Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges
Abstract
:1. Introduction
2. Biosynthesis and Production Methods of Bacterial Nanocellulose
3. Properties and Applications of Bacterial Nanocellulose
4. Application of Bacterial Nanocellulose in Cosmetics
4.1. Bacterial Nanocellulose as Carrier of Skin Active Substances
4.2. Bacterial Nanocellulose as a Support for the Immobilization of Enzymes
4.3. Bacterial Nanocellulose as Emulsion Stabilizer
4.4. Bacterial Nanocellulose as an Alternative to Microplastics in Cosmetics
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Liobikienė, G.; Bernatonienė, J. Why Determinants of Green Purchase Cannot Be Treated Equally? The Case of Green Cosmetics: Literature Review. J. Clean. Prod. 2017, 162, 109–120. [Google Scholar] [CrossRef]
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Yang, S.; Hanifah, H.; Iqbal, Q. An Exploratory Study of Consumer Attitudes toward Green Cosmetics in the UK Market. Adm. Sci. 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Khoshnava, S.M.; Rostami, R.; Zin, R.M.; Štreimikiene, D.; Yousefpour, A.; Strielkowski, W.; Mardani, A. Aligning the Criteria of Green Economy (GE) and Sustainable Development Goals (SDGs) to Implement Sustainable Development. Sustainability 2019, 11, 4615. [Google Scholar] [CrossRef] [Green Version]
- Prata, J.C.; Patrício Silva, A.L.; da Costa, J.P.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mederake, L.; Knoblauch, D. Shaping EU Plastic Policies: The Role of Public Health vs. Environmental Arguments. Int. J. Environ. Res. Public Health 2019, 16, 3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Chen, W. Environmental Regulation, Green Innovation, and Industrial Green Development: An Empirical Analysis Based on the Spatial Durbin Model. Sustainability 2018, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A Step Forward on Sustainability in the Cosmetics Industry: A Review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Mellou, F.; Varvaresou, A.; Papageorgiou, S. Renewable Sources: Applications in Personal Care Formulations. Int. J. Cosmet. Sci. 2019, 41, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Secchi, M.; Castellani, V.; Collina, E.; Mirabella, N.; Sala, S. Assessing Eco-Innovations in Green Chemistry: Life Cycle Assessment (LCA) of a Cosmetic Product with a Bio-Based Ingredient. J. Clean. Prod. 2016, 129, 269–281. [Google Scholar] [CrossRef]
- Cinelli, P.; Coltelli, M.B.; Signori, F.; Morganti, P.; Lazzeri, A. Cosmetic Packaging to Save the Environment: Future Perspectives. Cosmetics 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.H.; Park, S.G.; Kang, N.G. One-Pot Method of Synthesizing TEMPO-Oxidized Bacterial Cellulose Nanofibers Using Immobilized TEMPO for Skincare Applications. Polymers 2019, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Augustine, R.; Cvelbar, U.; Mozetic, M.; George, A. Biopolymers for Health, Food, and Cosmetic Applications. In Handbook of Biopolymer-Based: From Blends and Composites to Gels and Complex Networks, 1st ed.; Wiley-VCH: Weinheim, Germany, 2013; pp. 801–849. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. Engl. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Dassanayake, R.S.; Acharya, S.; Abidi, N. Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications. In Advanced Sorption Process Applications; IntechOpen: London, UK, 2019; pp. 1–24. [Google Scholar]
- Jacek, P.; Dourado, F.; Gama, M.; Bielecki, S. Molecular Aspects of Bacterial Nanocellulose Biosynthesis. Microb. Biotechnol. 2019, 12, 633–649. [Google Scholar] [CrossRef] [Green Version]
- Bianchet, R.T.; Vieira Cubas, A.L.; Machado, M.M.; Siegel Moecke, E.H. Applicability of Bacterial Cellulose in Cosmetics – Bibliometric Review. Biotechnol. Rep. 2020, 27, e00502. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Santos, H.A.; Khan, T. Applications of Bacterial Cellulose in Food, Cosmetics and Drug Delivery. Cellulose 2016, 23, 2291–2314. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Z.; Shen, R.; Chen, S.; Yang, X. Bacterial Cellulose in Food Industry: Current Research and Future Prospects. Int. J. Biol. Macromol. 2020, 158, 1007–1019. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Barud, H.; Farinas, C.S.; Vasconcellos, V.M.; Claro, A.M. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front. Sustain. Food Syst. 2019, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, A.J.D.; Freire, C.S.R.; Neto, C.P. Do Bacterial Cellulose Membranes Have Potential in Drug-Delivery Systems? Expert Opin. Drug Deliv. 2014, 11, 1113–1124. [Google Scholar] [CrossRef]
