Calcium in Neuronal and Glial Response to Axotomy
Abstract
:1. Introduction
2. Calcium Dynamics in Neurons and Glia after Axotomy
3. Calcium in Electrophysiological Response to Axotomy
4. Calcium in Ultrastructural Response of Neurons and Glia to Axotomy
5. Calcium Pathway in Death, Survival, and Regeneration of Neurons and Glia after Axotomy
6. Cell Death Scenarios in Neurons and Glia after Axotomy
7. Future Prospects and Targets
8. Conclusions
Funding
Conflicts of Interest
References
- Hill, C.S.; Coleman, M.P.; Menon, D.K. Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci. 2016, 39, 311–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobeissy, F.H. Brain Neurotrauma; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015; ISBN 9781466565982. [Google Scholar]
- Rodemer, W.; Hu, J.; Selzer, M.; Shifman, M. Heterogeneity in the regenerative abilities of central nervous system axons within species: Why do some neurons regenerate better than others? Neural Regen. Res. 2020, 15, 996. [Google Scholar] [CrossRef]
- Fawcett, J.W.; Verhaagen, J. Intrinsic Determinants of Axon Regeneration. Dev. Neurobiol. 2018, 78, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yaakov, K.; Fainzilber, M. Retrograde injury signaling in lesioned axons. Results Probl. Cell Differ. 2009, 48, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, M.; Yokouchi, K.; Kawagishi, K.; Moriizumi, T.; Fukushima, N. Effects of various lengths of hypoglossal nerve resection on motoneuron survival. J. Clin. Neurosci. 2019, 60, 128–131. [Google Scholar] [CrossRef]
- Swieck, K.; Conta-Steencken, A.; Middleton, F.A.; Siebert, J.R.; Osterhout, D.J.; Stelzner, D.J. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury. BMC Neurosci. 2019, 20, 10. [Google Scholar] [CrossRef] [Green Version]
- Rishal, I.; Fainzilber, M. Axon–soma communication in neuronal injury. Nat. Rev. Neurosci. 2014, 15, 32–42. [Google Scholar] [CrossRef]
- Siedler, D.G.; Chuah, M.I.; Kirkcaldie, M.T.K.; Vickers, J.C.; King, A.E. Diffuse axonal injury in brain trauma: Insights from alterations in neurofilaments. Front. Cell. Neurosci. 2014, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Gemes, G.; Rigaud, M.; Weyker, P.D.; Abram, S.E.; Weihrauch, D.; Poroli, M.; Zoga, V.; Hogan, Q.H. Depletion of Calcium Stores in Injured Sensory Neurons-Anatomic and Functional Correlates. Anesthesiology 2009, 111, 393–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marambaud, P.; Dreses-Werringloer, U.; Vingtdeux, V. Calcium signaling in neurodegeneration. Mol. Neurodegener. 2009, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Kondratskyi, A.; Kondratska, K.; Skryma, R.; Prevarskaya, N. Ion channels in the regulation of apoptosis. Biochim. Biophys. Acta 2015, 1848, 2532–2546. [Google Scholar] [CrossRef] [Green Version]
- Büki, A.; Povlishock, J.T. All roads lead to disconnection?—Traumatic axonal injury revisited. Acta Neurochir. 2006, 148, 181–193. [Google Scholar] [CrossRef]
- Giaume, C.; Leybaert, L.; Naus, C.C.; Sáez, J.C. Connexin and pannexin hemichannels in brain glial cells: Properties, pharmacology, and roles. Front. Pharmacol. 2013, 4, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Largo, C.; Cuevas, P.; Herreras, O. Is glia disfunction the initial cause of neuronal death in ischemic penumbra? Neurol. Res. 1996, 18, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, G.; Doyle, C.A.; Hunt, S.P.; Munglani, R. Differential time course of neuronal and glial apoptosis in neonatal rat dorsal root ganglia after sciatic nerve axotomy. Eur. J. Neurosci. 1998, 10, 3400–3408. [Google Scholar] [CrossRef] [PubMed]
- Ziv, N.E.; Spira, M.E. Spatiotemporal Distribution of Ca2+ following Axotomy and Throughout the Recovery Process of Cultured Aplysia Neurons. Eur. J. Neurosci. 1993, 5, 657–668. [Google Scholar] [CrossRef]
