Sex-Related Differences in Regional Blood–Brain Barrier Integrity in Non-Demented Elderly Subjects
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics
2.2. Comparison of Cerebral Regional BBB Permeability
2.3. Correlation between BBB Permeability and Cognitive Functioning Score
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Materials
4.2.1. Cognition
4.2.2. MRI Acquisition
4.2.3. MRI Analysis
4.2.4. Statistical Methods
4.2.5. Protocol Approvals, Registrations, and Patient Consent
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, R.E.; Robbins, A.B.; Hu, M.; Cao, X.; Betensky, R.A.; Clark, T.; Das, S.; Hyman, B.T. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2018, 115, E1289–E1298. [Google Scholar] [CrossRef] [Green Version]
- Blair, L.J.; Frauen, H.D.; Zhang, B.; Nordhues, B.A.; Bijan, S.; Lin, Y.C.; Zamudio, F.; Hernandez, L.D.; Sabbagh, J.J.; Selenica, M.L.; et al. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol. Commun. 2015, 31, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Montagne, A.; Zhao, Z.; Zlokovic, B.V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J. Exp. Med. 2017, 214, 3151–3169. [Google Scholar] [CrossRef]
- Almutairi, M.M.; Gong, C.; Xu, Y.G.; Chang, Y.; Shi, H. Factors controlling permeability of the blood-brain barrier. Cell Mol. Life Sci. 2016, 73, 57–77. [Google Scholar] [CrossRef]
- Nelson, A.R.; Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim. Biophys. Acta 2016, 1862, 887–900. [Google Scholar] [CrossRef]
- Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019, 25, 270–276. [Google Scholar] [CrossRef]
- Van de Haar, H.J.; Burgmans, S.; Jansen, J.F.; van Osch, M.J.; van Buchem, M.A.; Muller, M.; Hofman, P.A.; Verhey, F.R.; Backes, W.H. Blood-brain barrier leakage in patients with early Alzheimer Disease. Radiology 2016, 281, 527–535. [Google Scholar] [CrossRef]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Moon, W.J.; Lim, C.; Ha, I.H.; Kim, Y.; Moon, Y.; Kim, H.J.; Han, S.H. Hippocampal blood-brain barrier permeability is related to the APOE4 mutation status of elderly individuals without dementia. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2020. [Google Scholar] [CrossRef]
- Robison, L.S.; Gannon, O.J.; Salinero, A.E.; Zuloaga, K.L. Contributions of sex to cerebrovascular function and pathology. Brain Res. 2019, 1710, 43–60. [Google Scholar] [CrossRef]
- Cipolla, M.J.; Godfrey, J.A.; Wiegman, M.J. The effect of ovariectomy and estrogen on penetrating brain arterioles and blood-brain barrier permeability. Microcirculation 2009, 16, 685–693. [Google Scholar] [CrossRef]
- Wilson, A.C.; Clemente, L.; Liu, T.; Bowen, R.L.; Meethal, S.V.; Atwood, C.S. Reproductive hormones regulate the selective permeability of the blood-brain barrier. Biochim. Biophys. Acta 2008, 1782, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Parrado-Fernandez, C.; Blennow, K.; Hansson, M.; Leoni, V.; Cedazo-Minguez, A.; Bjorkhem, I. Evidence for sex difference in the CSF/plasma albumin ratio in ~20 000 patients and 335 healthy volunteers. J. Cell. Mol. Med. 2018, 22, 5151–5154. [Google Scholar] [CrossRef] [Green Version]
