miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies
Abstract
:1. Introduction
2. miRNA Biomarker Development and Potential Therapeutic Application in Livestock Production
3. miRNA Roles in Farm Animal Diseases
3.1. Potential Regulatory Roles of miRNAs in Cattle Diseases
3.1.1. miRNA and Mastitis
3.1.2. miRNA and Johne’s Disease
3.1.3. miRNA and Other Cattle Diseases
3.2. Potential Regulatory Roles of miRNA in Pig Diseases
3.2.1. miRNA and Porcine Reproductive and Respiratory Syndrome Virus Infection
3.2.2. miRNA and Swine Influenza Infection
3.2.3. miRNA and Other Pig Diseases
3.3. Potential Regulatory Roles of miRNAs in Poultry Diseases
3.3.1. miRNA and Marek’s Disease Virus Infection
3.3.2. miRNA and Avian Leukosis Virus Infection
3.3.3. miRNA and Other Chicken Diseases
3.4. Potential Regulatory Roles of miRNAs in Small Ruminant Diseases
3.5. Important miRNA Biomarkers in Livestock Diseases
4. Challenges and Opportunities for Understanding Biological Roles of miRNA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAAV | Avian Adeno-Associated Virus |
AIVs | Avian Influenza Viruses |
A ALV | Avian Leukosis Virus |
ALV-J | Avian Leukosis Virus Subgroup J |
ASF | African Swine Fever |
BCL-2 | B-Cell Lymphoma 2 |
BMECs | bovine mammary epithelial cells |
BVD | Bovine Viral Diarrhea |
BVD | Bovine viral diarrhea |
BVDV | BVD virus |
CCNE1 | Cyclin E |
CLCF1 | Cardiotrophin Like Cytokine Factor 1 |
CMT | California mastitis test |
DE | differentially expressed |
DIAP1 | Drosophila Inhibitor Of Apoptosis Protein 1 |
DLG5 | Discs Large MAGUK Scaffold Protein 5 |
DOAJ | Directory Of Open Access Journals |
ELK1 | ETS-Like Gene 1 |
ENTV | Enzootic Nasal Tumor Virus |
FMD | foot and mouth disease |
FMDV | FMD virus |
GaHV-2 | Gallid Herpesvirus 2 |
hpi | hours post-infection |
Hsp70 | Heat Shock Protein Family A |
IBDV | Infectious Bursal Disease Virus |
IC | ileum control |
IFN-α | type I interferon |
IFN-β | beta interferon |
IL7R | Interleukin 7 Receptor |
IR | ileum resistant |
IRAK1 | interleukin-1 receptor-associated kinase 1 |
IRAK2 | Interleukin-1 Receptor-Associated Kinase 2 |
IRF1 | Interferon Regulatory Factor 1 |
IS | ileum susceptible |
JAK1 | Janus kinase 1 |
JD | Johne’s disease |
KLF4 | Krüppel-like factor 4 |
LD | Linear Dichroism |
LS | low Salmonella shedding |
MAP | M. avium subsp. paratuberculosis |
MAPK | Mitogen-Activated Protein Kinase |
MDA5 | Melanoma Differentiation-Associated Gene 5 |
MDPI | Multidisciplinary Digital Publishing Institute |
MDV | Marek’s Disease Virus |
MHC | Major Histocompatibility Complex |
miRNA-Seq | miRNA sequencing |
ncRNAs | Non-Coding Rnas |
NFAT5 | Nuclear Factor Of Activated T-Cells 5 |
NFATC4 | Nuclear Factor Of Activated T Cells 4 |
NFIA | nuclear factor IA |
NF-kappaB | nuclear factor-kappa B |
NGS | Next-Generation Sequencing |
NPEPPS | Aminopeptidase Puromycin Sensitive |
ORF4 | open reading frame 4 |
P.I. | Post-Infection |
PCR | Polymerase Chain Reaction |
PCV2 | Porcine circovirus type 2 |
PDCD4 | Programmed Cell Death 4 Gene |
PID | Post-Infection Day |
PPR | Peste Des Petits Ruminants |
PPRV | PPR Virus |
PRRS | Porcine Reproductive and Respiratory Syndrome |
PRRSV | Porcine reproductive and respiratory syndrome virus |
PS | persistent Salmonella shedding |
REV | Reticuloendotheliosis Virus |
RXRB | retinoid X receptor β |
SOCS5 | Suppressor Of Cytokine Signaling 5 |
SRP14 | signal recognition particle 14 |
TGS | Third-Generation Sequencing |
TLA | Three-Letter Acronym |
VP1 | Virus Protein |
YAP1 | Targeting and Repressing Yes-Associated Protein 1 |
References
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Hu, Y.; Lan, W.; Miller, D. Next-generation sequencing for MicroRNA expression profile. In Bioinformatics in MicroRNA Research; Springer: Berlin/Heidelberg, Germany, 2017; pp. 169–177. [Google Scholar]
- Mendes, N.D.; Freitas, A.T.; Sagot, M.-F. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res. 2009, 37, 2419–2433. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.M.; Micolucci, L.; Islam, M.S.; Olivieri, F.; Procopio, A.D. Bioinformatic tools for microRNA dissection. Nucleic Acids Res. 2016, 44, 24–44. [Google Scholar] [CrossRef] [Green Version]
- Gardner, P.P.; Vinther, J. Mutation of miRNA target sequences during human evolution. Trends Genet. 2008, 24, 262–265. [Google Scholar] [CrossRef]
- Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.N.; Dudemaine, P.-L.; Fomenky, B.; Ibeagha-Awemu, E.M. Transcriptome Analysis of Non-Coding RNAs in Livestock Species: Elucidating the Ambiguity. In Applications of RNA-Seq and Omics Strategies—From Microorganisms to Human Health; Marchi, F.A., Cirillo, P.D.R., Mateo, E.C., Eds.; InTech: Rijeka, Croatia, 2017; Chapter 5; pp. 103–144. [Google Scholar] [CrossRef] [Green Version]
- Bortolomeazzi, M.; Gaffo, E.; Bortoluzzi, S. A survey of software tools for microRNA discovery and characterization using RNA-seq. Brief. Bioinform. 2019, 20, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Riffo-Campos, Á.L.; Riquelme, I.; Brebi-Mieville, P. Tools for sequence-based miRNA target prediction: What to choose? Int. J. Mol. Sci. 2016, 17, 1987. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Xia, J. miRNet—functional analysis and visual exploration of miRNA–target interactions in a network context. In Computational Cell Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 215–233. [Google Scholar]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stöckel, D.; Meese, E.; Lenhof, H.-P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020, 48, D142–D147. [Google Scholar] [CrossRef]
- Bishop, S.C.; Woolliams, J.A. Genomics and disease resistance studies in livestock. Livest. Sci. 2014, 166, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Do, D.N.; Gray, J.; Miar, Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals 2020, 10, 1717. [Google Scholar] [CrossRef]
- Chi, J.; Weersink, A.; VanLeeuwen, J.A.; Keefe, G.P. The economics of controlling infectious diseases on dairy farms. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2002, 50, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.C.; MacKenzie, K.M. Genetic management strategies for controlling infectious diseases in livestock populations. Genet. Sel. Evol. 2003, 35, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, B.D.; Grace, D.; Sones, K. Current drivers and future directions of global livestock disease dynamics. Proc. Natl. Acad. Sci. USA 2013, 110, 20871–20877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibeagha-Awemu, E.M.; Zhao, X. Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front. Genet. 2015, 6, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triantaphyllopoulos, K.A.; Ikonomopoulos, I.; Bannister, A.J. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin 2016, 9, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucko, D.; Boris-Lawrie, K. Circular RNAs are Regulators of Diverse Animal Transcriptomes: One-Health Perspective. Front. Genet. 2020, 11, 999. [Google Scholar] [CrossRef]
- Lin, S.; Fang, L.; Liu, G.E.; Li, C.-J. Epigenetics and heritable phenotypic variations in livestock. In Transgenerational Epigenetics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 283–313. [Google Scholar]