- Carvalho, T.; Guedes, G.; Sousa, F.L.; Freire, C.S.R.; Santos, H.A. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnol. J. 2019, 14, 1900059. [Google Scholar] [CrossRef]
- Ullah, H.; Wahid, F.; Santos, H.A.; Khan, T. Advances in Biomedical and Pharmaceutical Applications of Functional Bacterial Cellulose-Based Nanocomposites. Carbohydr. Polym. 2016, 150, 330–352. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Huang, Y.; Meng, F.; Zhuang, Y.; Liu, H.; Du, M.; Ma, Q.; Wang, Q.; Chen, Z.; Chen, L.; et al. Application of Bacterial Cellulose in Skin and Bone Tissue Engineering. Eur. Polym. J. 2020, 122, 109365. [Google Scholar] [CrossRef]
- De Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.; Lustri, W.R.; de Oliveira, O.B.; Ribeiro, S.J.L. A Multipurpose Natural and Renewable Polymer in Medical Applications: Bacterial Cellulose. Carbohydr. Polym. 2016, 153, 406–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial Cellulose: A Versatile Biopolymer for Wound Dressing Applications. Microb. Biotechnol. 2019, 12, 586–610. [Google Scholar] [CrossRef] [PubMed]
- Vilela, C.; Silvestre, A.J.D.; Figueiredo, F.M.L.; Freire, C.S.R. Nanocellulose-Based Materials as Components of Polymer Electrolyte Fuel Cells. J. Mater. Chem. A 2019, 7, 20045–20074. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liang, H.W.; Chen, L.F.; Hu, B.C.; Yu, S.H. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. Acc. Chem. Res. 2016, 49, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, E.; Gaspar, D.; Duarte, P.; Pereira, L.; Águas, H.; Vicente, A.; Dourado, F.; Gama, M.; Martins, R. Optoelectronic Devices from Bacterial NanoCellulose. In Bacterial Nanocellulose: From Biotechnology to Bio-Economy; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 179–197. ISBN 9780444634665. [Google Scholar]
- Troncoso, O.P.; Torres, F.G. Bacterial Cellulose—Graphene Based Nanocomposites. Int. J. Mol. Sci. 2020, 21, 6532. [Google Scholar] [CrossRef]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a Natural Source for Groundbreaking Applications in Materials Science: Today’s State. Mater. Today 2018, 21, 720–748. [Google Scholar] [CrossRef] [Green Version]
- Shoda, M.; Sugano, Y. Biotechnology and Bioprocess. Engineering 2005, 10, 1–8. [Google Scholar] [CrossRef]
- Ludwicka, K.; Jedrzejczak-Krzepkowska, M.; Kubiak, K.; Kolodziejczyk, M.; Pankiewicz, T.; Bielecki, S. Medical and Cosmetic Applications of Bacterial NanoCellulose. In Bacterial Nanocellulose: From Biotechnology to Bio-Economy; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 145–165. ISBN 9780444634665. [Google Scholar]
- Statista Beauty and Personal Care Worldwide. Available online: https://www.statista.com/outlook/70000000/100/beauty-personal-care/worldwide (accessed on 29 November 2020).
- Charreau, H.; Cavallo, E.; Foresti, M.L. Patents Involving Nanocellulose: Analysis of Their Evolution since 2010. Carbohydr. Polym. 2020, 237, 116039. [Google Scholar] [CrossRef]
- Cacicedo, M.L.; Castro, M.C.; Servetas, I.; Bosnea, L.; Boura, K.; Tsafrakidou, P.; Dima, A.; Terpou, A.; Koutinas, A.; Castro, G.R. Progress in Bacterial Cellulose Matrices for Biotechnological Applications. Bioresour. Technol. 2016, 213, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; la China, S.; Falcone, P.M.; Giudici, P. Biotechnological Production of Cellulose by Acetic Acid Bacteria: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 6885–6898. [Google Scholar] [CrossRef] [PubMed]
- Florea, M.; Reeve, B.; Abbott, J.; Freemont, P.S.; Ellis, T. Genome Sequence and Plasmid Transformation of the Model High-Yield Bacterial Cellulose Producer Gluconacetobacter Hansenii ATCC 53582. Sci. Rep. 2016, 6, 23635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trovatti, E.; Serafim, L.S.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Gluconacetobacter Sacchari: An Efficient Bacterial Cellulose Cell-Factory. Carbohydr. Polym. 2011, 86, 1417–1420. [Google Scholar] [CrossRef]
- Thorat, M.N.; Dastager, S.G. High Yield Production of Cellulose by a: Komagataeibacter Rhaeticus PG2 Strain Isolated from Pomegranate as a New Host. RSC Adv. 2018, 8, 29797–29805. [Google Scholar] [CrossRef] [Green Version]
- Chawla, P.R.; Bajaj, I.B.; Survase, S.A.; Singhal, R.S. Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 2009, 47, 107–124. [Google Scholar]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. Engl. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Gallegos, M.A.A.; Carrera, S.H.; Parra, R.; Keshavarz, T.; Iqbal, H.M.N. Bacterial Cellulose. BioResources 2016, 11, 5641–5655. [Google Scholar] [CrossRef]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial Cellulose Production, Properties and Applications with Different Culture Methods—A Review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Shezad, O.; Khan, S.; Khan, T.; Park, J.K. Production of Bacterial Cellulose in Static Conditions by a Simple Fed-Batch Cultivation Strategy. Korean J. Chem. Eng. 2009, 26, 1689–1692. [Google Scholar] [CrossRef]