- Castellazzi, M.; Morotti, A.; Tamborino, C.; Alessi, F.; Pilotto, S.; Baldi, E.; Caniatti, L.M.; Trentini, A.; Casetta, I.; Granieri, E.; et al. Increased age and male sex are independently associated with higher frequency of blood-cerebrospinal fluid barrier dysfunction using the albumin quotient. Fluids Barriers CNS 2020, 17, 14. [Google Scholar] [CrossRef]
- Bowman, G.L.; Quinn, J.F. Alzheimer’s disease and the Blood-Brain Barrier: Past, Present and Future. Aging Health 2008, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; D’Orazio, L.M.; et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020, 581, 71–76. [Google Scholar] [CrossRef]
- Hinduja, A. Posterior reversible encephalopathy syndrome: clinical features and outcome. Front. Neurol. 2020, 11, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burek, M.; Arias-Loza, P.A.; Roewer, N.; Forster, C.Y. Claudin-5 as a novel estrogen target in vascular endothelium. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Bake, S.; Sohrabji, F. 17beta-Estradiol Differentially Regulates Blood-Brain Barrier Permeability in Young and Aging Female Rats. Endocrinology 2004, 145, 5471–5475. [Google Scholar] [CrossRef] [Green Version]
- Torres, L.; Bynoe, M.S. Influence of gender on blood brain barrier permeability and adenosine receptor signaling. FASEB J. 2017, 31, 1042.3. [Google Scholar]
- Maggioli, E.; McArthur, S.; Mauro, C.; Kieswich, J.; Kusters, D.H.M.; Reutelingsperger, C.P.M.; Yaqoob, M.; Solito, E. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brainbehav. Immun. 2016, 51, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Tontisirin, N.; Muangman, S.L.; Suz, P.; Pihoker, C.; Fisk, D.; Moore, A.; Lam, A.M.; Vavilala, M.S. Early childhood gender differences in anterior and posterior cerebral blood flow velocity and autoregulation. Pediatrics 2007, 119, e610–e615. [Google Scholar] [CrossRef]
- Jeong, J.K.; Tremere, L.A.; Burrows, K.; Majewska, A.K.; Pinaud, R. The mouse primary visual cortex is a site of production and sensitivity to estrogens. PLoS ONE 2011, 6, e20400. [Google Scholar] [CrossRef]
- Rodriguez-Aranda, C.; Castro-Chavira, S.A.; Espenes, R.; Barrios, F.A.; Waterloo, K.; Vangberg, T.R. The role of moderating variables on BOLD fMRI response during semantic verbal fluency and finger tapping in active and educated healthy seniors. Front. Hum. Neurosci. 2020, 14, 203. [Google Scholar] [CrossRef]
- Moon, Y.; Han, S.H.; Moon, W.J. Patterns of Brain Iron Accumulation in Vascular Dementia and Alzheimer’s Dementia Using Quantitative Susceptibility Mapping Imaging. J. Alzheimer’s Dis. JAD 2016, 51, 737–745. [Google Scholar] [CrossRef]
- Veksler, R.; Vazana, U.; Serlin, Y.; Prager, O.; Ofer, J.; Shemen, N.; Fisher, A.M.; Minaeva, O.; Hua, N.; Saar-Ashkenazy, R.; et al. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain 2020, 143, 1826–1842. [Google Scholar] [CrossRef] [PubMed]