- Ibeagha-Awemu, E.M.; Khatib, H. Epigenetics of livestock breeding. In Handbook of Epigenetics. The New Molecular and Medical Genetics, 2nd ed.; Tollefsbol, T.O., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 441–463. [Google Scholar]
- Dong, H.; Gao, Q.; Peng, X.; Sun, Y.; Han, T.; Zhao, B.; Liu, Y.; Wang, C.; Song, X.; Wu, J.; et al. Circulating MicroRNAs As Potential Biomarkers for Veterinary Infectious Diseases. Front. Vet. Sci. 2017, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, J.; Pareek, C.S.; Tretyn, A. The role of microRNAs in animal physiology and pathology. Transl. Res. Vet. Sci. 2018, 1, 13–33. [Google Scholar] [CrossRef]
- Kloosterman, W.P.; Plasterk, R.H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 2006, 11, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taxis, T.M.; Casas, E. MicroRNA expression and implications for infectious diseases in livestock. CAB Rev. 2017, 12, 1–20. [Google Scholar] [CrossRef]
- Bhaskaran, M.; Mohan, M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 2014, 51, 759–774. [Google Scholar] [CrossRef] [Green Version]
- Do, D.N.; Ibeagha-Awemu, E.M. Non-Coding RNA Roles in Ruminant Mammary Gland Development and Lactation. Curr. Top. Lact. 2017, 55. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, W.; Wu, C.; Sung, J.; Yu, J.; Ng, S. MicroRNA dysregulation in colorectal cancer: A clinical perspective. Br. J. Cancer 2011, 104, 893–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, L.J.; Slack, F.J. A truth serum for cancer—microRNAs have major potential as cancer biomarkers. Cell Res. 2008, 18, 983–984. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Alevizos, I.; Illei, G.G. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 2010, 6, 391. [Google Scholar] [CrossRef]
- Guay, C.; Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 2013, 9, 513. [Google Scholar] [CrossRef] [Green Version]
- Brennan, E.; McClelland, A.; Hagiwara, S.; Godson, C.; Kantharidis, P. Chapter 31—miRNAs in the Pathophysiology of Diabetes and Their Value as Biomarkers. In Epigenetic Biomarkers and Diagnostics; García-Giménez, J.L., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 643–661. [Google Scholar] [CrossRef]
- Tribolet, L.; Kerr, E.; Cowled, C.; Bean, A.G.; Stewart, C.R.; Dearnley, M.; Farr, R.J. MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Front. Microbiol. 2020, 11, 1197. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.E.; Kirwan, J.; Doherty, M.K.; Whitfield, P.D. Biomarker discovery in animal health and disease: The application of post-genomic technologies. Biomark Insights 2007, 2, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, C.R. Introduction to predictive biomarkers: Definitions and characteristics. In Predictive Biomarkers in Oncology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–18. [Google Scholar]
- Lan, H.; Lu, H.; Wang, X.; Jin, H. MicroRNAs as potential biomarkers in cancer: Opportunities and challenges. Biomed. Res. Int. 2015, 2015, 125094. [Google Scholar] [CrossRef] [Green Version]
- Acunzo, M.; Romano, G.; Wernicke, D.; Croce, C.M. MicroRNA and cancer–a brief overview. Adv. Biol. Regul. 2015, 57, 1–9. [Google Scholar] [CrossRef]
- Pei, Y.-f.; Lei, Y.; Liu, X.-q. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2016, 1862, 2177–2185. [Google Scholar] [CrossRef]
- Ferreira, P.; Roela, R.A.; Lopez, R.V.M.; Estevez-Diz, M.D.P. The prognostic role of microRNA in epithelial ovarian cancer: A systematic review of literature with an overall survival meta-analysis. Oncotarget 2020, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.A.; Verma, V.K.; Beevi, S.S.; Rawoof, A.; Alexander, L.E.; Prasad, E.R.; Kumari, P.K.; Kumar, P.; Kumar, L.D. MicroRNA Signatures in Blood or Bone Marrow Distinguish Subtypes of Pediatric Acute Lymphoblastic Leukemia. Transl. Oncol. 2020, 13, 100800. [Google Scholar] [CrossRef]
- Ali Ahmed, E.; Abd El-Basit, S.A.; Mohamed, M.A.; Swellam, M. Clinical role of miRNA 29a and miRNA 335 on breast cancer management: Their relevance to MMP2 protein level. Arch. Physiol. Biochem. 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Bernardo, B.C.; Ooi, J.Y.; Lin, R.C.; McMullen, J.R. miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med. Chem. 2015, 7, 1771–1792. [Google Scholar] [CrossRef]
- Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA therapeutics in cancer—An emerging concept. EBioMedicine 2016, 12, 34–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, A.G.; Brown, D.; Winkler, M. The promise of microRNA replacement therapy. Cancer Res. 2010, 70, 7027–7030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gareev, I.; Beylerli, O.; Yang, G.; Sun, J.; Pavlov, V.; Izmailov, A.; Shi, H.; Zhao, S. The current state of miRNAs as biomarkers and therapeutic tools. Clin. Exp. Med. 2020, 20, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, L.; Rossi, J.J. RNAi therapeutics: Principles, prospects and challenges. Adv. Drug Deliv. Rev. 2007, 59, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Chen, J.; Huang, Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.L.; Paoletti, C.; Campisi, M.; Osaki, T.; Adriani, G.; Kamm, R.D.; Mattu, C.; Chiono, V. MicroRNA delivery through nanoparticles. J. Control. Release 2019, 313, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Zomer, A.; Vendrig, T.; Hopmans, E.S.; van Eijndhoven, M.; Middeldorp, J.M.; Pegtel, D.M. Exosomes: Fit to deliver small RNA. Commun. Integr. Biol. 2010, 3, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Eleswarapu, S.; Jiang, H. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett. 2007, 581, 981–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawless, N.; Vegh, P.; O’Farrelly, C.; Lynn, D.J. The Role of microRNAs in Bovine Infection and Immunity. Front. Immunol. 2014, 5, 611. [Google Scholar] [CrossRef] [Green Version]
- Gross, N.; Kropp, J.; Khatib, H. MicroRNA Signaling in Embryo Development. Biology 2017, 6, 34. [Google Scholar] [CrossRef]
- Lawless, N.; Foroushani, A.B.; McCabe, M.S.; O’Farrelly, C.; Lynn, D.J. Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection. PLoS ONE 2013, 8, e57543. [Google Scholar] [CrossRef] [Green Version]
- Naeem, A.; Zhong, K.; Moisa, S.J.; Drackley, J.K.; Moyes, K.M.; Loor, J.J. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J. Dairy Sci. 2012, 95, 6397–6408. [Google Scholar] [CrossRef] [Green Version]
- Ngo, S.; Moloney, S.; Xiaoling, L.; McNaughton, L.; Partridge, A.; Sheppard, A. Distinct MicroRNA Signatures for Mastitis Measured in Milk Following Natural Exposure in Dairy Herds. Int. J. Anim. Sci. 2017, 1, 1001. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Chen, L.; Wang, L.; Liu, X.; Ru, C.; Song, A. Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing. Anim. Genet. 2014, 45, 20–27. [Google Scholar] [CrossRef]