- Rudkovskii, M.V.; Fedorenko, A.G.; Khaitin, A.M.; Pitinova, M.A.; Uzdensky, A.B. The effect of axotomy on firing and ultrastructure of the crayfish mechanoreceptor neurons and satellite glial cells. Mol. Cell. Neurosci. 2020, 107, 103534. [Google Scholar] [CrossRef]
- Boudes, M.; Scamps, F. Calcium-activated chloride current expression in axotomized sensory neurons: What for? Front. Mol. Neurosci. 2012, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Adelsberger, H.; von Beckerath, N.; Dudel, J. Characterization and molecular reaction scheme of a chloride channel expressed after axotomy in crayfish. Pflugers Arch. 1996, 432, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.; Laursen, H.; Hillered, L.; Hansen, A.J. Calcium movements in traumatic brain injury: The role of glutamate receptor-operated ion channels. J. Cereb. Blood Flow Metab. 1996, 16, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Moser, H.; Mair, N.; Fresser, F. Extracellular Ca2+ and its effect on acid extrusion in the crayfish stretch receptor neurone. J. Exp. Biol. 1996, 199, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Gemes, G.; Oyster, K.D.; Pan, B.; Wu, H.-E.; Bangaru, M.L.Y.; Tang, Q.; Hogan, Q.H. Painful nerve injury increases plasma membrane Ca2+-ATPase activity in axotomized sensory neurons. Mol. Pain 2012, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogura, H.; Tachibana, T.; Yamanaka, H.; Kobayashi, K.; Obata, K.; Dai, Y.; Yoshiya, S.; Noguchi, K. Axotomy increases plasma membrane Ca2+ pump isoform4 in primary afferent neurons. Neuroreport 2007, 18, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Parpura, V. Store-operated calcium entry in neuroglia. Neurosci. Bull. 2014, 30, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, J.R.; Wilson-Gerwing, T.D.; Verge, V.M.K. Induction of a reactive state in perineuronal satellite glial cells akin to that produced by nerve injury is linked to the level of p75NTR expression in adult sensory neurons. Glia 2014, 62, 763–777. [Google Scholar] [CrossRef]
- Suadicani, S.O.; Cherkas, P.S.; Zuckerman, J.; Smith, D.N.; Spray, D.C.; Hanani, M. Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol. 2010, 6, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Spray, D.C.; Iglesias, R.; Shraer, N.; Suadicani, S.O.; Belzer, V.; Hanstein, R.; Hanani, M. Gap junction mediated signaling between satellite glia and neurons in trigeminal ganglia. Glia 2019, 67, 791–801. [Google Scholar] [CrossRef]
- Khaitin, A.; Rudkovskii, M.; Uzdensky, A. Ca2+ mediates axotomy-induced necrosis and apoptosis of satellite glial cells remote from the transection site in the isolated crayfish mechanoreceptor. Mol. Cell. Neurosci. 2018, 88, 7–15. [Google Scholar] [CrossRef]
- Kuwada, B.Y.J.Y.; Wine, J.J.; Kuwada, J.Y.; Wine, J.J. Transient, axotomy-induced changes in the membrane properties of crayfish central neurones. J. Physiol. 1981, 317, 435–461. [Google Scholar] [CrossRef] [Green Version]
- Kuwada, J.Y. Ionic and metabolic dependence of axotomy-induced somatic membrane changes in crayfish. J. Physiol. 1981, 317, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Muramoto, A. Ionic Dependence of the Axotomy-Induced Long-Lasting Firing in an Identified Crayfish Motoneuron. Zoolog. Sci. 1998, 15, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Mandolesi, G.; Madeddu, F.; Bozzi, Y.; Maffei, L.; Ratto, G.M. Acute physiological response of mammalian central neurons to axotomy: Ionic regulation and electrical activity. FASEB J. 2004, 18, 1934–1936. [Google Scholar] [CrossRef] [PubMed]