- Thrippleton, M.J.; Backes, W.H.; Sourbron, S.; Ingrisch, M.; van Osch, M.J.P.; Dichgans, M.; Fazekas, F.; Ropele, S.; Frayne, R.; van Oostenbrugge, R.J.; et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2019, 15, 840–858. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Park, Y.H.; Lee, D.; Kim, J.P.; Chin, J.; Ahn, Y.; Park, S.B.; Kim, H.J.; Jang, H.; Jung, Y.H.; et al. The Cortical Neuroanatomy Related to Specific Neuropsychological Deficits in Alzheimer’s Continuum. Dement. Neurocogn. Disord. 2019, 18, 77–95. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Waring, S.C.; Cullum, C.M.; Hall, J.; Lacritz, L.; Massman, P.J.; Lupo, P.J.; Reisch, J.S.; Doody, R. Staging dementia using clinical dementia rating scale sum of boxes scores: A texas Alzheimer’s research consortium study. Arch. Neurol. 2008, 65, 1091–1095. [Google Scholar] [CrossRef] [Green Version]
- Heye, A.K.; Thrippleton, M.J.; Armitage, P.A.; Valdes Hernandez, M.D.C.; Makin, S.D.; Glatz, A.; Sakka, E.; Wardlaw, J.M. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability. NeuroImage 2016, 125, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Patlak, C.S.; Blasberg, R.G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 1985, 5, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [Green Version]
Total | Male | Female | p-Value | |
---|---|---|---|---|
(N = 24) | (N = 51) | |||
Age | 67.1 ± 7.4 | 68.4 ± 8.3 | 66.5 ± 6.9 | 0.293 |
Education | 10.8 ± 4.1 | 12.9 ± 4.2 | 9.9 ± 3.7 | 0.002 |
Hypertension | 14 (18.7%) | 7 (29.2%) | 7 (13.7%) | 0.112 |
Diabetes mellitus | 32 (42.7%) | 10 (41.7%) | 22 (43.1%) | 0.905 |
Dyslipidemia | 36 (48.0%) | 9 (37.5%) | 27 (52.9%) | 0.215 |
Diagnosis | 0.317 | |||
-NC | 36 (48.0%) | 9 (37.5%) | 27 (52.9%) | |
-MCI | 39 (52.0%) | 15 (62.5%) | 24 (47.1%) | |
MMSE | 26.6 ± 3.0 | 26.5 ± 3.7 | 26.6 ± 2.6 | 0.881 |
CDRSOB | 0.9 ± 0.8 | 1.1 ± 0.9 | 0.7 ± 0.7 | 0.095 |
Cingulate Cortex | Frontal Cortex | Insular Cortex | Occipital Cortex | Parietal Cortex | Temporal Cortex | |
---|---|---|---|---|---|---|
White matter | r = 0.777 | r = 0.789 | r = 0.693 | r = 0.273 | r = 0.281 | r = 0.469 |
p < 0.001 | p < 0.001 | p < 0.001 | p = 0.018 | p = 0.014 | p < 0.001 | |
Cingulate cortex | r = 0.883 | r = 0.672 | r = 0.486 | r = 0.514 | r = 0.578 | |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | ||
Frontal cortex | r = 0.765 | r = 0.179 | r = 0.429 | r = 0.425 | ||
p < 0.001 | p = 0.125 | p < 0.001 | p < 0.001 | |||
Insular cortex | r = 0.195 | r = 0.483 | r = 0.667 | |||
p = 0.093 | p < 0.001 | p < 0.001 | ||||
Occipital cortex | r = 0.520 | r = 0.681 | ||||
p < 0.001 | p < 0.001 | |||||
Parietal cortex | r = 0.651 | |||||
p < 0.001 |
Younger Old (47–67, N = 36) | Older Old (68–80, N = 39) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Male (N = 9) | Female (N = 27) | p | Male (N = 15) | Female (N = 24) | p | |||||
MCI | N = 4 | 44.4% | N = 9 | 33.3% | 0.641 | N = 11 | 73.3% | N = 15 | 62.5% | 0.578 |
MMSE | 28.67 | 1.65 | 27.52 | 1.92 | 0.086 | 25.20 | 4.05 | 25.63 | 2.93 | 0.989 |
CDRSB | 0.55 | 0.52 | 0.63 | 0.71 | 1.000 | 1.40 | 0.98 | 0.87 | 0.76 | 0.110 |
median | Min–max | median | Min–max | median | Min–max | median | Min–max | |||
Cingulate cortex | 1.70 | 0.33–3.87 | 0.85 | 0.21–2.69 | 0.005 | 0.73 | 0.45–3.11 | 0.73 | 0.31–2.64 | 0.270 |
Frontal cortex | 0.55 | 0.19–3.05 | 0.35 | 0.13–1.07 | 0.073 | 0.37 | 0.19–1.52 | 0.37 | 0.14–1.84 | 0.638 |
Insular cortex | 0.53 | 0.18–1.37 | 0.36 | 0.00–1.13 | 0.205 | 0.29 | 0.01–1.31 | 0.28 | 0.05–1.05 | 0.853 |
