Thrombin–Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis
Abstract
:1. Introduction
2. Thrombin–Fibrin Interactions during Clot Formation
3. Fibrinogen and Host Defense
4. Fibrinogen Level and Thrombotic Risk in Inflammatory Diseases
5. Synthesis: Balancing Inflammation and Coagulation
Author Contributions
Funding
Conflicts of Interest
References
- Bledzka, K.; Smyth, S.S.; Plow, E.F. Integrin αIIbβ3: From discovery to efficacious therapeutic target. Circ. Res. 2013, 112, 1189–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Swieringa, F.; Spronk, H.M.H.; Heemskerk, J.W.M.; van der Meijden, P.E.J. Integrating platelet and coagulation activation in fibrin clot formation. Res. Pract. Thromb. Haemost. 2018, 2, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, O.M.; Hughes, C.E.; Montague, S.; Watson, S.K.; Frampton, J.; Bender, M.; Watson, S.P. Fibrin activates GPVI in human and mouse platelets. Blood 2015, 126, 1601–1608. [Google Scholar] [CrossRef] [Green Version]
- Castell, J.V.; Gomez-Lechon, M.J.; David, M.; Andus, T.; Geiger, T.; Trullenque, R.; Fabra, R.; Heinrich, P.C. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 1989, 242, 237–239. [Google Scholar] [CrossRef] [Green Version]
- Castell, J.V.; Gomez-Lechon, M.J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P.C. Acute-phase response of human hepatocytes: Regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Mackiewicz, A.; Speroff, T.; Ganapathi, M.K.; Kushner, I. Effects of cytokine combinations on acute phase protein production in two human hepatoma cell lines. J. Immunol. 1991, 146, 3032–3037. [Google Scholar]
- Bode, J.G.; Albrecht, U.; Haussinger, D.; Heinrich, P.C.; Schaper, F. Hepatic acute phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kappaB-dependent signaling. Eur. J. Cell Biol. 2012, 91, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Seegers, W.H.; Nieft, M.; Loomis, E.C. Note on the Adsorption of Thrombin on Fibrin. Science 1945, 101, 520–521. [Google Scholar] [CrossRef] [PubMed]
- Seegers, W.H.; Johnson, J.F.; Fell, C. An antithrombin reaction to prothrombin activation. Am. J. Physiol. 1954, 176, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Hemker, H.C.; Wielders, S.; Kessels, H.; Beguin, S. Continuous registration of thrombin generation in plasma, its use for the determination of the thrombin potential. Thromb. Haemost. 1993, 70, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Hemker, H.C.; Giesen, P.L.; Ramjee, M.; Wagenvoord, R.; Beguin, S. The thrombogram: Monitoring thrombin generation in platelet-rich plasma. Thromb. Haemost. 2000, 83, 589–591. [Google Scholar] [PubMed]
- Macfarlane, R.G.; Biggs, R. A thrombin generation test; the application in haemophilia and thrombocytopenia. J. Clin. Pathol. 1953, 6, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Beguin, S.; Lindhout, T.; Hemker, H.C. The mode of action of heparin in plasma. Thromb. Haemost. 1988, 60, 457–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, A.A.; Ahsan, H.; Khan, F.H. alpha-2-Macroglobulin: A physiological guardian. J. Cell Physiol. 2013, 228, 1665–1675. [Google Scholar] [CrossRef]
- Kessels, H.; Willems, G.; Hemker, H.C. Analysis of thrombin generation in plasma. Comput. Biol. Med. 1994, 24, 277–288. [Google Scholar] [CrossRef]
- Burkhart, W.; Smith, G.F.; Su, J.L.; Parikh, I.; LeVine, H., 3rd. Amino acid sequence determination of ancrod, the thrombin-like alpha-fibrinogenase from the venom of Akistrodon rhodostoma. FEBS Lett. 1992, 297, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Yukelson, L.Y.; Tans, G.; Thomassen, M.C.; Hemker, H.C.; Rosing, J. Procoagulant activities in venoms from central Asian snakes. Toxicon 1991, 29, 491–502. [Google Scholar] [CrossRef]