- Hsieh, J.T.; Wang, M.J.; Lai, J.T.; Liu, H.S. A Novel Static Cultivation of Bacterial Cellulose Production by Intermittent Feeding Strategy. J. Taiwan Inst. Chem. Eng. 2016, 63, 46–51. [Google Scholar] [CrossRef]
- Parte, F.G.B.; Santoso, S.P.; Chou, C.C.; Verma, V.; Wang, H.T.; Ismadji, S.; Cheng, K.C. Current Progress on the Production, Modification, and Applications of Bacterial Cellulose. Crit. Rev. Biotechnol. 2020, 40, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Buldum, G.; Mantalaris, A.; Bismarck, A. More than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromol. Biosci. 2014, 14, 10–32. [Google Scholar] [CrossRef] [Green Version]
- Krystynowicz, A.; Czaja, W.; Wiktorowska-Jezierska, A.; Gonçalves-Miśkiewicz, M.; Turkiewicz, M.; Bielecki, S. Factors Affecting the Yield and Properties of Bacterial Cellulose. J. Ind. Microbiol. Biotechnol. 2002, 29, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Kouda, T.; Yano, H.; Yoshinaga, F.; Kaminoyama, M.; Kamiwan, M. Characterization of Non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor. J. Ferment. Bioeng. 1996, 82, 382–386. [Google Scholar] [CrossRef]
- Czaja, W.; Romanovicz, D.; Brown, R.M. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of Bacterial Cellulose by Gluconacetobacter Hansenii Using Corn Steep Liquor as Nutrient Sources. Front. Microbiol. 2017, 8, 2027. [Google Scholar] [CrossRef]
- Gullo, M.; la China, S.; Petroni, G.; di Gregorio, S.; Giudici, P. Exploring K2G30 Genome: A High Bacterial Cellulose Producing Strain in Glucose and Mannitol Based Media. Front. Microbiol. 2019, 10, 58. [Google Scholar] [CrossRef]
- Chao, Y.; Ishida, T.; Sugano, Y.; Shoda, M. Bacterial Cellulose Production by Acetobacter Xylinum in a 50-L Internal-Loop Airlift Reactor. Biotechnol. Bioeng. 2000, 68, 345–352. [Google Scholar] [CrossRef]
- Song, H.-J.; Li, H.; Seo, J.-H.; Kim, M.-J.; Kim, S.-J. Pilot-Scale Production of Bacterial Cellulose by a Spherical Type Bubble Column Bioreactor Using Saccharified Food Wastes. Korean J. Chem. Eng. 2009, 26, 141–146. [Google Scholar] [CrossRef]
- Onodera, M.; Harashima, I.; Toda, K.; Asakura, T. Silicone Rubber Membrane Bioreactors for Bacterial Cellulose Production. Biotechnol. Bioprocess Eng. 2002, 7, 289–294. [Google Scholar] [CrossRef]
- Kralisch, D.; Hessler, N.; Klemm, D.; Erdmann, R.; Schmidt, W. White Biotechnology for Cellulose Manufacturing—The HoLiR Concept. Biotechnol. Bioeng. 2010, 105, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.P.; Hsieh, S.C.; Chen, K.I.; Demirci, A.; Cheng, K.C. Semi-Continuous Bacterial Cellulose Production in a Rotating Disk Bioreactor and Its Materials Properties Analysis. Cellulose 2014, 21, 835–844. [Google Scholar] [CrossRef]
- Wu, S.C.; Li, M.H. Production of Bacterial Cellulose Membranes in a Modified Airlift Bioreactor by Gluconacetobacter Xylinus. J. Biosci. Bioeng. 2015, 120, 444–449. [Google Scholar] [CrossRef]
- Islam, M.U.; Ullah, M.W.; Khan, S.; Shah, N.; Park, J.K. Strategies for Cost-Effective and Enhanced Production of Bacterial Cellulose. Int. J. Biol. Macromol. 2017, 102, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Jozala, A.F.; de Lencastre-Novaes, L.C.; Lopes, A.M.; de Carvalho Santos-Ebinuma, V.; Mazzola, P.G.; Pessoa, A., Jr.; Grotto, D.; Gerenutti, M.; Chaud, M.V. Bacterial Nanocellulose Production and Application: A 10-Year Overview. Appl. Microbiol. Biotechnol. 2016, 100, 2063–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakar, F.; Kati, A.; Özer, I.; Demirbağ, D.D.; Şahin, F.; Aytekin, A.Ö. Newly Developed Medium and Strategy for Bacterial Cellulose Production. Biochem. Eng. J. 2014, 92, 35–40. [Google Scholar] [CrossRef]
- Carreira, P.; Mendes, J.A.S.; Trovatti, E.; Serafim, L.S.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Utilization of Residues from Agro-Forest Industries in the Production of High Value Bacterial Cellulose. Bioresour. Technol. 2011, 102, 7354–7360. [Google Scholar] [CrossRef]
- Gomes, F.P.; Silva, N.H.C.S.; Trovatti, E.; Serafim, L.S.; Duarte, M.F.; Silvestre, A.J.D.; Neto, C.P.; Freire, C.S.R. Production of Bacterial Cellulose by Gluconacetobacter Sacchari Using Dry Olive Mill Residue. Biomass Bioenergy 2013, 55, 205–211. [Google Scholar] [CrossRef]