- Hilaire, C.; Inquimbert, P.; Al-Jumaily, M.; Greuet, D.; Valmier, J.; Scamps, F. Calcium dependence of axotomized sensory neurons excitability. Neurosci. Lett. 2005, 380, 330–334. [Google Scholar] [CrossRef]
- Tsantoulas, C.; Zhu, L.; Shaifta, Y.; Grist, J.; Ward, J.P.T.; Raouf, R.; Michael, G.J.; McMahon, S.B. Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J. Neurosci. 2012, 32, 17502–17513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogan, Q.; Lirk, P.; Poroli, M.; Rigaud, M.; Fuchs, A.; Fillip, P.; Ljubkovic, M.; Gemes, G.; Sapunar, D. Restoration of calcium influx corrects membrane hyperexcitability in injured rat dorsal root ganglion neurons. Anesth. Analg. 2008, 107, 1045–1051. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Vives, M.V.; Valdeolmillos, M.; Martínez, S.; Gallego, R. Axotomy-induced Changes in Ca2+ Homeostasis in Rat Sympathetic Ganglion Cells. Eur. J. Neurosci. 1994, 6, 9–17. [Google Scholar] [CrossRef]
- Hanani, M. Satellite glial cells in sensory ganglia: From form to function. Brain Res. Rev. 2005, 48, 457–476. [Google Scholar] [CrossRef]
- Cherkas, P.S.; Huang, T.-Y.; Pannicke, T.; Tal, M.; Reichenbach, A.; Hanani, M. The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 2004, 110, 290–298. [Google Scholar] [CrossRef]
- Hanani, M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: Implications for chronic pain. Brain Res. 2012, 1487, 183–191. [Google Scholar] [CrossRef]
- Aldskogius, H.; Kozlova, E.N. Central neuron-glial and glial-glial interactions following axon injury. Prog. Neurobiol. 1998, 55, 1–26. [Google Scholar] [CrossRef]
- Zohar, O. Electrophysiological and ultrastructural changes in severed motor axons of the crayfish. Neurosci. Res. 2001, 41, 151–159. [Google Scholar] [CrossRef]
- Staal, J.A.; Dickson, T.C.; Chung, R.S.; Vickers, J.C. Cyclosporin-A treatment attenuates delayed cytoskeletal alterations and secondary axotomy following mild axonal stretch injury. Dev. Neurobiol. 2007, 67, 1831–1842. [Google Scholar] [CrossRef]
- Eddleman, C.S.; Ballinger, M.L.; Smyers, M.E.; Fishman, H.M.; Bittner, G.D. Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J. Neurosci. 1998, 18, 4029–4041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detrait, E.R.; Yoo, S.; Eddleman, C.S.; Fukuda, M.; Bittner, G.D.; Fishman, H.M. Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+ and synaptotagmin. J. Neurosci. Res. 2000, 62, 566–573. [Google Scholar] [CrossRef]
- Detrait, E.; Eddleman, C.S.; Yoo, S.; Fukuda, M.; Nguyen, M.P.; Bittner, G.D.; Fishman, H.M. Axolemmal repair requires proteins that mediate synaptic vesicle fusion. J. Neurobiol. 2000, 44, 382–391. [Google Scholar] [CrossRef]
- Eddleman, C.S.; Bittner, G.D.; Fishman, H.M. SEM comparison of severed ends of giant axons isolated from squid (Loligo pealeii) and crayfish (Procambarus clarkii). Biol. Bull. 2002, 203, 219–220. [Google Scholar] [CrossRef]
- Godell, C.M.; Smyers, M.E.; Eddleman, C.S.; Ballinger, M.L.; Fishman, H.M.; Bittner, G.D. Calpain activity promotes the sealing of severed giant axons. Proc. Natl. Acad. Sci. USA 1997, 94, 4751–4756. [Google Scholar] [CrossRef] [Green Version]
- Gitler, D.; Spira, M.E. Short window of opportunity for calpain induced growth cone formation after axotomy of Aplysia neurons. J. Neurobiol. 2002, 52, 267–279. [Google Scholar] [CrossRef]
- Gitler, D.; Spira, M.E. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 1998, 20, 1123–1135. [Google Scholar] [CrossRef] [Green Version]
- Spira, M.E.; Oren, R.; Dormann, A.; Gitler, D. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J. Comp. Neurol. 2003, 457, 293–312. [Google Scholar] [CrossRef]
- Ziv, N.E.; Spira, M.E. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J. Neurosci. 1997, 17, 3568–3579. [Google Scholar] [CrossRef] [Green Version]