- Jin, W.; Ibeagha-Awemu, E.M.; Liang, G.; Beaudoin, F.; Zhao, X.; Guan le, L. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genom. 2014, 15, 181. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.; Li, R.; Zhang, C.; Chen, D.; Liao, X.; Zhu, Y.; Geng, X.; Ji, D.; Mao, Y.; Gong, Y.; et al. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae-induced mastitis. J. Dairy Res. 2017, 84, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Luoreng, Z.-M.; Wang, X.-P.; Mei, C.-G.; Zan, L.-S. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli. Int. J. Biol. Sci. 2018, 14, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Y.-C.; Fujikawa, T.; Maemura, T.; Ando, T.; Kitahara, G.; Endo, Y.; Yamato, O.; Koiwa, M.; Kubota, C.; Miura, N. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis. PLoS ONE 2017, 12, e0177182. [Google Scholar] [CrossRef]
- Vegh, P.; Magee, D.A.; Nalpas, N.C.; Bryan, K.; McCabe, M.S.; Browne, J.A.; Conlon, K.M.; Gordon, S.V.; Bradley, D.G.; MacHugh, D.E.; et al. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking. Tuberculosis 2015, 95, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malvisi, M.; Palazzo, F.; Morandi, N.; Lazzari, B.; Williams, J.L.; Pagnacco, G.; Minozzi, G. Responses of bovine innate immunity to Mycobacterium avium subsp. paratuberculosis infection revealed by changes in gene expression and levels of microRNA. PLoS ONE 2016, 11, e0164461. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Malmuthuge, N.; Guan, Y.; Ren, Y.; Griebel, P.J.; Guan, L.L. Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci. Rep. 2016, 6, 24964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Maclean, P.H.; Ganesh, S.; Shu, D.; Buddle, B.M.; Wedlock, D.N.; Heiser, A. Detection of microRNA in cattle serum and their potential use to diagnose severity of Johne’s disease. J. Dairy Sci. 2018, 101, 10259–10270. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, R.G.; Farrell, D.; Stojkovic, B.; Browne, J.A.; Kenny, K.; Gordon, S.V. Identification of microRNAs in bovine faeces and their potential as biomarkers of Johne’s Disease. Sci. Rep. 2020, 10, 1–9. [Google Scholar]
- Taxis, T.M.; Bauermann, F.V.; Ridpath, J.F.; Casas, E. Circulating MicroRNAs in Serum from Cattle Challenged with Bovine Viral Diarrhea Virus. Front. Genet. 2017, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Stenfeldt, C.; Arzt, J.; Smoliga, G.; LaRocco, M.; Gutkoska, J.; Lawrence, P. Proof-of-concept study: Profile of circulating microRNAs in Bovine serum harvested during acute and persistent FMDV infection. Virol. J. 2017, 14, 71. [Google Scholar] [CrossRef] [Green Version]
- Thompson-Crispi, K.; Atalla, H.; Miglior, F.; Mallard, B.A. Bovine mastitis: Frontiers in immunogenetics. Front. Immunol. 2014, 5, 493. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burvenich, C.; Van Merris, V.; Mehrzad, J.; Diez-Fraile, A.; Duchateau, L. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 2003, 34, 521–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Côté-Gravel, J.; Malouin, F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J. Dairy Sci. 2019, 102, 4727–4740. [Google Scholar] [CrossRef]
- Cai, M.; He, H.; Jia, X.; Chen, S.; Wang, J.; Shi, Y.; Liu, B.; Xiao, W.; Lai, S. Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress Chaperones 2018, 23, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, C.-L.; Liao, X.-X.; Chen, D.; Wang, W.-Q.; Zhu, Y.-H.; Geng, X.-H.; Ji, D.-J.; Mao, Y.-J.; Gong, Y.-C. Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus. Int. J. Mol. Sci. 2015, 16, 4997–5013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Aswath, K.; Schroeder, S.G.; Lippolis, J.D.; Reinhardt, T.A.; Sonstegard, T.S. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genom. 2015, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xu, X.; Tan, T.; Chen, D.; Liang, H.; Sun, K.; Li, M.; Zhang, H.; Mao, Y.; Yang, Z. MicroRNA-145 regulates immune cytokines via targeting FSCN1 in Staphylococcus aureus-induced mastitis in dairy cows. Reprod. Domest. Anim. 2019, 54, 882–891. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, J.; Wang, X.; Zhang, Y.; Lu, X.; Fan, Y.; Mao, Y.; Loor, J.J.; Yang, Z. Screening candidate microR-15a-IRAK2 regulatory pairs for predicting the response to Staphylococcus aureus-induced mastitis in dairy cows. J. Dairy Res. 2019, 86, 425–431. [Google Scholar] [CrossRef]
- Han, S.; Li, X.; Liu, J.; Zou, Z.; Luo, L.; Wu, R.; Zhao, Z.; Wang, C.; Shen, B. Bta-miR-223 participate in the regulation of Staphylococcus aureus mastitis resistance through the PI3K/AKT/NF-κB pathway by targeting CBLB. Front. Vet. Sci. 2020, 7, 529. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Tong, C.; Ibeagha-Awemu, E.M.; Zhao, X. Identification and characterization of differentially expressed exosomal microRNAs in bovine milk infected with Staphylococcus aureus. BMC Genom. 2019, 20, 934. [Google Scholar] [CrossRef] [Green Version]
- Reinoso, E.B.; Lasagno, M.C.; Dieser, S.A.; Odierno, L.M. Distribution of virulence-associated genes in Streptococcus uberis isolated from bovine mastitis. FEMS Microbiol. Lett. 2011, 318, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, X.; Li, Z.; Wang, H.; Liu, Y.; He, H.; Yang, J.; Niu, F.; Wang, L.; Guo, J. Expression differences of miRNAs and genes on NF-kappaB pathway between the healthy and the mastitis Chinese Holstein cows. Gene 2014, 545, 117–125. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Chen, L.; Zhai, M.; Chen, S.; Li, N.; Liu, X. Identification and expression analysis of miR-144-5p and miR-130b-5p in dairy cattle. Arch. Fuer Tierz. 2017, 60, 199. [Google Scholar]
- Tiwari, A.; VanLeeuwen, J.A.; McKenna, S.L.B.; Keefe, G.P.; Barkema, H.W. Johne’s disease in Canada: Part I: Clinical symptoms, pathophysiology, diagnosis, and prevalence in dairy herds. Can. Vet. J. 2006, 47, 874–882. [Google Scholar]
- Chacon, O.; Bermudez, L.E.; Barletta, R.G. Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu. Rev. Microbiol. 2004, 58, 329–363. [Google Scholar] [CrossRef] [Green Version]
- Ott, S.L.; Wells, S.J.; Wagner, B.A. Herd-level economic losses associated with Johne’s disease on US dairy operations. Prev. Vet. Med. 1999, 40, 179–192. [Google Scholar] [CrossRef]
- Stabel, J. Johne’s disease: A hidden threat. J. Dairy Sci. 1998, 81, 283–288. [Google Scholar] [CrossRef]
- Over, K.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne’s disease, and Crohn’s disease: A review. Crit. Rev. Microbiol. 2011, 37, 141–156. [Google Scholar] [CrossRef]
- Fock-Chow-Tho, D.; Topp, E.; Ibeagha-Awemu, E.M.; Bissonnette, N. Comparison of commercial DNA extraction kits and quantitative PCR systems for better sensitivity in detecting the causative agent of paratuberculosis in dairy cow fecal samples. J. Dairy Sci. 2017, 100, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Bissonnette, N.; Griebel, P.; Dudemaine, P.-L.; Do, D.N.; Ibeagha-Awemu, E.M. PSVI-15 Transcriptome analysis of ileal lymph nodes identifies key microRNAs affecting disease progression in Holstein cows with subclinical Johne’s disease. J. Anim. Sci. 2019, 97, 207–208. [Google Scholar] [CrossRef]