- Fan, X.; Gao, Y.; He, W.; Hu, H.; Tian, M.; Wang, K.; Pan, S. Production of Nano Bacterial Cellulose from Beverage Industrial Waste of Citrus Peel and Pomace Using Komagataeibacter Xylinus. Carbohydr. Polym. 2016, 151, 1068–1072. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, D.K.; Bansal, V.; Mehta, D.; Sangwan, R.S.; Yadav, S.K. Efficient and Economic Process for the Production of Bacterial Cellulose from Isolated Strain of Acetobacter Pasteurianus of RSV-4 Bacterium. Bioresour. Technol. 2019, 275, 430–433. [Google Scholar] [CrossRef]
- Abol-Fotouh, D.; Hassan, M.A.; Shokry, H.; Roig, A.; Azab, M.S.; Kashyout, A.E.H.B. Bacterial Nanocellulose from Agro-Industrial Wastes: Low-Cost and Enhanced Production by Komagataeibacter Saccharivorans MD1. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.F.; Furtado, M.R.; Carvalho, C.W.P.; Freitas-Silva, O.; Gottschalk, L.M.F. Production and Characterization of Gluconacetobacter Xylinus Bacterial Cellulose Using Cashew Apple Juice and Soybean Molasses. Int. J. Biol. Macromol. 2020, 146, 285–289. [Google Scholar] [CrossRef]
- Ryngajłło, M.; Jędrzejczak-Krzepkowska, M.; Kubiak, K.; Ludwicka, K.; Bielecki, S. towards Control of Cellulose Biosynthesis by Komagataeibacter Using Systems-Level and Strain Engineering Strategies: Current Progress and Perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 6565–6585. [Google Scholar] [CrossRef] [PubMed]
- Andriani, D.; Apriyana, A.Y.; Karina, M. The Optimization of Bacterial Cellulose Production and Its Applications: A Review. Cellulose 2020, 27, 6747–6766. [Google Scholar] [CrossRef]
- De Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and Bacterial Nanocellulose: Production, Properties and Applications in Medicine, Food, Cosmetics, Electronics and Engineering. A Review. Environ. Chem. Lett. 2020. [Google Scholar] [CrossRef]
- Cottet, C.; Ramirez-Tapias, Y.A.; Delgado, J.F.; de la Osa, O.; Salvay, A.G.; Peltzer, M.A. Biobased Materials from Microbial Biomass and Its Derivatives. Materials 2020, 13, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, K.; Netravali, A.N. A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polym. Rev. 2014, 54, 598–626. [Google Scholar] [CrossRef]
- Almeida, I.F.; Pereira, T.; Silva, N.H.C.S.; Gomes, F.P.; Silvestre, A.J.D.; Freire, C.S.R.; Sousa Lobo, J.M.; Costa, P.C. Bacterial Cellulose Membranes as Drug Delivery Systems: An in Vivo Skin Compatibility Study. Eur. J. Pharm. Biopharm. 2014, 86, 332–336. [Google Scholar] [CrossRef]
- Silva, N.H.C.S.; Mota, J.P.; de Almeida, T.S.; Carvalho, J.P.F.; Silvestre, A.J.D.; Vilela, C.; Rosado, C.; Freire, C.S.R. Topical Drug Delivery Systems Based on Bacterial Nanocellulose: Accelerated Stability Testing. Int. J. Mol. Sci. 2020, 21, 1262. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, Z.; Lucia, L.; Krause, W. Bioengineering Tunable Porosity in Bacterial Nanocellulose Matrices. Soft Matter 2019, 15, 9359–9367. [Google Scholar] [CrossRef]
- Chen, S.Q.; Lopez-Sanchez, P.; Wang, D.; Mikkelsen, D.; Gidley, M.J. Mechanical Properties of Bacterial Cellulose Synthesised by Diverse Strains of the Genus Komagataeibacter. Food Hydrocoll. 2018, 81, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Algar, I.; Garcia-Astrain, C.; Gonzalez, A.; Martin, L.; Gabilondo, N.; Retegi, A.; Eceiza, A. Improved Permeability Properties for Bacterial Cellulose/Montmorillonite Hybrid Bionanocomposite Membranes by in-Situ Assembling. J Renew. Mater. 2016, 4, 57–65. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Yang, J.; Li, Z.; Wang, H. Functionalized Bacterial Cellulose Derivatives and Nanocomposites. Carbohydr. Polym. 2014, 101, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, T.R.; Yang, X.; Zhang, J.; Cao, X. In Situ and Ex Situ Modifications of Bacterial Cellulose for Applications in Tissue Engineering. Mater. Sci. Eng. C 2018, 82, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Liu, H.; Wang, S.; Wu, J.; Huang, M.; Min, H.; Liu, X. Controlled Release and Antibacterial Activity of Tetracycline Hydrochloride-Loaded Bacterial Cellulose Composite Membranes. Carbohydr. Polym. 2016, 145, 114–120. [Google Scholar] [CrossRef]
- Figueiredo, A.G.P.R.; Figueiredo, A.R.P.; Alonso-Varona, A.; Fernandes, S.C.M.; Palomares, T.; Rubio-Azpeitia, E.; Barros-Timmons, A.; Silvestre, A.J.D.; Pascoal Neto, C.; Freire, C.S.R. Biocompatible Bacterial Cellulose-Poly(2-Hydroxyethyl Methacrylate) Nanocomposite Films. BioMed Res. Int. 2013, 2013, 698141. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, X.; Huo, M.; Zhai, X.; Li, F.; Zhong, C. Preparation and Characterization of a Novel Bacterial Cellulose/Chitosan Bio-Hydrogel. Nanomater. Nanotechnol. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Carvalho, J.P.F.; Silva, A.C.Q.; Bastos, V.; Oliveira, H.; Pinto, R.J.B.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Nanocellulose-Based Patches Loaded with Hyaluronic Acid and Diclofenac towards Aphthous Stomatitis Treatment. Nanomaterials 2020, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Saïdi, L.; Vilela, C.; Oliveira, H.; Silvestre, A.J.D.; Freire, C.S.R. Poly(N-Methacryloyl Glycine)/Nanocellulose Composites as PH-Sensitive Systems for Controlled Release of Diclofenac. Carbohydr. Polym. 2017, 169, 357–365. [Google Scholar] [CrossRef]