- Hemker, H.C.; Giesen, P.; Al Dieri, R.; Regnault, V.; de Smedt, E.; Wagenvoord, R.; Lecompte, T.; Beguin, S. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol. Haemost. Thromb. 2003, 33, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Beguin, S.; Hemker, H.C. The influence of fibrinogen and fibrin on thrombin generation--evidence for feedback activation of the clotting system by clot bound thrombin. Thromb. Haemost. 1994, 72, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Meh, D.A.; Siebenlist, K.R.; Mosesson, M.W. Identification and characterization of the thrombin binding sites on fibrin. J. Biol. Chem. 1996, 271, 23121–23125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davie, E.W.; Kulman, J.D. An overview of the structure and function of thrombin. Semin. Thromb. Hemost. 2006, 32 (Suppl. S1), 3–15. [Google Scholar] [CrossRef]
- Lovely, R.S.; Moaddel, M.; Farrell, D.H. Fibrinogen gamma’ chain binds thrombin exosite II. J. Thromb. Haemost. 2003, 1, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Mosesson, M.W.; Finlayson, J.S.; Umfleet, R.A. Human fibrinogen heterogeneities. 3. Identification of chain variants. J. Biol. Chem. 1972, 247, 5223–5227. [Google Scholar] [CrossRef]
- Wolfenstein-Todel, C.; Mosesson, M.W. Human plasma fibrinogen heterogeneity: Evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (gamma’). Proc. Natl. Acad. Sci. USA 1980, 77, 5069–5073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremers, R.M.; Wagenvoord, R.J.; Hemker, H.C. The effect of fibrin(ogen) on thrombin generation and decay. Thromb. Haemost. 2014, 112, 486–494. [Google Scholar] [PubMed]
- Hemker, H.C.; De Smedt, E.; Hemker, P.W. During coagulation, thrombin generation shifts from chemical to diffusional control. J. Thromb. Haemost. 2005, 3, 2399–2400. [Google Scholar] [CrossRef] [PubMed]
- Giesen, P.L.; Willems, G.M.; Hemker, H.C.; Hermens, W.T. Membrane-mediated assembly of the prothrombinase complex. J. Biol. Chem. 1991, 266, 18720–18725. [Google Scholar] [CrossRef]
- Siljander, P.; Carpen, O.; Lassila, R. Platelet-derived microparticles associate with fibrin during thrombosis. Blood 1996, 87, 4651–4663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, S. Coagulation history, Oxford 1951–1953. Br. J. Haematol. 1999, 107, 22–32. [Google Scholar] [CrossRef]
- Kumar, R.; Beguin, S.; Hemker, H.C. The effect of fibrin clots and clot-bound thrombin on the development of platelet procoagulant activity. Thromb. Haemost. 1995, 74, 962–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniak, S. The coagulation system in host defense. Res. Pract. Thromb. Haemost. 2018, 2, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Claushuis, T.A.; de Stoppelaar, S.F.; Stroo, I.; Roelofs, J.J.; Ottenhoff, R.; van der Poll, T.; Van’t Veer, C. Thrombin contributes to protective immunity in pneumonia-derived sepsis via fibrin polymerization and platelet-neutrophil interactions. J. Thromb. Haemost. 2017, 15, 744–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Wang, X.; Degen, J.L.; Ginsburg, D. Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 2009, 113, 1358–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szaba, F.M.; Smiley, S.T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 2002, 99, 1053–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullarky, I.K.; Szaba, F.M.; Berggren, K.N.; Parent, M.A.; Kummer, L.W.; Chen, W.; Johnson, L.L.; Smiley, S.T. Infection-stimulated fibrin deposition controls hemorrhage and limits hepatic bacterial growth during listeriosis. Infect. Immun. 