- Wang, M.; Bissonnette, N.; Griebel, P.; Dudemaine, P.-L.; Do, D.N.; Mao, Y.; Ibeagha-Awemu, E.M. PSVI-14 Differentially expressed microRNAs with potential regulatory roles in ileum of Holstein cows with subclinical Johne’s disease. J. Anim. Sci. 2019, 97, 206–207. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannaccone, M.; Cosenza, G.; Pauciullo, A.; Garofalo, F.; Proroga, Y.T.; Capuano, F.; Capparelli, R. Milk microRNA-146a as a potential biomarker in bovine tuberculosis. J. Dairy Res. 2018, 85, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hussain, T.; Yue, R.; Liao, Y.; Li, Q.; Yao, J.; Song, Y.; Sun, X.; Wang, N.; Xu, L.; et al. MicroRNA-199a Inhibits Cellular Autophagy and Downregulates IFN-β Expression by Targeting TBK1 in Mycobacterium bovis Infected Cells. Front. Cell. Infect. Microbiol. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Sawera, M.; Gorodkin, J.; Cirera, S.; Fredholm, M. Mapping and expression studies of the mir17-92 cluster on pig chromosome 11. Mamm. Genome 2005, 16, 594–598. [Google Scholar] [CrossRef]
- Hicks, J.A.; Yoo, D.; Liu, H.C. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS ONE 2013, 8, e82054. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.-k.; Zhang, Q.; Gao, L.; Li, N.; Chen, X.-x.; Feng, W.-h. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J. Virol. 2013, 87, 1159–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Cao, L.; Xu, Z.; Fang, L.; Zhong, Y.; Chen, Q.; Luo, R.; Chen, H.; Li, K.; Xiao, S. MiR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-kappaB pathway. PLoS ONE 2013, 8, e55838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Guo, X.-K.; Gao, L.; Huang, C.; Li, N.; Jia, X.; Liu, W.; Feng, W.-H. MicroRNA-23 inhibits PRRSV replication by directly targeting PRRSV RNA and possibly by upregulating type I interferons. Virology 2014, 450–451, 182–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, A.; Li, S.; Zhang, S. miRNAs and genes expression in MARC-145 cell in response to PRRSV infection. Infect. Genet. Evol. 2014, 27, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Z.; Zhao, J.; Fang, L.; Fang, R.; Xiao, J.; Chen, X.; Zhou, A.; Zhang, Y.; Ren, L. Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wei, Z.; Zhou, Y.; Gao, F.; Jiang, Y.; Yu, L.; Zheng, H.; Tong, W.; Yang, S.; Zheng, H.; et al. Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type I interferons. Virus Res. 2015, 195, 86–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, C.; Yang, Q.; Gao, L.; Liu, H.-C.; Tang, J.; Feng, W.-H. MicroRNA-30c modulates type I IFN responses to facilitate porcine reproductive and respiratory syndrome virus infection by targeting JAK1. J. Immunol. 2016, 196, 2272–2282. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Du, T.; Wang, X.; Ni, H.; Yan, Y.; Li, N.; Zhang, C.; Zhang, A.; Gao, J.; Liu, H. MiR-22 promotes porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1. Vet. Microbiol. 2016, 192, 226–230. [Google Scholar] [CrossRef]
- Chen, J.; Shi, X.; Zhang, X.; Wang, A.; Wang, L.; Yang, Y.; Deng, R.; Zhang, G.-P. MicroRNA 373 Facilitates the Replication of Porcine Reproductive and Respiratory Syndrome Virus by Its Negative Regulation of Type I Interferon Induction. J. Virol. 2017, 91, e01311–e01316. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Michal, J.J.; Jiang, Z.; Liu, B. MicroRNA expression profiling in alveolar macrophages of indigenous Chinese Tongcheng pigs infected with PRRSV in vivo. J. Appl. Genet. 2017, 58, 539–544. [Google Scholar] [CrossRef]
- Zhao, G.; Hou, J.; Xu, G.; Xiang, A.; Kang, Y.; Yan, Y.; Zhang, X.; Yang, G.; Xiao, S.; Sun, S. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14. J. Gen. Virol. 2017, 98, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Fleming, D.S.; Miller, L.C. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection. Virology 2018, 517, 56–61. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Feng, G.; Chen, H.; Wang, L.; Wang, Y. Identification of host encoded microRNAs interacting with novel swine-origin influenza A (H1N1) virus and swine influenza virus. Bioinformation 2009, 4, 112. [Google Scholar] [CrossRef] [Green Version]
- Skovgaard, K.; Cirera, S.; Vasby, D.; Podolska, A.; Breum, S.Ø.; Dürrwald, R.; Schlegel, M.; Heegaard, P.M. Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2). Innate Immun. 2013, 19, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.-H.; Uthe, J.J.; Bearson, S.M.; Demirkale, C.Y.; Nettleton, D.; Knetter, S.; Christian, C.; Ramer-Tait, A.E.; Wannemuehler, M.J.; Tuggle, C.K. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: Intersection of IFNG, TLR and miRNA pathways. PLoS ONE 2011, 6, e28768. [Google Scholar] [CrossRef] [Green Version]
- Hoeke, L.; Sharbati, J.; Pawar, K.; Keller, A.; Einspanier, R.; Sharbati, S. Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS ONE 2013, 8, e67300. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, M.; Zheng, E. Comprehensive miRNA expression profiles in the ilea of Lawsonia intracellularis-infected pigs. J. Vet. Med. Sci. 2017, 79, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Su, X.; Wu, Z.; Zheng, X.; Wang, J.; Zi, C.; Zhu, G.; Wu, S.; Bao, W. Analysis of Differential miRNA Expression in the Duodenum of Escherichia coli F18-Sensitive and -Resistant Weaned Piglets. PLoS ONE 2012, 7, e43741. [Google Scholar] [CrossRef]
- Wu, Z.; Qin, W.; Wu, S.; Zhu, G.; Bao, W.; Wu, S. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets. Biol. Direct 2016, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.P.; Kringel, H.; Thamsborg, S.M.; Jex, A.; Nejsum, P. Profiling circulating miRNAs in serum from pigs infected with the porcine whipworm, Trichuris suis. Vet. Parasitol. 2016, 223, 30–33. [Google Scholar] [CrossRef]
- Podolska, A.; Anthon, C.; Bak, M.; Tommerup, N.; Skovgaard, K.; Heegaard, P.M.; Gorodkin, J.; Cirera, S.; Fredholm, M. Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae. BMC Genom. 2012, 13, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Xie, H.; Ling, Q.; Lu, D.; Lv, Z.; Zhuang, R.; Liu, Z.; Wei, X.; Zhou, L.; Xu, X.; et al. Coding-noncoding gene expression in intrahepatic cholangiocarcinoma. Transl. Res. J. Lab. Clin. Med. 2016, 168, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Hernández, F.; Pérez, L.J.; Muñoz, M.; Vera, G.; Accensi, F.; Sánchez, A.; Rodríguez, F.; Núñez, J.I. Differential expression of porcine microRNAs in African swine fever virus infected pigs: A proof-of-concept study. Virol. J. 2017, 14, 198. [Google Scholar] [CrossRef]
- Brogaard, L.; Larsen, L.E.; Heegaard, P.M.H.; Anthon, C.; Gorodkin, J.; Dürrwald, R.; Skovgaard, K. IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs. PLoS ONE 2018, 13, e0194765. [Google Scholar] [CrossRef]
- Reiner, G. Genetic resistance—an alternative for controlling PRRS? Porc. Health Manag. 2016, 2, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Feng, Y.; Yan, Y.; Zheng, Z.; Wang, W.; Zhang, Y.; Zhou, E.-M.; Xiao, S. Cellular microRNA miR-c89 inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor porcine retinoid X receptor β. J. Gen. Virol. 2019, 100, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.L.; Ma, W.; Lager, K.M.; Janke, B.H.; Richt, J.A. Swine influenza viruses: A North American perspective. Adv. Virus Res. 2008, 72, 127–154. [Google Scholar]