- Zhang, G.; Liao, Q.; Zhang, Z.; Liang, Q.; Zhao, Y.; Zheng, X.; Zhang, Y. Novel Piezoelectric Paper-Based Flexible Nanogenerators Composed of BaTiO3 Nanoparticles and Bacterial Cellulose. Adv. Sci. 2015, 3, 1500257. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial Cellulose-Zinc Oxide Nanocomposites as a Novel Dressing System for Burn Wounds. Carbohydr. Polym. 2017, 164, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Nisi, R.; Stoppa, M.; Licciulli, A. Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega 2017, 2, 3632–3639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoukat, A.; Wahid, F.; Khan, T.; Siddique, M.; Nasreen, S.; Yang, G.; Ullah, M.W.; Khan, R. Titanium Oxide-Bacterial Cellulose Bioadsorbent for the Removal of Lead Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 129, 965–971. [Google Scholar] [CrossRef]
- Choi, S.M.; Shin, E.J. The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials 2020, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.A.; Taher, Z.M.; Muda, R.; Aziz, R. Cosmeceuticals and Natural Cosmetics; Rosnani, H., Ed.; Penerbit UTM Press: Skudai, Malaysia, 2017. [Google Scholar]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018, 2018, 3420204. [Google Scholar] [CrossRef] [Green Version]
- Perugini, P.; Bleve, M.; Cortinovis, F.; Colpani, A. Biocellulose Masks as Delivery Systems: A Novel Methodological Approach to Assure Quality and Safety. Cosmetics 2018, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Pötzinger, Y.; Kralisch, D.; Fischer, D. Bacterial Nanocellulose: The Future of Controlled Drug Delivery? Ther. Deliv. 2017, 8, 753–761. [Google Scholar] [CrossRef]
- Morganti, P.; Morganti, G.; Chen, H.; Gagliardini, A. Beauty Mask: Market and Environment. J. Clin. Cosmet. Dermatol. 2019, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, G.; de Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial Cellulose Skin Masks—Properties and Sensory Tests. J. Cosmet. Derm. 2018, 17, 840–847. [Google Scholar] [CrossRef]
- Perugini, P.; Bleve, M.; Redondi, R.; Cortinovis, F.; Colpani, A. In Vivo Evaluation of the Effectiveness of Biocellulose Facial Masks as Active Delivery Systems to Skin. J. Cosmet. Derm. 2020, 19, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Ho, B.K.; Hyuna, A.C.; Seok, P.H.; Khan, W.J. Biocellulose Mask Pack Sheet Containing Scrub and Preparing Method Thereof. Korean Patent No: KR20150124643A, 6 November 2015. [Google Scholar]
- Wang, J.; de Yue, Y.; Tang, F.; Sun, J. TLC Screening for Antioxidant Activity of Extracts from Fifteen Bamboo Species and Identification of Antioxidant Flavone Glycosides from Leaves of Bambusa. Textilis Mcclure. Molecules 2012, 17, 12297–12311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, A.; Zhu, Q.; Tan, H.; Horiba, H.; Ohnuki, K.; Mori, Y.; Yamauchi, R.; Ishikawa, H.; Iwamoto, A.; Kawahara, H.; et al. Biological Activities and Phytochemical Profiles of Extracts from Different Parts of Bamboo (Phyllostachys Pubescens). Molecules 2014, 19, 8238–8260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuefeng, D.; Guangwen, H.; Jingru, Q.; Shaowey, Y. Preparation Method and Application of Moringa Oleifera Fermentation Liquor and Biological Cellulose Membrane. Chinese Patent No: CN110218752A, 10 September 2019. [Google Scholar]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.-J.; Bae, S.; Cho, H.-D.; An, S. Transdermal Delivery Systems in Cosmetics. Biomed. Dermatol. 2020, 4, 10. [Google Scholar] [CrossRef]
- Gregoire, S.; Nakako, S.; Yutaka, T. Composite Sheet of Biocellulose and Sphaerotilus Natans-Derived Microtubes. Japanese Patent No: JP2018100241A, 28 June 2018. [Google Scholar]
- Meisi, C.; Jianjun, C.; Menghan, C.; Chunlei, N.; Yue, X.; Yuan, Y.; Xiaomi, Z. Preparation of Soybean Molasses Biological Cellulose Moisture Mask. Chinese Patent No: CN108403474A, 17 August 2018. [Google Scholar]
- Rendang, Y.; Huixia, Z. A Bacterial Cellulose Facial Mask with Antioxidant Ability and a Preparation Method Thereof. Chinese Patent No: CN109200009A, 15 January 2019. [Google Scholar]