2005, 73, 3888–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, D.; Szaba, F.M.; Kummer, L.W.; Plow, E.F.; Mackman, N.; Gailani, D.; Smiley, S.T. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica. J. Immunol. 2011, 187, 1866–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, J.M.; Gorkun, O.V.; Raghu, H.; Thornton, S.; Mullins, E.S.; Palumbo, J.S.; Ko, Y.P.; Hook, M.; David, T.; Coughlin, S.R.; et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015, 126, 2047–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loof, T.G.; Morgelin, M.; Johansson, L.; Oehmcke, S.; Olin, A.I.; Dickneite, G.; Norrby-Teglund, A.; Theopold, U.; Herwald, H. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011, 118, 2589–2598. [Google Scholar] [CrossRef] [PubMed]
- Deicke, C.; Chakrakodi, B.; Pils, M.C.; Dickneite, G.; Johansson, L.; Medina, E.; Loof, T.G. Local activation of coagulation factor XIII reduces systemic complications and improves the survival of mice after Streptococcus pyogenes M1 skin infection. Int. J. Med. Microbiol. 2016, 306, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Flick, M.J.; Du, X.; Witte, D.P.; Jirouskova, M.; Soloviev, D.A.; Busuttil, S.J.; Plow, E.F.; Degen, J.L. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J. Clin. Investig. 2004, 113, 1596–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 1994, 76, 301–314. [Google Scholar] [CrossRef]
- Podolnikova, N.P.; Podolnikov, A.V.; Haas, T.A.; Lishko, V.K.; Ugarova, T.P. Ligand recognition specificity of leukocyte integrin alphaMbeta2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry 2015, 54, 1408–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plow, E.F.; Haas, T.A.; Zhang, L.; Loftus, J.; Smith, J.W. Ligand binding to integrins. J. Biol. Chem. 2000, 275, 21785–21788. [Google Scholar] [CrossRef] [Green Version]
- Lishko, V.K.; Podolnikova, N.P.; Yakubenko, V.P.; Yakovlev, S.; Medved, L.; Yadav, S.P.; Ugarova, T.P. Multiple binding sites in fibrinogen for integrin alphaMbeta2 (Mac-1). J. Biol. Chem. 2004, 279, 44897–44906. [Google Scholar] [CrossRef] [Green Version]
- Lishko, V.K.; Yakubenko, V.P.; Hertzberg, K.M.; Grieninger, G.; Ugarova, T.P. The alternatively spliced alpha(E)C domain of human fibrinogen-420 is a novel ligand for leukocyte integrins alpha(M)beta(2) and alpha(X)beta(2). Blood 2001, 98, 2448–2455. [Google Scholar] [CrossRef] [Green Version]
- Ugarova, T.P.; Solovjov, D.A.; Zhang, L.; Loukinov, D.I.; Yee, V.C.; Medved, L.V.; Plow, E.F. Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen. J. Biol. Chem. 1998, 273, 22519–22527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, V.K.; Kudryk, B.; Yakubenko, V.P.; Yee, V.C.; Ugarova, T.P. Regulated unmasking of the cryptic binding site for integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2002, 41, 12942–12951. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.D.; Weitz, J.I.; Huang, A.J.; Levin, S.M.; Silverstein, S.C.; Loike, J.D. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc. Natl. Acad. Sci. USA 1988, 85, 7734–7738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altieri, D.C.; Agbanyo, F.R.; Plescia, J.; Ginsberg, M.H.; Edgington, T.S.; Plow, E.F. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J. Biol. Chem. 1990, 265, 12119–12122. [Google Scholar] [CrossRef]
