Huntingtin: A Protein with a Peculiar Solvent Accessible Surface
Abstract
:1. Introduction
2. Results
2.1. Analysis of 3D Structures of Huntingtin
2.2. Characterization of the Huntingtin Protein Solvent Accessible Surface
2.3. Characterization of Huntingtin Protein–Protein Interaction Sites
2.4. Characterization of Possible Lipid Membrane-Binding Regions of Huntingtin
3. Discussion
4. Materials and Methods
4.1. Protein Structure Characterization
4.2. Protein Structure Visualization
4.3. Computational Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UniProt Accession Code P42858. Available online: https://www.uniprot.org/uniprot/P42858 (accessed on 28 December 2020).
- Sharp, A.H.; Loev, S.J.; Schilling, G.; Li, S.-H.; Li, X.-J.; Bao, J.; Wagster, M.V.; Kotzuk, J.A.; Steiner, J.P.; Lo, A.; et al. Widespread Expression of Huntington’s Disease Gene (IT15) Protein Product. Neuron 1995, 14, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Sayer, J.A.; Manczak, M.; Akileswaran, L.; Reddy, P.H.; Coghlan, V.M. Interaction of the Nuclear Matrix Protein NAKAP With HypA and Huntingtin: Implications for Nuclear Toxicity in Huntington’s Disease Pathogenesis. NMM 2005, 7, 297–310. [Google Scholar] [CrossRef]
- Pal, A.; Severin, F.; Lommer, B.; Shevchenko, A.; Zerial, M. Huntingtin–HAP40 Complex Is a Novel Rab5 Effector That Regulates Early Endosome Motility and Is up-Regulated in Huntington’s Disease. J. Cell Biol. 2006, 172, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Atwal, R.S.; Xia, J.; Pinchev, D.; Taylor, J.; Epand, R.M.; Truant, R. Huntingtin Has a Membrane Association Signal That Can Modulate Huntingtin Aggregation, Nuclear Entry and Toxicity. Hum. Mol. Genet. 2007, 16, 2600–2615. [Google Scholar] [CrossRef] [Green Version]
- Saudou, F.; Humbert, S. The Biology of Huntingtin. Neuron 2016, 89, 910–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukamoto, T.; Nukina, N.; Ide, K.; Kanazawa, I. Huntington’s Disease Gene Product, Huntingtin, Associates with Microtubules in Vitro. Mol. Brain Res. 1997, 51, 8–14. [Google Scholar] [CrossRef]
- Hoffner, G.; Kahlem, P.; Djian, P. Perinuclear Localization of Huntingtin as a Consequence of Its Binding to Microtubules through an Interaction with Beta-Tubulin: Relevance to Huntington’s Disease. J. Cell Sci. 2002, 115, 941–948. [Google Scholar] [PubMed]
- Caviston, J.P.; Ross, J.L.; Antony, S.M.; Tokito, M.; Holzbaur, E.L.F. Huntingtin Facilitates Dynein/Dynactin-Mediated Vesicle Transport. Proc. Natl. Acad. Sci. USA 2007, 104, 10045–10050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandstaetter, H.; Kruppa, A.J.; Buss, F. Huntingtin Is Required for ER-to-Golgi Transport and for Secretory Vesicle Fusion at the Plasma Membrane. Dis. Models Mech. 2014, 7, 1335–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, F.O. Huntington’s Disease. Lancet 2007, 369, 218–228. [Google Scholar] [CrossRef]
- McColgan, P.; Tabrizi, S.J. Huntington’s Disease: A Clinical Review. Eur. J. Neurol. 2018, 25, 24–34. [Google Scholar] [CrossRef]
- Kegel, K.B.; Sapp, E.; Yoder, J.; Cuiffo, B.; Sobin, L.; Kim, Y.J.; Qin, Z.-H.; Hayden, M.R.; Aronin, N.; Scott, D.L.; et al. Huntingtin Associates with Acidic Phospholipids at the Plasma Membrane. J. Biol. Chem. 2005, 280, 36464–36473. [Google Scholar] [CrossRef] [Green Version]
- Burke, K.A.; Hensal, K.M.; Umbaugh, C.S.; Chaibva, M.; Legleiter, J. Huntingtin Disrupts Lipid Bilayers in a PolyQ-Length Dependent Manner. Biochim. Biophys. Acta 2013, 1828, 1953–1961. [Google Scholar] [CrossRef] [Green Version]
- Kegel, K.B.; Sapp, E.; Alexander, J.; Valencia, A.; Reeves, P.; Li, X.; Masso, N.; Sobin, L.; Aronin, N.; DiFiglia, M. Polyglutamine Expansion in Huntingtin Alters Its Interaction with Phospholipids. J. Neurochem. 2009, 110, 1585–1597. [Google Scholar] [CrossRef]
- Arndt, J.R.; Chaibva, M.; Legleiter, J. The Emerging Role of the First 17 Amino Acids of Huntingtin in Huntington’s Disease. Biomol. Concepts 2015, 6, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Kegel-Gleason, K.B. Huntingtin Interactions with Membrane Phospholipids: Strategic Targets for Therapeutic Intervention? J. Huntingt. Dis. 2013, 2, 239–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PDB ID: 6X9O. Available online: https://www.rcsb.org/structure/6X9O (accessed on 28 December 2020).