- Webster, R.G. The importance of animal influenza for human disease. Vaccine 2002, 20, S16–S20. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Su, H.; Wang, B.; Sizhu, S.; Lei, Z.; Jin, M.; Chen, H.; Cao, J.; Zhou, H. Sus scrofa miR-204 and miR-4331 negatively regulate swine H1N1/2009 influenza a virus replication by targeting viral HA and NS, respectively. Int. J. Mol. Sci. 2017, 18, 749. [Google Scholar] [CrossRef]
- Pires, A.; Funk, J.; Bolin, C. Risk factors associated with persistence of Salmonella shedding in finishing pigs. Prev. Vet. Med. 2014, 116, 120–128. [Google Scholar] [CrossRef]
- Huang, T.; Huang, X.; Chen, W.; Yin, J.; Shi, B.; Wang, F.; Feng, W.; Yao, M. MicroRNA responses associated with Salmonella enterica serovar typhimurium challenge in peripheral blood: Effects of miR-146a and IFN-γ in regulation of fecal bacteria shedding counts in pig. BMC Vet. Res. 2019, 15, 1–8. [Google Scholar] [CrossRef]
- Wang, P.; Huang, X.; Yan, Z.; Yang, Q.; Sun, W.; Gao, X.; Luo, R.; Gun, S. Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C. Microb. Pathog. 2019, 136, 103699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, L.; Li, Y.; Jiang, P.; Wang, Y.; Wang, P.; Kang, L.; Wang, Y.; Sun, Y.; Jiang, Y. Identification and characterization of microRNA in the lung tissue of pigs with different susceptibilities to PCV2 infection. Vet. Res. 2018, 49, 18. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Sun, Y.; Li, J.; Jiang, C.; Zeng, W.; Zhang, H.; Fan, S.; He, Q. PCV2 Regulates Cellular Inflammatory Responses through Dysregulating Cellular miRNA-mRNA Networks. Viruses 2019, 11, 1055. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, X.; Du, Z.; Li, N. Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Lett. 2006, 580, 3610–3616. [Google Scholar] [CrossRef] [Green Version]
- Lian, L.; Qu, L.; Chen, Y.; Lamont, S.J.; Yang, N. A systematic analysis of miRNA transcriptome in Marek’s disease virus-induced lymphoma reveals novel and differentially expressed miRNAs. PLoS ONE 2012, 7, e51003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.; Luo, J.; Zhang, H.; Chang, S.; Song, J. miRNA expression signatures induced by Marek’s disease virus infection in chickens. Genomics 2012, 99, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lian, L.; Zhang, D.; Qu, L.; Yang, N. gga-miR-26a targets NEK6 and suppresses Marek’s disease lymphoma cell proliferation. Poult. Sci. 2014, 93, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lian, L.; Li, X.; Zhao, C.; Qu, L.; Liu, C.; Song, J.; Yang, N. Chicken gga-miR-103-3p Targets CCNE1 and TFDP2 and Inhibits MDCC-MSB1 Cell Migration. G3 2016, 6, 1277–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Li, X.; Han, B.; You, Z.; Qu, L.; Liu, C.; Song, J.; Lian, L.; Yang, N. Gga-miR-219b targeting BCL11B suppresses proliferation, migration and invasion of Marek’s disease tumor cell MSB1. Sci. Rep. 2017, 7, 4247. [Google Scholar] [CrossRef] [Green Version]
- Heidari, M.; Zhang, L.; Zhang, H. MicroRNA profiling in the bursae of Marek’s disease virus-infected resistant and susceptible chicken lines. Genomics 2020, 112, 2564–2571. [Google Scholar] [CrossRef]
- Li, H.; Ji, J.; Xie, Q.; Shang, H.; Zhang, H.; Xin, X.; Chen, F.; Sun, B.; Xue, C.; Ma, J.; et al. Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus. Virus Res. 2012, 169, 268–271. [Google Scholar] [CrossRef]
- Li, H.; Shang, H.; Shu, D.; Zhang, H.; Ji, J.; Sun, B.; Li, H.; Xie, Q. gga-miR-375 plays a key role in tumorigenesis post subgroup J avian leukosis virus infection. PLoS ONE 2014, 9, e90878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Gao, Y.; Ji, X.; Qi, X.; Qin, L.; Gao, H.; Wang, Y.; Wang, X. Differential expression of microRNAs in avian leukosis virus subgroup J-induced tumors. Vet. Microbiol. 2013, 162, 232–238. [Google Scholar] [CrossRef]
- Dai, Z.; Ji, J.; Yan, Y.; Lin, W.; Li, H.; Chen, F.; Liu, Y.; Chen, W.; Bi, Y.; Xie, Q. Role of gga-miR-221 and gga-miR-222 during Tumour Formation in Chickens Infected by Subgroup J Avian Leukosis Virus. Viruses 2015, 7, 6538–6551. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, B.; Feng, M.; Ouyang, H.; Zheng, M.; Ye, Q.; Nie, Q.; Zhang, X. MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1. Sci. Rep. 2015, 5, 10294. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Luo, Q.; Xu, H.; Zheng, M.; Abdalla, B.A.; Feng, M.; Cai, B.; Zhang, X.; Nie, Q.; Zhang, X. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication. Front. Cell. Infect. Microbiol. 2017, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Shang, H.; Zhang, H.; Li, H.; Ma, J.; Bi, Y.; Xie, Q. Temporal changes of microRNA gga-let-7b and gga-let-7i expression in chickens challenged with subgroup J avian leukosis virus. Vet. Res. Commun. 2017, 41, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Xue, J.; He, S.; Du, X.; Zhou, J.; Li, C.; Huang, L.; Nair, V.; Yao, Y.; Cheng, Z. Reticuloendotheliosis virus and avian leukosis virus subgroup J synergistically increase the accumulation of exosomal miRNAs. Retrovirology 2018, 15, 45. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Wang, Y.S.; Du, X.N.; Liu, H.J.; Zhang, H.B. gga-miR-9* inhibits IFN production in antiviral innate immunity by targeting interferon regulatory factor 2 to promote IBDV replication. Vet. Microbiol. 2015, 178, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Wang, Y.S.; Meng, K.; Pan, Q.X.; Wang, X.L.; Xia, X.X.; Zhu, Y.M.; Bi, Z.W.; Zhang, H.B.; Luo, K. gga-miR-2127 downregulates the translation of chicken p53 and attenuates chp53-mediated innate immune response against IBDV infection. Vet. Microbiol. 2017, 198, 34–42. [Google Scholar] [CrossRef]
- Fu, M.; Wang, B.; Chen, X.; He, Z.; Wang, Y.; Li, X.; Cao, H.; Zheng, S.J. MicroRNA gga-miR-130b Suppresses Infectious Bursal Disease Virus Replication via Targeting of the Viral Genome and Cellular Suppressors of Cytokine Signaling 5. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Brahmakshatriya, V.; Zhu, H.; Lupiani, B.; Reddy, S.M.; Yoon, B.J.; Gunaratne, P.H.; Kim, J.H.; Chen, R.; Wang, J.; et al. Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genom. 2009, 10, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Brahmakshatriya, V.; Lupiani, B.; Reddy, S.M.; Soibam, B.; Benham, A.L.; Gunaratne, P.; Liu, H.-c.; Trakooljul, N.; Ing, N.; et al. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genom. 2012, 13, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.; Gao, Q.S.; Zhou, L.; Chen, Z.H.; Lu, S.; Huang, H.J.; Zhan, C.Y.; Xiang, M. MicroRNAs in avian influenza virus H9N2-infected and non-infected chicken embryo fibroblasts. Genet. Mol. Res. 2015, 14, 9081–9091. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Y.; Zhang, K.; Yuan, B.; Peng, X. Identification of differentially expressed miRNAs through high-throughput sequencing in the chicken lung in response to Mycoplasma gallisepticum HS. Comp. Biochem. Physiol. Part D Genom. Proteom. 2017, 22, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, Z.; Hou, Y.; Zhang, K.; Peng, X. gga-miR-99a targets SMARCA5 to regulate Mycoplasma gallisepticum (HS strain) infection by depressing cell proliferation in chicken. Gene 2017, 627, 239–247. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Bi, D.; Hou, Y.; Zhao, Y.; Sun, J.; Peng, X. Gga-miR-101-3p Plays a Key Role in Mycoplasma gallisepticum (HS Strain) Infection of Chicken. Int. J. Mol. Sci. 2015, 16, 28669–28682. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhao, Y.; Wang, Z.; Hou, Y.; Bi, D.; Sun, J.; Peng, X. Chicken gga-miR-19a Targets ZMYND11 and Plays an Important Role in Host Defense against Mycoplasma gallisepticum (HS Strain) Infection. Front. Cell. Infect. Microbiol. 2016, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Burnside, J.; Morgan, R.W. Genomics and Marek’s disease virus. Cytogenet. Genome Res. 2007, 117, 376–387. [Google Scholar] [CrossRef]