- Meiri, H.; Dormann, A.; Spira, M.E. Comparison of ultrastructural changes in proximal and distal segments of transected giant fibers of the cockroach Periplaneta americana. Brain Res. 1983, 263, 1–14. [Google Scholar] [CrossRef]
- Fedorenko, G.; Neginskaya, M.; Fedorenko, A.; Uzdensky, A. The paired neuroglial and interglial membranes in the crayfish stretch receptor and their local disorganization. J. Neurosci. Res. 2015, 93, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, G.M.; Uzdensky, A.B. Ultrastructure of neuroglial contacts in crayfish stretch receptor. Cell Tissue Res. 2009, 337, 477–490. [Google Scholar] [CrossRef]
- Fedorenko, G.M.; Uzdensky, A.B. Cellular structures involved in the transport processes and neuroglial interactions in the crayfish stretch receptor. J. Integr. Neurosci. 2009, 8, 433–440. [Google Scholar] [CrossRef]
- Fedorenko, G.M.; Uzdensky, A.B. Dynamics of ultrastructural changes in the isolated crayfish mechanoreceptor neuron under photodynamic impact. J. Neurosci. Res. 2008, 86, 1409–1416. [Google Scholar] [CrossRef]
- Fedorenko, G.M.; Fedorenko, Y.P.; Fedorenko, A.G.; Uzdensky, A.B. Dynamics of ultrastructural alterations in photosensitized crayfish glial and neuronal cells: Structures involved in transport processes and neuroglial interactions. J. Neurosci. Res. 2011, 89, 341–351. [Google Scholar] [CrossRef]
- Lopez-Verrilli, M.A.; Court, F.A. Transfer of vesicles from Schwann cells to axons: A novel mechanism of communication in the peripheral nervous system. Front. Physiol. 2012, 3, 205. [Google Scholar] [CrossRef] [Green Version]
- Kucenas, S. Perineurial Glia. Cold Spring Harb. Perspect. Biol. 2015, 7, a020511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolls, A.; Shechter, R.; Schwartz, M. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 2009, 10, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Bähr, M. (Ed.) Neuroprotection; Wiley: Weinheim, Germany, 2004; Volume 2, ISBN 9783527308163. [Google Scholar]
- Wang, X.; Hasan, O.; Arzeno, A.; Benowitz, L.I.; Cafferty, W.B.J.; Strittmatter, S.M. Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Exp. Neurol. 2012, 237, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Twiss, J.L.; Fainzilber, M. Ribosomes in axons—Scrounging from the neighbors? Trends Cell Biol. 2009, 19, 236–243. [Google Scholar] [CrossRef]
- Van Adel, B.A.; Arnold, J.M.; Phipps, J.; Doering, L.C.; Ball, A.K. Ciliary neurotrophic factor protects retinal ganglion cells from axotomy-induced apoptosis via modulation of retinal glia in vivo. J. Neurobiol. 2005, 63, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Göbel, J.; Motori, E.; Bergami, M. Spatiotemporal control of mitochondrial network dynamics in astroglial cells. Biochem. Biophys. Res. Commun. 2018, 500, 17–25. [Google Scholar] [CrossRef]
- Rose, J.; Brian, C.; Woods, J.; Pappa, A.; Panayiotidis, M.I.; Powers, R.; Franco, R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology 2017, 391, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, P.G.P.G.; Rabchevsky, A.G.G.; Waldmeier, P.C.C.; Springer, J.E.E. Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J. Neurosci. Res. 2005, 79, 231–239. [Google Scholar] [CrossRef]
- Rigaud, M.; Gemes, G.; Weyker, P.D.; Cruikshank, J.M.; Kawano, T.; Wu, H.-E.; Hogan, Q.H. Axotomy depletes intracellular calcium stores in primary sensory neurons. Anesthesiology 2009, 111, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Vanderluit, J.L.; McPhail, L.T.; Fernandes, K.J.L.; Kobayashi, N.R.; Tetzlaff, W. In vivo application of mitochondrial pore inhibitors blocks the induction of apoptosis in axotomized neonatal facial motoneurons. Cell Death Differ. 2003, 10, 969–976. [Google Scholar] [CrossRef]