- Amorim, J.D.P.; Costa, A.F.S.; Galdino, C.J.S.; Vinhas, G.M.; Santos, E.M.S.; Sarubbo, L.A. Bacterial Cellulose Production Using Fruit Residues as Substract to Industrial Application. Chem. Eng. Trans. 2019, 74, 1165–1170. [Google Scholar] [CrossRef]
- Silva, N.H.C.S.; Drumond, I.; Almeida, I.F.; Costa, P.; Rosado, C.F.; Neto, C.P.; Freire, C.S.R.; Silvestre, A.J.D. Topical Caffeine Delivery Using Biocellulose Membranes: A Potential Innovative System for Cellulite Treatment. Cellulose 2014, 21, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Numata, Y.; Mazzarino, L.; Borsali, R. A Slow-Release System of Bacterial Cellulose Gel and Nanoparticles for Hydrophobic Active Ingredients. Int. J. Pharm. 2015, 486, 217–225. [Google Scholar] [CrossRef]
- Hongli, L. Bacterial Cellulose Anti-Inflammation and Anti-Allergy Bee Venom Mask. Chinese Patent No: CN107412142A, 1 December 2017. [Google Scholar]
- Stasiak-Rózńska, L.; Płoska, J. Study on the Use of Microbial Cellulose as a Biocarrier for 1,3-Dihydroxy-2-Propanone and Its Potential Application in Industry. Polymers 2018, 10, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciriminna, R.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. Dihydroxyacetone: An Updated Insight into an Important Bioproduct. ChemistryOpen 2018, 7, 233–236. [Google Scholar] [CrossRef]
- Amorim, J.D.P.; Junior, C.J.G.S.; Costa, A.F.S.; Nascimento, H.A.; Vinhas, G.M.; Sarrubo, L.A. BioMask, a Polymer Blend for Treatment and Healing of Skin Prone to Acne. Chem. Eng. Trans. 2020, 79, 205–210. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [Green Version]
- Morais, E.S.; Silva, N.H.C.S.; Sintra, T.E.; Santos, S.A.O.; Neves, B.M.; Almeida, I.F.; Costa, P.C.; Correia-Sá, I.; Ventura, S.P.M.; Silvestre, A.J.D.; et al. Anti-Inflammatory and Antioxidant Nanostructured Cellulose Membranes Loaded with Phenolic-Based Ionic Liquids for Cutaneous Application. Carbohydr. Polym. 2019, 206, 187–197. [Google Scholar] [CrossRef]
- Chantereau, G.; Sharma, M.; Abednejad, A.; Vilela, C.; Costa, E.M.; Veiga, M.; Antunes, F.; Pintado, M.M.; Sèbe, G.; Coma, V.; et al. Bacterial Nanocellulose Membranes Loaded with Vitamin B-Based Ionic Liquids for Dermal Care Applications. J. Mol. Liq. 2020, 302, 112547. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic Acid: A Key Molecule in Skin Aging. Derm. Endocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Changying, L. Preparation Method of Hyaluronic Acid-Bacterial Cellulose Biological Mask. Chinese Patent No: CN106389150, 15 February 2017. [Google Scholar]
- Jihong, H.; Ming, H.; Aimei, L.; Jing, T.; Qing, T. Preparation Method of Sericin/Hyaluromic Acid-Bacteria Cellulose Composite Biological Facial Mask. Chinese Patent No: CN108451791A, 28 August 2018. [Google Scholar]
- Fonseca, D.F.S.; Vilela, C.; Pinto, R.J.B.; Bastos, V.; Oliveira, H.; Catarino, J.; Faísca, P.; Rosado, C.; Silvestre, A.J.D.; Freire, C.S.R. Bacterial Nanocellulose-Hyaluronic Acid Microneedle Patches for Skin Applications: In Vitro and in Vivo Evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111350. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, D.F.S.; Vilela, C.; Silvestre, A.J.D.; Freire, C.S.R. A Compendium of Current Developments on Polysaccharide and Protein-Based Microneedles. Int. J. Biol. Macromol. 2019, 136, 704–728. [Google Scholar] [CrossRef]
- Masahiko, H.; Mikayo, I.; Takeshi, K.; Masaya, N.; Yoko, O.; Shuhei, S.; Yuya, U. Sheet Mask. WO Patent No: WO2019031017A1, 14 February 2019. [Google Scholar]
- Numata, Y.; Kono, H.; Tsuji, M.; Tajima, K. Structural and Mechanical Characterization of Bacterial Cellulose–Polyethylene Glycol Diacrylate Composite Gels. Carbohydr. Polym. 2017, 173, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Chunshom, N.; Chuysinuan, P.; Techasakul, S.; Ummartyotin, S. Dried-State Bacterial Cellulose (Acetobacter Xylinum) and Polyvinyl-Alcohol-Based Hydrogel: An Approach to a Personal Care Material. Sci. Adv. Mater. Devices 2018, 3, 296–302. [Google Scholar] [CrossRef]
- Millon, L.E.; Wan, W.K. The Polyvinyl Alcohol-Bacterial Cellulose System as a New Nanocomposite for Biomedical Applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 79, 245–253. [Google Scholar] [CrossRef]
- Sunar, K.; Kumar, U.; Deshmukh, S.K. Recent Applications of Enzymes in Personal Care Products. In Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 279–298. ISBN 9780128026120. [Google Scholar]
- Sim, Y.-C.; Lee, S.-G.; Lee, D.-C.; Kang, B.-Y.; Park, K.-M.; Lee, J.-Y.; Kim, M.-S.; Chang, I.-S.; Rhee, J.-S. Stabilization of Papain and Lysozyme for Application to Cosmetic Products. Biotechnol. Lett. 2000, 22, 137–140. [Google Scholar] [CrossRef]