- Tang, L.; Eaton, J.W. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J. Exp. Med. 1993, 178, 2147–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubel, C.; Fernandez, G.C.; Dran, G.; Bompadre, M.B.; Isturiz, M.A.; Palermo, M.S. Fibrinogen promotes neutrophil activation and delays apoptosis. J. Immunol. 2001, 166, 2002–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitrin, R.G.; Pan, P.M.; Srikanth, S.; Todd, R.F., 3rd. Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. J. Immunol. 1998, 161, 1462–1470. [Google Scholar]
- Shi, C.; Zhang, X.; Chen, Z.; Robinson, M.K.; Simon, D.I. Leukocyte integrin Mac-1 recruits toll/interleukin-1 receptor superfamily signaling intermediates to modulate NF-kappaB activity. Circ. Res. 2001, 89, 859–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubel, C.; Fernandez, G.C.; Rosa, F.A.; Gomez, S.; Bompadre, M.B.; Coso, O.A.; Isturiz, M.A.; Palermo, M.S. Soluble fibrinogen modulates neutrophil functionality through the activation of an extracellular signal-regulated kinase-dependent pathway. J. Immunol. 2002, 168, 3527–3535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuluc, F.; Garcia, A.; Bredetean, O.; Meshki, J.; Kunapuli, S.P. Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am. J. Physiol. Cell Physiol. 2004, 287, C1264–C1272. [Google Scholar] [CrossRef] [PubMed]
- Kuijper, P.H.; Gallardo Torres, H.I.; van der Linden, J.A.; Lammers, J.W.; Sixma, J.J.; Zwaginga, J.J.; Koenderman, L. Neutrophil adhesion to fibrinogen and fibrin under flow conditions is diminished by activation and L-selectin shedding. Blood 1997, 89, 2131–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, R.A.; Vieira-de-Abreu, A.; Rowley, J.W.; Franks, Z.G.; Manne, B.K.; Rondina, M.T.; Kraiss, L.W.; Majersik, J.J.; Zimmerman, G.A.; Weyrich, A.S. Clots Are Potent Triggers of Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1819–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, R.L.; Roman, J. Fibrin enhances the expression of IL-1 beta by human peripheral blood mononuclear cells. Implications in pulmonary inflammation. J. Immunol. 1995, 154, 1879–1887. [Google Scholar]
- Forsyth, C.B.; Solovjov, D.A.; Ugarova, T.P.; Plow, E.F. Integrin alpha(M)beta(2)-mediated cell migration to fibrinogen and its recognition peptides. J. Exp. Med. 2001, 193, 1123–1133. [Google Scholar] [CrossRef]
- Pluskota, E.; Soloviev, D.A.; Szpak, D.; Weber, C.; Plow, E.F. Neutrophil apoptosis: Selective regulation by different ligands of integrin alphaMbeta2. J. Immunol. 2008, 181, 3609–3619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.T.; Edgington, T.S. Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J. Immunol. 1993, 150, 2972–2980. [Google Scholar] [PubMed]
- Pillay, J.; Kamp, V.M.; Pennings, M.; Oudijk, E.J.; Leenen, L.P.; Ulfman, L.H.; Koenderman, L. Acute-phase concentrations of soluble fibrinogen inhibit neutrophil adhesion under flow conditions in vitro through interactions with ICAM-1 and MAC-1 (CD11b/CD18). J. Thromb. Haemost. 2013, 11, 1172–1182. [Google Scholar] [CrossRef]
- Kuijper, P.H.; Gallardo Torres, H.I.; Lammers, J.W.; Sixma, J.J.; Koenderman, L.; Zwaginga, J.J. Platelet and fibrin deposition at the damaged vessel wall: Cooperative substrates for neutrophil adhesion under flow conditions. Blood 1997, 89, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Lishko, V.K.; Burke, T.; Ugarova, T. Antiadhesive effect of fibrinogen: A safeguard for thrombus stability. Blood 2007, 109, 1541–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, B.; Boyle, M.D.; Sheerin, B.R.; Asbury, A.C.; Lottenberg, R. Species specificity of plasminogen activation and acquisition of surface-associated proteolytic activity by group C streptococci grown in plasma. Infect. Immun. 1999, 67, 6487–6495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcum, J.A.; Kline, D.L. Species specificity of streptokinase. Comp. Biochem. Physiol. B 1983, 75, 389–394. [Google Scholar] [CrossRef]