- Schwab, B.L.; Guerini, D.; Didszun, C.; Bano, D.; Ferrando-May, E.; Fava, E.; Tam, J.; Xu, D.; Xanthoudakis, S.; Nicholson, D.W.; et al. Cleavage of plasma membrane calcium pumps by caspases: A link between apoptosis and necrosis. Cell Death Differ. 2002, 9, 818–831. [Google Scholar] [CrossRef]
- Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Calcium and mitochondria in the regulation of cell death. Biochem. Biophys. Res. Commun. 2015, 460, 72–81. [Google Scholar] [CrossRef]
- Nejatbakhsh, N.; Guo, C.-H.; Lu, T.Z.; Pei, L.; Smit, A.B.; Sun, H.-S.; van Kesteren, R.E.; Feng, Z.-P. Caltubin, a novel molluscan tubulin-interacting protein, promotes axonal growth and attenuates axonal degeneration of rodent neurons. J. Neurosci. 2011, 31, 15231–15244. [Google Scholar] [CrossRef] [Green Version]
- Demyanenko, S.; Dzreyan, V.; Uzdensky, A. Axotomy-Induced Changes of the Protein Profile in the Crayfish Ventral Cord Ganglia. J. Mol. Neurosci. 2019, 68, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.M.; McQuarrie, I.G. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: Effect of axotomy. J. Neurobiol. 1997, 33, 796–810. [Google Scholar] [CrossRef]
- Elzière, L.; Sar, C.; Ventéo, S.; Bourane, S.; Puech, S.; Sonrier, C.; Boukhadaoui, H.; Fichard, A.; Pattyn, A.; Valmier, J.; et al. CaMKK-CaMK1a, a New Post-Traumatic Signalling Pathway Induced in Mouse Somatosensory Neurons. PLoS ONE 2014, 9, e97736. [Google Scholar] [CrossRef] [PubMed]
- Yamada, E.; Kataoka, H.; Hazama, F. Specific expression of type II protein kinase c after axotomy in the dorsal motor nucleus of the vagus nerve and the hypoglossal nucleus. Brain Res. 1994, 639, 341–346. [Google Scholar] [CrossRef]
- Ghoumari, A.M.; Wehrlé, R.; De Zeeuw, C.I.; Sotelo, C.; Dusart, I. Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration. J. Neurosci. 2002, 22, 3531–3542. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Rosen, K.M.; Hedstrom, K.; Rey, O.; Guha, S.; Hart, C.; Corfas, G. Nerve injury induces glial cell line-derived neurotrophic factor (gdnf) expression in schwann cells through purinergic signaling and the pkc-pkd pathway. Glia 2013, 61, 1029–1040. [Google Scholar] [CrossRef] [Green Version]
- Dassesse, D.; Cuvelier, L.; Krebs, C.; Streppel, M.; Guntinas-Lichius, O.; Neiss, W.F.; Pochet, R. Differential expression of calbindin and calmodulin in motoneurons after hypoglossal axotomy. Brain Res. 1998, 786, 181–188. [Google Scholar] [CrossRef]
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal cell death. Physiol. Rev. 2018, 98, 813–880. [Google Scholar] [CrossRef]
- Abe, N.; Cavalli, V. Nerve injury signaling. Curr. Opin. Neurobiol. 2008, 18, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Ghosh-Roy, A.; Wu, Z.; Goncharov, A.; Jin, Y.; Chisholm, A.D. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 2010, 30, 3175–3183. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Huang, X.; Feit-Leithman, R.A.; Neve, R.L.; Snider, W.; Dartt, D.A.; Chen, D.F. Bcl-2 enhances Ca2+ signaling to support the intrinsic regenerative capacity of CNS axons. EMBO J. 2005, 24, 1068–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michetti, F.; Di Sante, G.; Clementi, M.E.; Sampaolese, B.; Casalbore, P.; Volonté, C.; Romano Spica, V.; Parnigotto, P.P.; Di Liddo, R.; Amadio, S.; et al. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci. Biobehav. Rev. 2021, 127, 446–458. [Google Scholar] [CrossRef]
- Li, L.; Wu, W.; Lin, L.F.; Lei, M.; Oppenheim, R.W.; Houenou, L.J. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 1995, 92, 9771–9775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sendtner, M.; Kreutzberg, G.W.; Thoenen, H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 1990, 345, 440–441. [Google Scholar] [CrossRef]