Occipital cortex | 4.02 | 1.93–5.42 | 2.47 | 0.88–9.91 | 0.012 | 4.05 | 1.74–10.72 | 2.66 | 0.81–10.62 | 0.011 |
Parietal cortex | 0.83 | 0.00–1.79 | 0.56 | 0.03–1.41 | 0.387 | 0.42 | 0.03–1.68 | 0.40 | 0.12–1.66 | 0.618 |
Temporal cortex | 0.66 | 0.17–1.16 | 0.52 | 0.03–2.32 | 0.279 | 0.34 | 0.07–1.98 | 0.46 | 0.19–1.69 | 0.212 |
Normal Cognition (N = 36) | Mild Cognitive Impairment (N = 39) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Male (N = 9) | Female (N = 27) | p | Male (N = 15) | Female (N = 24) | p | |||||
Age | 66.22 | 6.47 | 63.96 | 5.25 | 0.387 | 69.73 | 9.13 | 69.33 | 7.47 | 0.598 |
MMSE | 28.22 | 1.48 | 27.93 | 1.68 | 0.667 | 25.47 | 4.30 | 25.17 | 2.71 | 0.558 |
CDRSB | 0.38 | 0.48 | 0.27 | 0.34 | 0.641 | 1.50 | 0.88 | 1.27 | 0.72 | 0.449 |
median | Min–max | median | Min–max | median | Min–max | median | Min–max | |||
Cingulate cortex | 1.57 | 0.45–3.87 | 0.73 | 0.24–2.69 | 0.019 | 1.10 | 0.33–3.11 | 1.03 | 0.21–2.64 | 0.283 |
Frontal cortex | 0.49 | 0.26–3.05 | 0.33 | 0.13–1.07 | 0.047 | 0.55 | 0.19–1.87 | 0.43 | 0.14–1.84 | 0.558 |
Insular cortex | 0.46 | 0.01–1.37 | 0.27 | 0.03–1.13 | 0.205 | 0.29 | 0.06–1.10 | 0.36 | 0.00–1.05 | 0.521 |
Occipital cortex | 4.82 | 1.74–7.87 | 2.30 | 0.81–9.91 | 0.009 | 3.74 | 1.95–10.72 | 2.78 | 1.18–10.62 | 0.019 |
Parietal cortex | 0.83 | 0.03–1.79 | 0.49 | 0.12–1.41 | 0.086 | 0.36 | 0.00–1.40 | 0.43 | 0.03–1.66 | 0.223 |
Temporal cortex | 0.66 | 0.07–7.98 | 0.41 | 0.11–2.32 | 0.180 | 0.40 | 0.17–1.53 | 0.63 | 0.03–1.69 | 0.123 |
Predictors of MMSE | Predictors of CDR-SOB | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||||||
Stepwise | B | SE | p-value | B | SE | p-value | B | SE | p-value | B | SE | p-value |
constant | 44.085 | 5.447 | <0.001 | 24.897 | 1.117 | <0.001 | −2.450 | 1.465 | 0.109 | |||
Age | −0.257 | 0.079 | 0.004 | 0.052 | 0.021 | 0.024 | ||||||
Educational years | 0.292 | 0.086 | 0.001 | |||||||||
Cingulate cortex | ||||||||||||
Frontal cortex | ||||||||||||
Insular cortex | ||||||||||||
Occipital cortex | −0.397 | 0.171 | 0.025 | |||||||||
Parietal cortex | ||||||||||||
Temporal cortex |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, Y.; Lim, C.; Kim, Y.; Moon, W.-J. Sex-Related Differences in Regional Blood–Brain Barrier Integrity in Non-Demented Elderly Subjects. Int. J. Mol. Sci. 2021, 22, 2860. https://doi.org/10.3390/ijms22062860
Moon Y, Lim C, Kim Y, Moon W-J. Sex-Related Differences in Regional Blood–Brain Barrier Integrity in Non-Demented Elderly Subjects. International Journal of Molecular Sciences. 2021; 22(6):2860. https://doi.org/10.3390/ijms22062860
Chicago/Turabian StyleMoon, Yeonsil, Changmok Lim, Yeahoon Kim, and Won-Jin Moon. 2021. "Sex-Related Differences in Regional Blood–Brain Barrier Integrity in Non-Demented Elderly Subjects" International Journal of Molecular Sciences 22, no. 6: 2860. https://doi.org/10.3390/ijms22062860
APA StyleMoon, Y., Lim, C., Kim, Y., & Moon, W. -J. (2021). Sex-Related Differences in Regional Blood–Brain Barrier Integrity in Non-Demented Elderly Subjects. International Journal of Molecular Sciences, 22(6), 2860. https://doi.org/10.3390/ijms22062860