- Stik, G.; Dambrine, G.; Pfeffer, S.; Rasschaert, D. The oncogenic microRNA OncomiR-21 overexpressed during Marek’s disease lymphomagenesis is transactivated by the viral oncoprotein Meq. J. Virol. 2013, 87, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Yao, Y.; Smith, L.P.; Nair, V. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell Int. 2010, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Lian, L.; Zhang, D.; Wang, Q.; Yang, N.; Qu, L. The inhibitory effects of gga-miR-199-3p, gga-miR-140-3p, and gga-miR-221-5p in Marek’s disease tumorigenesis. Poult. Sci. 2015, 94, 2131–2135. [Google Scholar] [CrossRef]
- Lian, L.; Li, X.; Zhao, C.; Han, B.; Qu, L.; Song, J.; Liu, C.; Yang, N. Chicken gga-miR-181a targets MYBL1 and shows an inhibitory effect on proliferation of Marek’s disease virus-transformed lymphoid cell line. Poult. Sci. 2015, 94, 2616–2621. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lian, L.; Li, X.; Zhao, C.; Qu, L.; Liu, C.; Song, J.; Yang, N. Chicken gga-miR-130a targets HOXA3 and MDFIC and inhibits Marek’s disease lymphoma cell proliferation and migration. Mol. Biol. Rep. 2016, 43, 667–676. [Google Scholar] [CrossRef]
- Payne, L.; Nair, V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012, 41, 11–19. [Google Scholar] [CrossRef]
- Mahgoub, H.A.; Bailey, M.; Kaiser, P. An overview of infectious bursal disease. Arch. Virol. 2012, 157, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- Ingrao, F.; Rauw, F.; Lambrecht, B.; van den Berg, T. Infectious Bursal Disease: A complex host-pathogen interaction. Dev. Comp. Immunol. 2013, 41, 429–438. [Google Scholar] [CrossRef]
- Kumar, S. DNA vaccine against infectious bursal disease virus: Still more to explore. Vet. Microbiol. 2015, 175, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Wang, Y.; Sun, H.; Zhang, X.; Xia, X. [Inhibition of infectious bursal disease virus replication in chicken embryos by miRNAs delivered by recombinant avian adeno-associated viral vector]. Wei Sheng Wu Xue Bao 2011, 51, 256–261. [Google Scholar]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, J.; Su, J.; Liu, Y.; Guo, J.; Zhang, Y.; Lu, C.; Xing, S.; Guan, Y.; Li, Y.; et al. MicroRNAs in the immune organs of chickens and ducks indicate divergence of immunity against H5N1 avian influenza. FEBS Lett. 2015, 589, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dowd, K.; Emam, M.; Khili, E.; Reda, M.; Emad, A.; Ibeagha-Awemu, E.M.; Gagnon, C.A.; Barjesteh, N. Distinct miRNA profile of cellular and extracellular vesicles released from chicken tracheal cells following avian influenza virus infection. Vaccines 2020, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Huang, Y.; Zhao, J.X.; Rogers, C.J.; Zhu, M.J.; Ford, S.P.; Nathanielsz, P.W.; Du, M. Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int. J. Obes. 2013, 37, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Lie, S.; Morrison, J.L.; Williams-Wyss, O.; Suter, C.M.; Humphreys, D.T.; Ozanne, S.E.; Zhang, S.; Maclaughlin, S.M.; Kleemann, D.O.; Walker, S.K.; et al. Periconceptional undernutrition programs changes in insulin-signaling molecules and microRNAs in skeletal muscle in singleton and twin fetal sheep. Biol. Reprod. 2014, 90, 5. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Yao, Y.; Ma, Q.; Ni, W.; Zhang, X.; Cao, Y.; Hazi, W.; Wang, D.; Quan, R.; et al. Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget 2017, 8, 97165–97177. [Google Scholar] [CrossRef]
- Torley, K.J.; da Silveira, J.C.; Smith, P.; Anthony, R.V.; Veeramachaneni, D.N.; Winger, Q.A.; Bouma, G.J. Expression of miRNAs in ovine fetal gonads: Potential role in gonadal differentiation. Reprod. Biol. Endocrinol. 2011, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Lie, S.; Morrison, J.L.; Williams-Wyss, O.; Suter, C.M.; Humphreys, D.T.; Ozanne, S.E.; Zhang, S.; MacLaughlin, S.M.; Kleemann, D.O.; Walker, S.K.; et al. Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1013–E1024. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; Wang, J.; Tao, D.; Zhang, Y.; He, J.; Shi, C. Identification of a novel miRNA from the ovine ovary by a combinatorial approach of bioinformatics and experiments. J. Vet. Med. Sci. 2016, 77, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Pokharel, K.; Peippo, J.; Ghanem, N.; Zhaboyev, I.; Kantanen, J.; Li, M.H. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed. Anim. Genet. 2016, 47, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Zhang, Y.H.; Ling, Y.H.; Liu, Y.; Cao, H.G.; Yin, Z.J.; Ding, J.P.; Zhang, X.R. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus). BMC Genom. 2013, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Galio, L.; Droineau, S.; Yeboah, P.; Boudiaf, H.; Bouet, S.; Truchet, S.; Devinoy, E. MicroRNA in the ovine mammary gland during early pregnancy: Spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol. Genom. 2013, 45, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Li, X.; Ma, Q.; Zhang, X.; Cao, Y.; Yao, Y.; You, S.; Wang, D.; Quan, R.; Hou, X.; et al. Genome-wide analysis of circular RNAs in prenatal and postnatal pituitary glands of sheep. Sci. Rep. 2017, 7, 16143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Z.; Wang, G.; Xie, Z.; Wang, J.; Zhang, C.; Dong, F.; Chen, C. Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics. PLoS ONE 2012, 7, e49463. [Google Scholar] [CrossRef]
- Lin, X.; Luo, J.; Zhang, L.; Zhu, J. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats. Gene Expr. J. Liver Res. 2013, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Luo, J.; Zhang, L.; Wang, W.; Gou, D. MiR-103 controls milk fat accumulation in goat (Capra hircus) mammary gland during lactation. PLoS ONE 2013, 8, e79258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Z.; Liu, Z.; Chao, T.; Hou, L.; Fan, R.; He, R.; Wang, G.; Wang, J. Screening of miRNA profiles and construction of regulation networks in early and late lactation of dairy goat mammary glands. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Fu, Y.; Cao, J.; Yu, M.; Tang, X.; Zhao, S. Identification of differentially expressed miRNAs between white and black hair follicles by RNA-sequencing in the goat (Capra hircus). Int. J. Mol. Sci. 2014, 15, 9531–9545. [Google Scholar] [CrossRef] [Green Version]