- Sendtner, M.; Holtmann, B.; Kolbeck, R.; Thoenen, H.; Barde, Y. a Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 1992, 360, 757–759. [Google Scholar] [CrossRef]
- Yan, Q.; Elliott, J.; Snider, W.D. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 1992, 360, 753–755. [Google Scholar] [CrossRef]
- Gordon, T. The physiology of neural injury and regeneration: The role of neurotrophic factors. J. Commun. Disord. 2010, 43, 265–273. [Google Scholar] [CrossRef]
- Grider, M.H.; Mamounas, L.A.; Le, W.; Shine, H.D. In situ expression of brain-derived neurotrophic factor or neurotrophin-3 promotes sprouting of cortical serotonergic axons following a neurotoxic lesion. J. Neurosci. Res. 2005, 82, 404–412. [Google Scholar] [CrossRef]
- Watanabe, M.; Fukuda, Y. Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog. Retin. Eye Res. 2002, 21, 529–553. [Google Scholar] [CrossRef]
- Michael, G.J.; Averill, S.; Shortland, P.J.; Yan, Q.; Priestley, J.V. Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur. J. Neurosci. 1999, 11, 3539–3551. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Ikeda, K. Prevention by insulin-like growth factor-I and riluzole in motor neuron death after neonatal axotomy. J. Neurol. Sci. 1999, 169, 148–155. [Google Scholar] [CrossRef]
- Schmalbruch, H.; Rosenthal, A. Neurotrophin-4/5 postpones the death of injured spinal motoneurons in newborn rats. Brain Res. 1995, 700, 254–260. [Google Scholar] [CrossRef]
- Wilcox, B.J.; Applegate, M.D.; Portera-Cailliau, C.; Koliatsos, V.E. Nerve growth factor prevents apoptotic cell death in injured central cholinergic neurons. J. Comp. Neurol. 1995, 359, 573–585. [Google Scholar] [CrossRef]
- Henderson, C.E.; Phillips, H.S.; Pollock, R.A.; Davies, A.M.; Lemeulle, C.; Armanini, M.; Simmons, L.; Moffet, B.; Vandlen, R.A.; Simpson LC corrected to Simmons, L.; et al. GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994, 266, 1062–1064. [Google Scholar] [CrossRef]
- Kirsch, M.; Terheggen, U.; Hofmann, H.D. Ciliary neurotrophic factor is an early lesion-induced retrograde signal for axotomized facial motoneurons. Mol. Cell. Neurosci. 2003, 24, 130–138. [Google Scholar] [CrossRef]
- Shulga, A.; Thomas-Crusells, J.; Sigl, T.; Blaesse, A.; Mestres, P.; Meyer, M.; Yan, Q.; Kaila, K.; Saarma, M.; Rivera, C.; et al. Posttraumatic GABAA-Mediated [Ca2+]i Increase Is Essential for the Induction of Brain-Derived Neurotrophic Factor-Dependent Survival of Mature Central Neurons. J. Neurosci. 2008, 28, 6996–7005. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.Y.; Jeromin, A.; Smith, G.; Kurushima, H.; Koga, H.; Nakabeppu, Y.; Wakabayashi, S.; Nabekura, J. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. J. Cell Biol. 2006, 172, 1081–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandross, K.J. Nerve injury and inflammatory cytokines modulate gap junctions in the peripheral nervous system. Glia 1998, 24, 21–31. [Google Scholar] [CrossRef]
- Harrison, B.C.; Mobley, P.L. Phosphorylation of glial fibrillary acidic protein and vimentin by cytoskeletal-associated intermediate filament protein kinase activity in astrocytes. J. Neurochem. 1992, 58, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muela, N.; Boya, P. Axonal damage, autophagy and neuronal survival. Autophagy 2012, 8, 286–288. [Google Scholar] [CrossRef] [Green Version]
- Mattson, M.P.; Bazan, N.G. Apoptosis and Necrosis. In Basic Neurochemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 663–676. ISBN 9780123749475. [Google Scholar]