- Harding, R.J.; Deme, J.C.; Lea, S.M.; Arrowsmith, C.H. Structural Genomics Consortium (SGC). High Resolution CryoEM Structure of Huntingtin in Complex with HAP40. Available online: https://www.wwpdb.org/pdb? (accessed on 4 March 2021).
- Savojardo, C.; Martelli, P.L.; Casadio, R. Protein–Protein Interaction Methods and Protein Phase Separation. Ann. Rev. Biomed. Data Sci. 2020, 3, 89–112. [Google Scholar] [CrossRef]
- Savojardo, C.; Fariselli, P.; Luigi Martelli, P.; Casadio, R. ISPRED4: Interaction Sites PREDiction in Protein Structures with a Refining Grammar Model. Bioinformatics 2017, btx044. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. arXiv 2015, arXiv:1512.04150. [Google Scholar]
- Seong, I.S.; Woda, J.M.; Song, J.-J.; Lloret, A.; Abeyrathne, P.D.; Woo, C.J.; Gregory, G.; Lee, J.-M.; Wheeler, V.C.; Walz, T.; et al. Huntingtin Facilitates Polycomb Repressive Complex 2. Hum. Mol. Genet. 2010, 19, 573–583. [Google Scholar] [CrossRef] [Green Version]
- PDB ID: 6EZ8. Available online: https://www.rcsb.org/structure/6EZ8 (accessed on 28 December 2020).
- Guo, Q.; Huang, B.; Cheng, J.; Seefelder, M.; Engler, T.; Pfeifer, G.; Oeckl, P.; Otto, M.; Moser, F.; Maurer, M.; et al. The Cryo-Electron Microscopy Structure of Huntingtin. Nature 2018, 555, 117–120. [Google Scholar] [CrossRef]
- The HEAT Repeats in InterPro. Available online: https://www.ebi.ac.uk/interpro/entry/InterPro/IPR000357 (accessed on 28 December 2020).
- Kim, M.W.; Chelliah, Y.; Kim, S.W.; Otwinowski, Z.; Bezprozvanny, I. Secondary Structure of Huntingtin Amino-Terminal Region. Structure 2009, 17, 1205–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabsch, W.; Sander, C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef] [PubMed]
- Touw, W.G.; Baakman, C.; Black, J.; te Beek, T.A.H.; Krieger, E.; Joosten, R.P.; Vriend, G. A Series of PDB-Related Databanks for Everyday Needs. Nucleic Acids Res. 2015, 43, D364–D368. [Google Scholar] [CrossRef]
- Rost, B.; Sander, C. Conservation and Prediction of Solvent Accessibility in Protein Families. Proteins 1994, 20, 216–226. [Google Scholar] [CrossRef]
- Pahari, S.; Sun, L.; Alexov, E. PKAD: A Database of Experimentally Measured PKa Values of Ionizable Groups in Proteins. Database 2019. [Google Scholar] [CrossRef] [Green Version]
- Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; del-Toro, N.; et al. The MIntAct Project—IntAct as a Common Curation Platform for 11 Molecular Interaction Databases. Nucleic Acids Res. 2014, 42, D358–D363. [Google Scholar] [CrossRef] [Green Version]
- IntAct. Available online: www.ebi.ac.uk/intact (accessed on 28 January 2021).