- Wenguang, Z.; Jianghong, W.; Jinquan, L.; Yashizawa, M. A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. Omics 2007, 11, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, X.; Geng, R.; He, X.; Qu, L.; Chen, Y. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genom. 2013, 14, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Li, X.; Wang, X.; Ban, Q.; Hui, W.; Jia, B. MicroRNA profiling of the intestinal tissue of Kazakh sheep after experimental Echinococcus granulosus infection, using a high-throughput approach. Parasite 2016, 23, 23. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Ye, N.; Cao, S.J.; Wen, X.T.; Huang, Y.; Yan, Q.G. Identification of novel and differentially expressed MicroRNAs in goat enzootic nasal adenocarcinoma. BMC Genom. 2016, 17, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Gao, S.; Tian, Z.; Xing, S.; Huang, D.; Zhang, G.; Zheng, Y.; Liu, G.; Luo, J.; Chang, H.; et al. MicroRNA expression profiling of primary sheep testicular cells in response to bluetongue virus infection. Infect. Genet. Evol. 2017, 49, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Sahu, A.R.; Wani, S.A.; Saxena, S.; Kanchan, S.; Sah, V.; Rajak, K.K.; Khanduri, A.; Sahoo, A.P.; Tiwari, A.K.; et al. Modulation of Host miRNAs Transcriptome in Lung and Spleen of Peste des Petits Ruminants Virus Infected Sheep and Goats. Front. Microbiol. 2017, 8, 1146. [Google Scholar] [CrossRef]
- Sanz Rubio, D.; Lopez-Perez, O.; de Andres Pablo, A.; Bolea, R.; Osta, R.; Badiola, J.J.; Zaragoza, P.; Martin-Burriel, I.; Toivonen, J.M. Increased circulating microRNAs miR-342-3p and miR-21-5p in natural sheep prion disease. J. Gen. Virol. 2017, 98, 305–310. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, X.; Meng, X.; Zhu, X.; Zhang, X.; Li, Y.; Zhang, Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019, 11, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilbao-Arribas, M.; Abendaño, N.; Varela-Martínez, E.; Reina, R.; de Andrés, D.; Jugo, B.M. Expression analysis of lung miRNAs responding to ovine VM virus infection by RNA-seq. BMC Genom. 2019, 20, 62. [Google Scholar] [CrossRef]
- Qi, X.; Wang, T.; Xue, Q.; Li, Z.; Yang, B.; Wang, J. MicroRNA expression profiling of goat peripheral blood mononuclear cells in response to peste des petits ruminants virus infection. Vet. Res. 2018, 49, 62. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Wang, T.; Li, Z.; Wan, Y.; Yang, B.; Zeng, W.; Zhang, Y.; Wang, J. MicroRNA-218 regulates Signaling Lymphocyte Activation Molecular (SLAM) Mediated peste des petits ruminants virus infectivity in goat peripheral blood mononuclear cells. Front. Immunol. 2019, 10, 2201. [Google Scholar] [CrossRef]
- Qi, X.; Li, Z.; Li, H.; Wang, T.; Zhang, Y.; Wang, J. MicroRNA-1 Negatively Regulates Peripheral NK Cell Function via Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Signaling Pathways During PPRV Infection. Front. Immunol. 2020, 10, 3066. [Google Scholar] [CrossRef] [PubMed]
- Nejad, C.; Stunden, H.J.; Gantier, M.P. A guide to miRNAs in inflammation and innate immune responses. FEBS J. 2018, 285, 3695–3716. [Google Scholar] [CrossRef] [PubMed]
- Gantier, M.P.; Sadler, A.J.; Williams, B.R. Fine-tuning of the innate immune response by microRNAs. Immunol. Cell Biol. 2007, 85, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. miR-146 and miR-155: Two key modulators of immune response and tumor development. Non-Coding RNA 2017, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Haneklaus, M.; Gerlic, M.; O’Neill, L.A.; Masters, S. miR-223: Infection, inflammation and cancer. J. Intern. Med. 2013, 274, 215–226. [Google Scholar] [CrossRef]
- Yuan, X.; Berg, N.; Lee, J.W.; Le, T.T.; Neudecker, V.; Jing, N.; Eltzschig, H. MicroRNA miR-223 as regulator of innate immunity. J. Leukoc. Biol. 2018, 104, 515–524. [Google Scholar] [CrossRef]
- Krichevsky, A.M.; Gabriely, G. miR-21: A small multi-faceted RNA. J. Cell. Mol. Med. 2009, 13, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Trobaugh, D.W.; Klimstra, W.B. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med. 2017, 23, 80–93. [Google Scholar] [CrossRef]
- Maudet, C.; Mano, M.; Eulalio, A. MicroRNAs in the interaction between host and bacterial pathogens. FEBS Lett. 2014, 588, 4140–4147. [Google Scholar] [CrossRef] [Green Version]
- Aquino-Jarquin, G. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research. Cancer Res. 2017, 77, 6812–6817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, L.; Hua, X.; Tang, H.; Chen, R.; Yang, T.; Das, S.; Xiao, J. CRISPR/Cas9-Mediated miR-29b Editing as a Treatment of Different Types of Muscle Atrophy in Mice. Mol. Ther. 2020, 28, 1359–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Song, Y.; Shi, X.; Liu, J.; Xiong, S.; Chen, W.; Fu, Q.; Huang, Z.; Gu, N.; Zhang, R. The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res. 2018, 28, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Yi, B.; Ma, R.; Zhang, X.; Zhao, H.; Xi, Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shafer, M.E.R. Cross-Species Analysis of Single-Cell Transcriptomic Data. Front. Cell Dev. Biol. 2019, 175. [Google Scholar] [CrossRef] [Green Version]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Hannon, G.J. RNA interference. Nature 2002, 418, 244–251. [Google Scholar] [CrossRef]
- Vilne, B.; Meistere, I.; Grantiņa-Ieviņa, L.; Ķibilds, J. Machine Learning Approaches for Epidemiological Investigations of Food-Borne Disease Outbreaks. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Cui, C.; Gao, L.; Cui, Q. miES: Predicting the essentiality of miRNAs with machine learning and sequence features. Bioinformatics 2019, 35, 1053–1054. [Google Scholar] [CrossRef]
Species | Precursor miRNA | Mature miRNA | Number of Studies Related to miRNA |
---|---|---|---|
Cattle | 1064 | 1025 | 870 |
Sheep | 106 | 153 | 176 |
Goat | 267 | 436 | 170 |
Pig | 408 | 457 | 798 |
Chicken | 882 | 1232 | 621 |
Diseases | Pathogens | Phenotype or Tissue | Changed or Potential miRNA Biomarkers | References |
---|---|---|---|---|
Mastitis | Streptococcus. uberis | BMEC 2 | miR-200c, miR-210, miR-193a, miR-29b-2, miR-130a, miR-98, let-7b, miR-24-2, miR-128-2, let-7d, miR-128-1, let-7e, miR-185, miR-652, miR-494, miR-2342, miR-29c, miR-29e, miR-29b-2, miR-100, miR-130 | [56] |
BMEC | miR-181a, miR-16 and miR-31 | [57] | ||
Milk | miR-27b, miR-152, miR-194, miR-200b, miR-222, miR-379 and miR-18397 | [58] | ||
Blood | miR-25, miR30e-5p, miR-342, miR-191, miR-399b, miR-451 and miR-486 | [59] | ||
Staphylococcus aureus | BMEC | miR-2339, miR-21-3p, miR-423-5p, miR-499, miR-92a, miR-193a-3p, miR-23a, miR-99b, miR-21-3p, miR-193a-3p, miR-365-3p, miR-30c, and miR-30b-5p | [60] | |
Escherichia coli | BMEC | miR-184, miR-24-3p, miR-148, miR-486, and let-7a-5p | [60] | |
Escherichia coli | BMEC | miR-223, miR-16, miR-136, miR-136, miR-3660, miR-335 and miR-378 | [61] | |
Escherichiacoli and Staphylococcus aureus | BMEC | miR-144, miR-451 and miR-7863 | [62] | |
Streptococcus agalactiae | Milk | miR-21, miR-146a, miR-155, miR-222, and miR-383 | [63] | |
CMT 1 | Milk | let-7i, miR-21, miR-27, miR-99b, miR-146, miR-147, miR-155 and miR-223 | [63] | |
Bovine tuberculosis | Mycobacterium bovis | Lung | bta-miR-142-5p, bta-miR-146a and bta-miR-423-3p | [64] |