- Dubois-Dauphin, M.; Frankowski, H.; Tsujimoto, Y.; Huarte, J.; Martinou, J.C. Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl. Acad. Sci. USA 1994, 91, 3309–3313. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, M.; Johnson, E.M. Programmed cell death in neurons: Focus on the pathway of nerve growth factor deprivation-induced death of sympathetic neurons. Mol. Pharmacol. 1997, 51, 897–906. [Google Scholar] [CrossRef]
- Siebert, J.R.; Middleton, F.A.; Stelzner, D.J. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury. BMC Neurosci. 2010, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Azari, M.F.; Profyris, C.; Karnezis, T.; Bernard, C.C.; Small, D.H.; Cheema, S.S.; Ozturk, E.; Hatzinisiriou, I.; Petratos, S. Leukemia Inhibitory Factor Arrests Oligodendrocyte Death and Demyelination in Spinal Cord Injury. J. Neuropathol. Exp. Neurol. 2006, 65, 914–929. [Google Scholar] [CrossRef]
- Dong, H.; Fazzaro, A.; Xiang, C.; Korsmeyer, S.J.; Jacquin, M.F.; McDonald, J.W. Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed Wallerian degeneration. J. Neurosci. 2003, 23, 8682–8691. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, A.T.; Beat, A.; Singh, A.; Bullock, M.R. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp. Neurol. 2009, 218, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Kasseckert, S.A.; Shahzad, T.; Miqdad, M.; Stein, M.; Abdallah, Y.; Scharbrodt, W.; Oertel, M. The mechanisms of energy crisis in human astrocytes after subarachnoid hemorrhage. Neurosurgery 2013, 72, 468–474. [Google Scholar] [CrossRef]
- Khaitin, A.M.; Rudkovskii, M.V.; Uzdensky, A.B. The method of isolation of the crayfish abdominal stretch receptor maintaining a connection of the sensory neuron to the ventral nerve cord ganglion. Invertebr. Neurosci. 2015, 15, 176. [Google Scholar] [CrossRef] [PubMed]
- Zhivotovsky, B.; Orrenius, S. Calcium and cell death mechanisms: A perspective from the cell death community. Cell Calcium 2011, 50, 211–221. [Google Scholar] [CrossRef]
- Messner, B.; Türkcan, A.; Ploner, C.; Laufer, G.; Bernhard, D. Cadmium overkill: Autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cell. Mol. Life Sci. 2016, 73, 1699–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, D.W.; DiAntonio, A.; Milbrandt, J. Mitochondrial Dysfunction Induces Sarm1-Dependent Cell Death in Sensory Neurons. J. Neurosci. 2014, 34, 9338–9350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuragi, S.; Niwa, F.; Oda, Y.; Mikoshiba, K.; Bannai, H. Astroglial Ca2+ signaling is generated by the coordination of IP3R and store-operated Ca2+ channels. Biochem. Biophys. Res. Commun. 2017, 486, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.J.; Nemani, N.; Shanmughapriya, S.; Kumar, A.; Zhang, M.; Nathan, S.R.; Thomas, M.; Carvalho, E.; Ramachandran, K.; Srikantan, S.; et al. A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury. ACS Cent. Sci. 2019, 5, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Namekata, I.; Hamaguchi, S.; Tanaka, H. Pharmacological discrimination of plasmalemmal and mitochondrial sodium-calcium exchanger in cardiomyocyte-derived H9c2 cells. Biol. Pharm. Bull. 2015, 38, 147–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaitin, A. Calcium in Neuronal and Glial Response to Axotomy. Int. J. Mol. Sci. 2021, 22, 13344. https://doi.org/10.3390/ijms222413344
Khaitin A. Calcium in Neuronal and Glial Response to Axotomy. International Journal of Molecular Sciences. 2021; 22(24):13344. https://doi.org/10.3390/ijms222413344
Chicago/Turabian StyleKhaitin, Andrey. 2021. "Calcium in Neuronal and Glial Response to Axotomy" International Journal of Molecular Sciences 22, no. 24: 13344. https://doi.org/10.3390/ijms222413344
APA StyleKhaitin, A. (2021). Calcium in Neuronal and Glial Response to Axotomy. International Journal of Molecular Sciences, 22(24), 13344. https://doi.org/10.3390/ijms222413344