- Sun, H.; Ringdahl, U.; Homeister, J.W.; Fay, W.P.; Engleberg, N.C.; Yang, A.Y.; Rozek, L.S.; Wang, X.; Sjobring, U.; Ginsburg, D. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004, 305, 1283–1286. [Google Scholar] [CrossRef]
- Sodeinde, O.A.; Subrahmanyam, Y.V.; Stark, K.; Quan, T.; Bao, Y.; Goguen, J.D. A surface protease and the invasive character of plague. Science 1992, 258, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Miro, J.M.; Hoen, B.; Cabell, C.H.; Abrutyn, E.; Rubinstein, E.; Corey, G.R.; Spelman, D.; Bradley, S.F.; Barsic, B.; et al. Staphylococcus aureus endocarditis: A consequence of medical progress. JAMA 2005, 293, 3012–3021. [Google Scholar] [CrossRef] [Green Version]
- Liesenborghs, L.; Meyers, S.; Vanassche, T.; Verhamme, P. Coagulation: At the heart of infective endocarditis. J. Thromb. Haemost. 2020, 18, 995–1008. [Google Scholar] [CrossRef]
- Hemker, H.C.; Bas, B.M.; Muller, A.D. Activation of a pro-enzyme by a stoichiometric reaction with another protein. The reaction between prothrombin and staphylocoagulase. Biochim. Biophys. Acta 1975, 379, 180–188. [Google Scholar] [CrossRef]
- Josso, F.; Lavergne, J.M.; Gouault, M.; Prou-Wartelle, O.; Soulier, J.P. Various molecular states of factor II (prothrombin). Their study by means of staphylocoagulase and anti-factor II antibodies. I. Factor II in patients treated with vitamin K antagonists. Thromb. Diath. Haemorrh. 1968, 20, 88–98. [Google Scholar] [PubMed]
- Hemker, H.C. Drugs affecting coagulation factor synthesis. In Haemostasis: Biochemistry, Physiology, and Pathology; Derek Ogston, B.B., Ed.; Wiley-Blackwell: London, UK, 1977; pp. 467–473. [Google Scholar]
- Hendrix, H.; Lindhout, T.; Mertens, K.; Engels, W.; Hemker, H.C. Activation of human prothrombin by stoichiometric levels of staphylocoagulase. J. Biol. Chem. 1983, 258, 3637–3644. [Google Scholar] [CrossRef]
- Thomas, S.; Liu, W.; Arora, S.; Ganesh, V.; Ko, Y.P.; Hook, M. The Complex Fibrinogen Interactions of the Staphylococcus aureus Coagulases. Front. Cell. Infect. Microbiol. 2019, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Claes, J.; Ditkowski, B.; Liesenborghs, L.; Veloso, T.R.; Entenza, J.M.; Moreillon, P.; Vanassche, T.; Verhamme, P.; Hoylaerts, M.F.; Heying, R. Assessment of the Dual Role of Clumping Factor A in S. Aureus Adhesion to Endothelium in Absence and Presence of Plasma. Thromb. Haemost. 2018, 118, 1230–1241. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, D.; Nanavaty, T.; House-Pompeo, K.; Bell, E.; Turner, N.; McIntire, L.; Foster, T.; Hook, M. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 1997, 247, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Loughman, A.; van Kessel, K.P.; van Strijp, J.A.; Foster, T.J. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microbiol. Lett. 2006, 258, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerrigan, S.W.; Clarke, N.; Loughman, A.; Meade, G.; Foster, T.J.; Cox, D. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loughman, A.; Fitzgerald, J.R.; Brennan, M.P.; Higgins, J.; Downer, R.; Cox, D.; Foster, T.J. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol. 2005, 57, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Rothfork, J.M.; Dessus-Babus, S.; Van Wamel, W.J.; Cheung, A.L.; Gresham, H.D. Fibrinogen depletion attenuates Staphyloccocus aureus infection by preventing density-dependent virulence gene up-regulation. J. Immunol. 