.; Maguire, C.T.; Aronovitz, M.J.; Greenwood, J.; Miller, C.; Gehrmann, J.; Housman, D.; Mendelsohn, M.E.; Reddy, S. DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J. Clin. Investig. 1999, 103, R1–R7. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.; Groenen, P.J.; Bachner, D.; Jap, P.H.; Coerwinkel, M.; Oerlemans, F.; van den Broek, W.; Gohlsch, B.; Pette, D.; Plomp, J.J.; et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat. Genet. 1996, 13, 316–324. [Google Scholar] [CrossRef]
- Carrell, S.T.; Carrell, E.M.; Auerbach, D.; Pandey, S.K.; Bennett, C.F.; Dirksen, R.T.; Thornton, C.A. Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice. Hum. Mol. Genet. 2016, 25, 4328–4338. [Google Scholar] [CrossRef] [Green Version]
- Braz, S.O.; Acquaire, J.; Gourdon, G.; Gomes-Pereira, M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front. Neurol. 2018, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, M.; Sarma, S.; Price, R.E.; Wehrens, X.H.; Cooper, T.A. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum. Mol. Genet. 2010, 19, 1066–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.Y.; Li, M.; Manchanda, M.; Batra, R.; Charizanis, K.; Mohan, A.; Warren, S.A.; Chamberlain, C.M.; Finn, D.; Hong, H.; et al. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol. Med. 2013, 5, 1887–1900. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.C.; Chang, P.C.; Wei, Y.C.; Lee, K.Y. Optical Mapping Approaches on Muscleblind-Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Dixon, D.M.; Choi, J.; El-Ghazali, A.; Park, S.Y.; Roos, K.P.; Jordan, M.C.; Fishbein, M.C.; Comai, L.; Reddy, S. Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci. Rep. 2015, 5, 9042. [Google Scholar] [CrossRef] [PubMed]
- Kanadia, R.N.; Johnstone, K.A.; Mankodi, A.; Lungu, C.; Thornton, C.A.; Esson, D.; Timmers, A.M.; Hauswirth, W.W.; Swanson, M.S. A muscleblind knockout model for myotonic dystrophy. Science 2003, 302, 1978–1980. [Google Scholar] [CrossRef] [Green Version]
- Misra, C.; Bangru, S.; Lin, F.; Lam, K.; Koenig, S.N.; Lubbers, E.R.; Hedhli, J.; Murphy, N.P.; Parker, D.J.; Dobrucki, L.W.; et al. Aberrant Expression of a Non-muscle RBFOX2 Isoform Triggers Cardiac Conduction Defects in Myotonic Dystrophy. Dev. Cell 2020, 52, 748–763.e6. [Google Scholar] [CrossRef] [PubMed]
- Rau, F.; Freyermuth, F.; Fugier, C.; Villemin, J.P.; Fischer, M.C.; Jost, B.; Dembele, D.; Gourdon, G.; Nicole, A.; Duboc, D.; et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat. Struct. Mol. Biol. 2011, 18, 840–845. [Google Scholar] [CrossRef]
- Kalsotra, A.; Singh, R.K.; Gurha, P.; Ward, A.J.; Creighton, C.J.; Cooper, T.A. The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 2014, 6, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Costa, J.M.; Garcia-Lopez, A.; Zuniga, S.; Fernandez-Pedrosa, V.; Felipo-Benavent, A.; Mata, M.; Jaka, O.; Aiastui, A.; Hernandez-Torres, F.; Aguado, B.; et al. Expanded CTG repeats trigger miRNA alterations in Drosophila that are conserved in myotonic dystrophy type 1 patients. Hum. Mol. Genet. 2013, 22, 704–716. [Google Scholar] [CrossRef] [Green Version]
- McNally, E.M.; Mann, D.L.; Pinto, Y.; Bhakta, D.; Tomaselli, G.; Nazarian, S.; Groh, W.J.; Tamura, T.; Duboc, D.; Itoh, H.; et al. Clinical Care Recommendations for Cardiologists Treating Adults with Myotonic Dystrophy. J. Am. Heart Assoc. 2020, 9, e014006. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Gilabert, M.; Lopez-Castel, A.; Artero, R. Myotonic dystrophy type 1 drug development: A pipeline toward the market. Drug Discov. Today 2021, 26, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahadevan, M.S.; Yadava, R.S.; Mandal, M. Cardiac Pathology in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2021, 22, 11874. https://doi.org/10.3390/ijms222111874
Mahadevan MS, Yadava RS, Mandal M. Cardiac Pathology in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences. 2021; 22(21):11874. https://doi.org/10.3390/ijms222111874
Chicago/Turabian StyleMahadevan, Mani S., Ramesh S. Yadava, and Mahua Mandal. 2021. "Cardiac Pathology in Myotonic Dystrophy Type 1" International Journal of Molecular Sciences 22, no. 21: 11874. https://doi.org/10.3390/ijms222111874
APA StyleMahadevan, M. S., Yadava, R. S., & Mandal, M. (2021). Cardiac Pathology in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 22(21), 11874. https://doi.org/10.3390/ijms222111874