- Yu, B.; Cheng, H.; Zhuang, W.; Zhu, C.J.; Wu, J.; Niu, H.; Liu, D.; Chen, Y.; Ying, H. Stability and Repeatability Improvement of Horseradish Peroxidase by Immobilization on Amino-Functionalized Bacterial Cellulose. Process Biochem. 2019, 79, 40–48. [Google Scholar] [CrossRef]
- Vasconcelos, N.F.; Andrade, F.K.; de Araújo Pinto Vieira, L.; Vieira, R.S.; Vaz, J.M.; Chevallier, P.; Mantovani, D.; de Fátima Borges, M.; de Freitas Rosa, M. Oxidized Bacterial Cellulose Membrane as Support for Enzyme Immobilization: Properties and Morphological Features. Cellulose 2020, 27, 3055–3083. [Google Scholar] [CrossRef]
- Frazão, C.J.R.; Silva, N.H.C.; Freire, C.S.R.; Silvestre, A.J.D.; Xavier, A.M.R.B.; Tavares, A.P.M. Bacterial Cellulose as Carrier for Immobilization of Laccase: Optimization and Characterization. Eng. Life Sci. 2014, 14, 500–508. [Google Scholar] [CrossRef]
- Drozd, R.; Rakoczy, R.; Wasak, A.; Junka, A.; Fijałkowski, K. The Application of Magnetically Modified Bacterial Cellulose for Immobilization of Laccase. Int. J. Biol. Macromol. 2018, 108, 462–470. [Google Scholar] [CrossRef]
- Fujisawa, S.; Togawa, E.; Kuroda, K. Nanocellulose-Stabilized Pickering Emulsions and Their Applications. Sci. Technol. Adv. Mater. 2017, 18, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhai, X.; Fu, W.; Liu, Y.; Li, F.; Zhong, C. Surfactant-Free Emulsions Stabilized by Tempo-Oxidized Bacterial Cellulose. Carbohydr. Polym. 2016, 151, 907–915. [Google Scholar] [CrossRef]
- Sharkawy, A.; Casimiro, F.M.; Barreiro, M.F.; Rodrigues, A.E. Enhancing Trans-Resveratrol Topical Delivery and Photostability through Entrapment in Chitosan/Gum Arabic Pickering Emulsions. Int. J. Biol. Macromol. 2020, 147, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Estevinho, B.; Rocha, F.; Dourado, F.; Gama, M. A Dry and Fully Dispersible Bacterial Cellulose Formulation as a Stabilizer for Oil-in-Water Emulsions. Carbohydr. Polym. 2020, 230, 115657. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Gouin, T.; Avalos, J.; Bunning, I.; Brzuska, K.; Graaf, J.; Kaumanns, J.; Koning, T.; Meyberg, M.; Rettinger, K.; Schlatter, H.; et al. Use of Micro-Plastic Beads in Cosmetic Products in Europe and Their Estimated Emissions to the North Sea Environment Safety Assessment of Cosmetics View Project. Int. J. Appl. Sci. 2015, 141, 40–46. [Google Scholar]
- UNEP. Plastic in Cosmetics; UNEP: Nairobi, Kenya, 2015; p. 13. ISBN 978-92-807-3466-9. [Google Scholar]
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in Cosmetics: Environmental Issues and Needs for Global Bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Joonwon, P. Bio-cellulose Powder having No Water Retention Capacity, Preparation Method Therefor, And Cosmetics Using the same. WO Patent No: WO2019004520A1, 3 January 2019. [Google Scholar]
- Obrien, J.C.; Torrente-Murciano, L.; Mattia, D.; Scott, J.L. Continuous Production of Cellulose Microbeads via Membrane Emulsification. ACS Sustain. Chem. Eng. 2017, 5, 5931–5939. [Google Scholar] [CrossRef] [Green Version]
Active Substance/ Co-Former | Main Outcome | Application/Potential Application | Reference | Year |
---|---|---|---|---|
BNC AS CARRIER OF SKIN ACTIVE SUBSTANCES | ||||
Bamboo extract added to BNC fermentation broth | BNC membrane with superior performance in terms of adhesion, skin elasticity, softness, and moisturizing effect | Sheet facial mask | [98] | 2015 |
Moringa oleifera leaves powder added to BNC fermentation broth; Moringa oleifera fermentation broth | BNC membrane with embedded Moringa oleifera leaves fermentation broth with a better hydration effect than a normal membrane cloth | Sheet facial mask | [101] | 2019 |
Sphaerotilus natans-derived microtubes | Multilayer structure with an improved transdermal delivery of water and lipid-soluble active substances | Sheet facial mask | [103] | 2018 |
Soybean molasses added to BNC fermentation broth | BNC membranes with high-water retention rate (98.35%) and good moisturizing effect | Sheet facial mask | [104] | 2018 |
Milk by-products and tea polyphenols added to BNC fermentation broth | Increased BNC production yield; BNC membrane with antioxidant and whitening properties | Sheet facial mask | [105] | 2019 |
Tropical fruit by-products added to BNC fermentation broth | BNC membrane with high-water activity and incorporating ascorbic acid from the fruit by-products | Sheet facial mask | [106] | 2019 |
Caffein | BNC—caffein topical delivery system with lower permeation rates of caffein than conventional formulations (aqueous solution and gel); reproducible, predictable and extended release of caffein over time | Patches for cellulite treatment | [107] | 2014 |