2003, 171, 5389–5395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flick, M.J.; Du, X.; Prasad, J.M.; Raghu, H.; Palumbo, J.S.; Smeds, E.; Hook, M.; Degen, J.L. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood 2013, 121, 1783–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scully, I.L.; Timofeyeva, Y.; Keeney, D.; Matsuka, Y.V.; Severina, E.; McNeil, L.K.; Nanra, J.; Hu, G.; Liberator, P.A.; Jansen, K.U.; et al. Demonstration of the preclinical correlate of protection for Staphylococcus aureus clumping factor A in a murine model of infection. Vaccine 2015, 33, 5452–5457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandin, C.; Carlsson, F.; Lindahl, G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol. Microbiol. 2006, 59, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 2000, 13, 470–511. [Google Scholar] [CrossRef]
- Macheboeuf, P.; Buffalo, C.; Fu, C.Y.; Zinkernagel, A.S.; Cole, J.N.; Johnson, J.E.; Nizet, V.; Ghosh, P. Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature 2011, 472, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Gautam, N.; Olofsson, A.M.; Herwald, H.; Iversen, L.F.; Lundgren-Akerlund, E.; Hedqvist, P.; Arfors, K.E.; Flodgaard, H.; Lindbom, L. Heparin-binding protein (HBP/CAP37): A missing link in neutrophil-evoked alteration of vascular permeability. Nat. Med. 2001, 7, 1123–1127. [Google Scholar] [CrossRef]
- Kannel, W.B. Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 2005, 40, 1215–1220. [Google Scholar] [CrossRef]
- Bini, A.; Fenoglio, J.J., Jr.; Mesa-Tejada, R.; Kudryk, B.; Kaplan, K.L. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis 1989, 9, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela, R.; Shainoff, J.R.; DiBello, P.M.; Urbanic, D.A.; Anderson, J.M.; Matsueda, G.R.; Kudryk, B.J. Immunoelectrophoretic and immunohistochemical characterizations of fibrinogen derivatives in atherosclerotic aortic intimas and vascular prosthesis pseudo-intimas. Am. J. Pathol. 1992, 141, 861–880. [Google Scholar] [PubMed]
- Lepedda, A.J.; Cigliano, A.; Cherchi, G.M.; Spirito, R.; Maggioni, M.; Carta, F.; Turrini, F.; Edelstein, C.; Scanu, A.M.; Formato, M. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 2009, 203, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Levi, M.; Sivapalaratnam, S. Disseminated intravascular coagulation: An update on pathogenesis and diagnosis. Expert Rev. Hematol. 2018, 11, 663–672. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T. Two-way interactions between inflammation and coagulation. Trends Cardiovasc. Med. 2005, 15, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Wolf, P.A.; Castelli, W.P.; D’Agostino, R.B. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 1987, 258, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsen, L.; Svardsudd, K.; Korsan-Bengtsen, K.; Larsson, B.; Welin, L.; Tibblin, G. Fibrinogen as a risk factor for stroke and myocardial infarction. N. Engl. J. Med. 1984, 311, 501–505. [Google Scholar] [CrossRef]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Collins, R.; Kostis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Benderly, M.; et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA 2005, 294, 1799–1809. [Google Scholar]
- Walton, B.L.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J. Thromb. Haemost. 2015, 13 (Suppl. S1), S208–S215. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Papageorgiou, N.; Androulakis, E.; Briasoulis, A.; Antoniades, C.; Stefanadis, C. Fibrinogen and cardiovascular disease: Genetics and biomarkers. Blood Rev. 2011, 25, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Keavney, B.; Danesh, J.; Parish, S.; Palmer, A.; Clark, S.; Youngman, L.; Delepine, M.; Lathrop, M.; Peto, R.; Collins, R. Fibrinogen and coronary heart disease: Test of causality by ‘Mendelian randomization’. Int. J. Epidemiol. 2006, 35, 935–943. [Google Scholar] [CrossRef]