Johne’s disease | Mycobacterium avium subsp. paratuberculosis | Blood | mir-19b, mir-19b-2, mir-1271, mir-100, mir-301a, mir-32, mir-6517 and mir-7857 | [65] |
Ileum | miR-146 b, miR-196 b, miR-2483–5p, miR-133b, miR-1247-5p, miR-184, miR-202, miR-105a, novel-53, miR-433, miR-2400, miR-137, miR-424–3p and miR-138 | [66] | ||
Serum | miR-1976, miR-873-3p, miR-520f-3p, and miR-126-3p | [67] | ||
Faeces | miR-223, miR-19b, miR-27b, miR-30d, miR-24 and miR-16 | [68] | ||
Diarrhea | Bovine viral diarrhea virus | Serum | miR-423-5p and miR-151-3p | [69] |
Foot and Mouth disease | Foot and Mouth disease virus | Serum | miR-17-5p, miR-31 and miR-1281 | [70] |
Disease | Pathogens | Tissues/Cells | MIRNAs | References |
---|---|---|---|---|
Porcine reproductive and respiratory syndrome | Porcine reproductive and respiratory syndrome virus | Porcine alveolar macrophages | miR-30a-3p, miR-132, miR-27b, miR-29b, miR-146a and miR-9-2 | [97] |
Blood monocytes and porcine alveolar macrophages | miR-181 | [98] | ||
miR-125b | [99] | |||
miR-23, miR-378, and miR-505 | [100] | |||
MARC-145 cell | miR-145, miR-127 | [101] | ||
Lung | miR-183, miR-219, miR-28-3p and miR-143-3p | [102] | ||
Lung | miR-26 | [103] | ||
Lung | miRNA-30c | [104] | ||
Lung | miR-22 | [105] | ||
Lung | miR-373 | [106] | ||
Alveolar macrophages | miR-140, miR-92b, miR-545, miR-1306, miR-374b and miR-199b | [107] | ||
Alveolar macrophages | miR-10a-5p | [108] | ||
Blood | miR-125b, miR-145-5p | [109] | ||
Swine influenza infection | Influenza A virus | In silico | miR-124a, miR-145 | [110] |
Influenza A virus subtype H1N2 | miRNAs miR-15a, miR-21, miR-146, miR-206, miR-223 and miR-451 | [111] | ||
Multiple diseases | Salmonella species | Whole blood | miR-155 | [112] |
Intestines | miR-29a | [113] | ||
Lawsonia intracellularis | miR-486, miR-500, miR-127, miR-215, miR-194b-5p and miR-122 | [114] | ||
Escherichia coli F18 | miR-143, let-7f, miR-30e, miR-148a, miR-148b, miR-181a, miR-192, miR-27b, miR-15b, miR-21, miR-215 and miR-152 | [115] | ||
Duodenum | miR-196b, miR-499-5p and miR-218-3p | [116] | ||
Trichuris suis. | Serum | let-7d-3p | [117] | |
Actinobacillus pleuropneumoniae | Lung | miR-664-5p, miR-451 and miR-15a | [118] | |
Porcine cytomegalovirus | Macrophages | miR101, miR-7, miR-128, miR155-5p, miR-196-5p, miR-18a, miR-19b, and miR-24-3p | [119] | |
African swine fever virus | Spleen and submandibular lymph node | miR-126-5p, miR-92c, miR-92a, miR-30e-5p miR-500a-5p, miR-125b, miR-451 and miR-125a | [120] | |
Influenza A virus | Lung | miR-15a, miR-18a, miR-21, miR-29b, and miR-590-3p | [121] |
Disease | Pathogen | Tissue | Changed or Potential miRNA Biomarkers | References |
---|---|---|---|---|
Marek’s Disease | Gallid herpesvirus 2 | Spleen and liver | miR-221, miR−140, miR−199, miR-181a, miR−146b, miR−146c and miR−26a | [133] |
Spleen | miR-15, miR-456 and let-7i | [134] | ||
Spleen | miR-21 | [133] | ||
Spleen | miR-26a | [135] | ||
Spleen and liver | miR-103-3p | [136] | ||
Spleen and liver | miR-219b | [137] | ||
Marek’s disease virus | Bursa samples | miR-30a, miR-1662, miR-9-1, miR-9-2, miR-499, miR-193b and miR-1684a | [138] | |
Avian Leukosis | Avian leukosis virus | Liver | miR-221, miR-222, miR-1456, miR-1704, miR-1777, miR-1790, miR-2127, let-7b, let-7i, miR-125b, miR-375 and miR-458 | [139] |
Liver | miR-375 | [140] | ||
Liver | miR-221, miR-193a, miR-193b and miR-125b | [141] | ||
Liver | miR-221, miR-222, | [142] | ||
Liver | miR-23b | [143] | ||
Liver | mir-34b-5p | [144] | ||
Liver | let-7b and let-7i | [145] | ||
Chicken embryo fibroblasts | miR-184-3p, miR-146a-3p, miR-146a-5p, miR-3538 and miR-155, | [146] | ||
Bursal disease | Bursal disease virus | DF-1 cells | miR-9 | [147] |
DF-1 cells | miR-2127 | [148] | ||
DF-1 cells | miR-130b | [149] | ||
Avian influenza | Avian influenza viruses | Lung and trachea | miR-146, miR-15, and miR-21 | [150] |
Lung | miR-34a, miR-122–1, miR-122–2, miR-146a, miR-155, miR-206, miR-1719, miR-1594, miR-1599 and miR-451 | [151] | ||
Embryo fibroblasts | miR-146c, miR-181a, miR-181b, miR-30b, miR-30c, miR-30e, miR-455, miR-1599 and miR-1416 | [152] | ||
Chronic respiratory diseases | Mycoplasma gallisepticum | Lung | miR-8 family, miR-499 family and miR-17 family | [153] |
Cell (DF-1) | miR-99a | [154] | ||
Cell (DF-1) | miR-101-3p | [155] | ||
Chicken embryonic lungs and DF-1 cells, | miR-19a | [156] |
Species | Disease | Pathogen | Tissue | miRNA | References |
---|---|---|---|---|---|
Sheep | Cystic echinococcosis | Echinococcus granulosus | Intestine | miR-21-3p, miR-542-5p, miR-671, miR-134-5p, miR-26b and miR-27a | [189] |
Sheep and goat | Enzootic nasal adenocarcinoma | Enzootic nasal tumor virus | Tumor and para-carcinoma nasal | miR-449b-3p, miR-449a-3p, miR-133a-3p, miR-449c, miR-133b, miR-9-5p,mi miR-148a-3p, miR-296-3p, miR-873-3p miR-331-3p | [190] |
Sheep | Bluetongue virus infection | Bluetongue virus | Testis | let-7d, let-7f, miR-106b, miR-10a, miR-10b, miR-136, miR-148a, miR-17-5p, miR-191, miR-194, miR-29a, miR-29b, miR-30a-3p, miR-30b, miR-362, miR-369-3p, miR-369-5p, miR-379-5p, miR-3958-3p, miR-409-3p, miR-412-3p, miR-432, miR-493-5p, miR-541-5p and miR-758-3p | [191] |
Sheep | Peste des petits ruminants | Peste des petits ruminants virus | Spleen and lung | miR-21-3p, miR-1246, miR-27a-5p, miR-760-3p, miR-320a and miR-363 | [192] |
Sheep | Prion diseases | Prion virus | Plasma | miR-342-3p, let-7b and miR-21-5p | [193] |
Sheep | Peste des petits ruminant disease | Peste des petits ruminants virus | Peripheral blood lymphocyte | miR-150, miR-370-3p and miR-411b-3p | [194] |
Sheep | Lung infection | Small Ruminant Lentiviruses | Lung | miR-21, miR-148a, let-7f, let-7b, miR-99a, and miR-125b | [195] |
Goat | Peste des petits ruminants virus infection | Peste des petits ruminants virus | Peripheral blood mononuclear cells | miR-204-3p, miR-338-3p, miR-30b-3p, miR-199a-5p, miR-199a-3p and miR-1 | [196] |
Goat | Peste des petits ruminants virus infection | Peste des petits ruminants virus | Peripheral blood mononuclear cells | miR-218 and miR-1 | [197,198] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, D.N.; Dudemaine, P.-L.; Mathur, M.; Suravajhala, P.; Zhao, X.; Ibeagha-Awemu, E.M. miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int. J. Mol. Sci. 2021, 22, 3080. https://doi.org/10.3390/ijms22063080
Do DN, Dudemaine P-L, Mathur M, Suravajhala P, Zhao X, Ibeagha-Awemu EM. miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. International Journal of Molecular Sciences. 2021; 22(6):3080. https://doi.org/10.3390/ijms22063080
Chicago/Turabian StyleDo, Duy N., Pier-Luc Dudemaine, Manisha Mathur, Prashanth Suravajhala, Xin Zhao, and Eveline M. Ibeagha-Awemu. 2021. "miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies" International Journal of Molecular Sciences 22, no. 6: 3080. https://doi.org/10.3390/ijms22063080
APA StyleDo, D. N., Dudemaine, P. -L., Mathur, M., Suravajhala, P., Zhao, X., & Ibeagha-Awemu, E. M. (2021). miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. International Journal of Molecular Sciences, 22(6), 3080. https://doi.org/10.3390/ijms22063080