PEO-b-PCL nanoparticles encapsulating retinol | BNC-based delivery system of hydrophobic molecules; slow release of retinol from nanoparticles; retinol precipitation and retention in the BNC gel (further studies are needed) | Hydrogel for skin care | [108] | 2015 |
Bee venom | BNC membrane with potential anti-inflammatory and anti-allergic properties | Sheet facial mask | [109] | 2017 |
DHA | BNC–DHA patch applied for 30 min was effective in conferring a skin natural tan effect | Sheet facial mask | [110] | 2018 |
Hidroviton® and plant extracts/PEG and propolis extract | Effectiveness of BNC facial masks as delivery system of active substances | Sheet facial mask | [96] | 2018 |
Propolis extract | Improved flexibility and malleability, higher porosity of BNC membrane | Sheet facial mask | [112] | 2020 |
- | BNC carbide used as the positive electrode of a battery included in the facial mask; improved penetration of active ingredients into tissues | Sheet facial mask with a battery | [121] | 2019 |
Cholinium-based ILs paired with anions derived from phenolic acids (caffeic, ellagic and gallic) | BNC membrane with increased re-hydration ability; slow and sustained release of active compounds; antioxidant and anti-inflammatory activities | Sheet facial mask | [114] | 2019 |
Cholinium-based ILs paired with vitamins B anions | BNC membrane with reduced brittleness, increased re-hydration ability; fast release of active compounds | Sheet facial mask | [115] | 2020 |
HA | Method to produce BNC–HA composite for facial masks preparation | Sheet facial mask | [117] | 2017 |
Sericin–HA | Method to produce BNC–sericin–HA composite for facial masks preparation | Sheet facial mask | [118] | 2018 |
HA–Rutin | Increased mechanical resistance of HA-MNs. Effective BNC controlled release of rutin. Maintenance of rutin antioxidant activity upon MNs system storage at room temperature for 6 weeks | MNs system for skin care | [119] | 2021 |
PEGDA | BNC-3% and 5% PEGDA composites harder but less brittle than BNC gel; similar viscoelastic behavior to that of BNC gel | Hydrogel for facial masks | [122] | 2017 |
PVA | BNC–PVA composite in a freeze-dried state; reduced possibility of contamination due to the freeze-dried nature of the BNC–PVA composite; lightweight and good swelling rate within 30 min | Freeze-dried additive for facial masks | [123] | 2018 |
Active cosmetic formulations: anti-aging/lifting/purifying and regenerative | Non-invasive protocol for in vivo evaluation of the effectiveness and acceptance of BNC facial masks as delivery system of active substances | Sheet facial mask | [97] | 2020 |
BNC AS A SUPPORT FOR THE IMMOBILIZATION OF ENZYMES | ||||
Papain | Oxidized BNC membrane with covalently immobilized papain; a higher amount of enzyme immobilized than in non-oxidized membrane; 93.1% recovered activity of the enzyme after immobilization | Enzyme-based skin care | [128] | 2020 |
BNC AS EMULSION STABILIZER | ||||
- | TEMPO-oxidized BNC nanofibrils with reduced size; better stabilization of oil–water emulsions interface than with BNC (over 8 months) | Emulsion stabilizer | [132] | 2016 |
- | Simple and easy scalable one-pot method to obtain TEMPO-oxidized BNC nanofibrils; the procedure assures the total removal of reactants; maintenance of the BNC nanofibrous structure and water-absorbing capacity. | Emulsion stabilizer | [12] | 2019 |
Carboxymethyl cellulose (CMC) | Fully dispersible BNC:CMC dry formulation; better stabilizing effect of low oil-in-water emulsions than other dry commercial available celluloses; stabilization effect for up 90 days | Emulsion stabilizer | [134] | 2020 |
BNC AS AN ALTERNATIVE TO MICROPLASTICS | ||||
- | BNC powder with 95% minimum purity, a size between 0.1 and 1 mm and a maximum residual water content of 15%; shape preservation and no-water absorption ability in liquid phase | Alternative to microplastics | [139] | 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, T.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. Int. J. Mol. Sci. 2021, 22, 2836. https://doi.org/10.3390/ijms22062836
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. International Journal of Molecular Sciences. 2021; 22(6):2836. https://doi.org/10.3390/ijms22062836
Chicago/Turabian StyleAlmeida, Tânia, Armando J. D. Silvestre, Carla Vilela, and Carmen S. R. Freire. 2021. "Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges" International Journal of Molecular Sciences 22, no. 6: 2836. https://doi.org/10.3390/ijms22062836
APA StyleAlmeida, T., Silvestre, A. J. D., Vilela, C., & Freire, C. S. R. (2021). Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. International Journal of Molecular Sciences, 22(6), 2836. https://doi.org/10.3390/ijms22062836