- Meade, T.W.; Humphries, S.E.; De Stavola, B.L. Commentary: Fibrinogen and coronary heart disease—Test of causality by ‘Mendelian’ randomization by Keavney et al. Int. J. Epidemiol. 2006, 35, 944–947. [Google Scholar] [CrossRef] [Green Version]
- Levi, M.; van der Poll, T. Inflammation and coagulation. Crit. Care Med. 2010, 38, S26–S34. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; D’Agostino, R.B.; Wilson, P.W.; Belanger, A.J.; Gagnon, D.R. Diabetes, fibrinogen, and risk of cardiovascular disease: The Framingham experience. Am. Heart J. 1990, 120, 672–676. [Google Scholar] [CrossRef]
- Low Wang, C.C.; Hess, C.N.; Hiatt, W.R.; Goldfine, A.B. Clinical update: Cardiovascular disease in diabetes mellitus: Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus—Mechanisms, management, and clinical considerations. Circulation 2016, 133, 2459–2502. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S. The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: Findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 2003, 168, 351–358. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J. Thromb. Haemost. 2018, 16, 231–241. [Google Scholar] [CrossRef]
- Kaplan, D.; Casper, T.C.; Elliott, C.G.; Men, S.; Pendleton, R.C.; Kraiss, L.W.; Weyrich, A.S.; Grissom, C.K.; Zimmerman, G.A.; Rondina, M.T. VTE incidence and risk factors in patients with severe sepsis and septic shock. Chest 2015, 148, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Cheung, E.Y.; Uitte de Willige, S.; Vos, H.L.; Leebeek, F.W.; Dippel, D.W.; Bertina, R.M.; de Maat, M.P. Fibrinogen gamma’ in ischemic stroke: A case-control study. Stroke 2008, 39, 1033–1035. [Google Scholar] [CrossRef] [Green Version]
- Alexander, K.S.; Madden, T.E.; Farrell, D.H. Association between gamma’ fibrinogen levels and inflammation. Thromb. Haemost. 2011, 105, 605–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rein-Smith, C.M.; Anderson, N.W.; Farrell, D.H. Differential regulation of fibrinogen gamma chain splice isoforms by interleukin-6. Thromb. Res. 2013, 131, 89–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.V.; Standeven, K.F.; Ariens, R.A. Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood 2003, 102, 535–540. [Google Scholar] [CrossRef]
- Lovely, R.S.; Falls, L.A.; Al-Mondhiry, H.A.; Chambers, C.E.; Sexton, G.J.; Ni, H.; Farrell, D.H. Association of gammaA/gamma’ fibrinogen levels and coronary artery disease. Thromb. Haemost. 2002, 88, 26–31. [Google Scholar] [CrossRef]
- Mannila, M.N.; Lovely, R.S.; Kazmierczak, S.C.; Eriksson, P.; Samnegard, A.; Farrell, D.H.; Hamsten, A.; Silveira, A. Elevated plasma fibrinogen gamma’ concentration is associated with myocardial infarction: Effects of variation in fibrinogen genes and environmental factors. J. Thromb. Haemost. 2007, 5, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Appiah, D.; Schreiner, P.J.; MacLehose, R.F.; Folsom, A.R. Association of Plasma gamma’ Fibrinogen With Incident Cardiovascular Disease: The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2700–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovely, R.S.; Yang, Q.; Massaro, J.M.; Wang, J.; D’Agostino, R.B., Sr.; O’Donnell, C.J.; Shannon, J.; Farrell, D.H. Assessment of genetic determinants of the association of gamma’ fibrinogen in relation to cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2345–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walton, B.L.; Getz, T.M.; Bergmeier, W.; Lin, F.C.; Uitte de Willige, S.; Wolberg, A.S. The fibrinogen gammaA/gamma’ isoform does not promote acute arterial thrombosis in mice. J. Thromb. Haemost. 2014, 12, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Uitte de Willige, S.; de Visser, M.C.; Houwing-Duistermaat, J.J.; Rosendaal, F.R.; Vos, H.L.; Bertina, R.M. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels. Blood 2005, 106, 4176–4183. [Google Scholar] [CrossRef]