- Oughtred, R.; Stark, C.; Breitkreutz, B.-J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.; McAdam, R.; et al. The BioGRID Interaction Database: 2019 Update. Nucleic Acids Res. 2019, 47, D529–D541. [Google Scholar] [CrossRef] [Green Version]
- The BioGRID. Available online: thebiogrid.org (accessed on 28 January 2021).
- Shirasaki, D.I.; Greiner, E.R.; Al-Ramahi, I.; Gray, M.; Boontheung, P.; Geschwind, D.H.; Botas, J.; Coppola, G.; Horvath, S.; Loo, J.A.; et al. Network Organization of the Huntingtin Proteomic Interactome in Mammalian Brain. Neuron 2012, 75, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.E.; Sarmento, M.J.; Fernandes, F. Role of Calcium in Membrane Interactions by PI(4,5)P2-Binding Proteins. Biochem. Soc. Trans. 2014, 42, 1441–1446. [Google Scholar] [CrossRef]
- Giacomello, M.; Oliveros, J.; Naranjo, J.; Carafoli, E. Neuronal Ca2+ Dyshomeostasis in Huntington Disease. Prion 2013, 7, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Hu, X.Z.; Geriletu, G.; Xing, H.R.; Cao, X.Y. Identification of Ca2+-Binding Residues of a Protein from Its Primary Sequence. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Hirama, T.; Lu, S.M.; Kay, J.G.; Maekawa, M.; Kozlov, M.M.; Grinstein, S.; Fairn, G.D. Membrane Curvature Induced by Proximity of Anionic Phospholipids Can Initiate Endocytosis. Nat. Commun. 2017, 8, 1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shashikala, H.B.M.; Chakravorty, A.; Panday, S.K.; Alexov, E. BION-2: Predicting Positions of Non-Specifically Bound Ions on Protein Surface by a Gaussian-Based Treatment of Electrostatics. IJMS 2020, 22, 272. [Google Scholar] [CrossRef] [PubMed]
- Halperin, I.; Glazer, D.S.; Wu, S.; Altman, R.B. The FEATURE Framework for Protein Function Annotation: Modeling New Functions, Improving Performance, and Extending to Novel Applications. BMC Genom. 2008, 9, S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Jaroszewski, L.; Iyer, M.; Sedova, M.; Godzik, A. FATCAT 2.0: Towards a Better Understanding of the Structural Diversity of Proteins. Nucleic Acids Res. 2020, 48, W60–W64. [Google Scholar] [CrossRef] [PubMed]
- FATCAT 2.0. Available online: https://fatcat.godziklab.org/ (accessed on 19 January 2021).
- PyMOL, The PyMOL Molecular Graphics System; Schrödinger, LLC.: New York, NY, USA, 2020.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babbi, G.; Savojardo, C.; Martelli, P.L.; Casadio, R. Huntingtin: A Protein with a Peculiar Solvent Accessible Surface. Int. J. Mol. Sci. 2021, 22, 2878. https://doi.org/10.3390/ijms22062878
Babbi G, Savojardo C, Martelli PL, Casadio R. Huntingtin: A Protein with a Peculiar Solvent Accessible Surface. International Journal of Molecular Sciences. 2021; 22(6):2878. https://doi.org/10.3390/ijms22062878
Chicago/Turabian StyleBabbi, Giulia, Castrense Savojardo, Pier Luigi Martelli, and Rita Casadio. 2021. "Huntingtin: A Protein with a Peculiar Solvent Accessible Surface" International Journal of Molecular Sciences 22, no. 6: 2878. https://doi.org/10.3390/ijms22062878
APA StyleBabbi, G., Savojardo, C., Martelli, P. L., & Casadio, R. (2021). Huntingtin: A Protein with a Peculiar Solvent Accessible Surface. International Journal of Molecular Sciences, 22(6), 2878. https://doi.org/10.3390/ijms22062878