- Mosesson, M.W.; Hernandez, I.; Raife, T.J.; Medved, L.; Yakovlev, S.; Simpson-Haidaris, P.J.; Uitte, D.E.W.S.; Bertina, R.M. Plasma fibrinogen gamma’ chain content in the thrombotic microangiopathy syndrome. J. Thromb. Haemost. 2007, 5, 62–69. [Google Scholar] [CrossRef]
- Mosesson, M.W.; Cooley, B.C.; Hernandez, I.; Diorio, J.P.; Weiler, H. Thrombosis risk modification in transgenic mice containing the human fibrinogen thrombin-binding gamma’ chain sequence. J. Thromb. Haemost. 2009, 7, 102–110. [Google Scholar] [CrossRef]
- Lovely, R.S.; Rein, C.M.; White, T.C.; Jouihan, S.A.; Boshkov, L.K.; Bakke, A.C.; McCarty, O.J.; Farrell, D.H. gammaA/gamma’ fibrinogen inhibits thrombin-induced platelet aggregation. Thromb. Haemost. 2008, 100, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Lovely, R.S.; Boshkov, L.K.; Marzec, U.M.; Hanson, S.R.; Farrell, D.H. Fibrinogen gamma’ chain carboxy terminal peptide selectively inhibits the intrinsic coagulation pathway. Br. J. Haematol. 2007, 139, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J. The protective rather than prothrombotic fibrinogen in COVID-19 and other inflammatory states. J. Thromb. Haemost. 2020, 18, 1849–1852. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.M.G.; Brandts, L.; Brüggemann, R.A.G.; Koelmann, M.; Streng, R.H.; Olie, H.A.; Gietema, H.A.; Spronk, H.M.H.; van der Horst, I.C.C.; Sels, J.E.M.; et al. Serial Markers of Coagulation and Inflammation and the Occurrence of Clinical Pulmonary Thromboembolism in Mechanically Ventilated Patients with SARS-CoV-2 Infection. the Prospective Maastricht Intensive Care COVID Cohort (Unpublished Journal Article). Maastricht University Medical Center+: Maastricht, The Netherlands, unpublished.
- Al-Samkari, H.; Song, F.; Van Cott, E.M.; Kuter, D.J.; Rosovsky, R. Evaluation of the prothrombin fragment 1.2 in patients with coronavirus disease 2019 (COVID-19). Am. J. Hematol. 2020, 95, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
Normal Plasma | Defibrinated Plasma | |
---|---|---|
Total | 0.40 | 0.70 |
α2-macroglobulin | 0.05 | 0.18 |
Serpins | 0.35 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulshof, A.-M.; Hemker, H.C.; Spronk, H.M.H.; Henskens, Y.M.C.; ten Cate, H. Thrombin–Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int. J. Mol. Sci. 2021, 22, 2590. https://doi.org/10.3390/ijms22052590
Hulshof A-M, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin–Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. International Journal of Molecular Sciences. 2021; 22(5):2590. https://doi.org/10.3390/ijms22052590
Chicago/Turabian StyleHulshof, Anne-Marije, H. Coenraad Hemker, Henri M. H. Spronk, Yvonne M. C. Henskens, and Hugo ten Cate. 2021. "Thrombin–Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis" International Journal of Molecular Sciences 22, no. 5: 2590. https://doi.org/10.3390/ijms22052590
APA StyleHulshof, A. -M., Hemker, H. C., Spronk, H. M. H., Henskens, Y. M. C., & ten Cate, H. (2021). Thrombin–Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. International Journal of Molecular Sciences, 22(5), 2590. https://doi.org/10.3390/ijms22052590