Multi–Omics Analysis of Key microRNA–mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Difference and Small RNA Deep Sequencing Data from CON–G and HFD–G
2.2. Identification and Screening of Differentially Expressed miRNAs
2.3. Target Gene Prediction, Function Enrichment Analysis
2.4. Transcriptome Analysis
2.5. Identification and Functional Analysis of Differentially Expressed Proteins (DEPs)
2.6. Integrated Analysis of DEGs and DEPs
2.7. Network Analysis of DEMs, DEGs, and DEPs
3. Discussion
4. Materials and Methods
4.1. Construction of the Obesity Model with Young Rabbits
4.2. Total RNA Extraction and Small RNA Sequencing
4.3. Transcriptome. Sequencing (RNA-seq)
4.4. Protein Isolation, Enzymolysis, and TMT Labeling
4.5. LC-MS/MS Analysis
4.6. Database Search and Protein Identification and Quantification
4.7. GO and KEGG Enrichment Function Analysis of Target Genes, DEGs, and DEPs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Song, W.; Owusu-Ansah, E.; Hu, Y.; Cheng, D.; Ni, X.; Zirin, J.; Perrimon, N. Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proc. Natl. Acad. Sci. USA 2017, 114, 8596–8601. [Google Scholar] [CrossRef] [Green Version]
- Santiprabhob, J.; Chokephaibulkit, K.; Khantee, P.; Maleesatharn, A.; Phonrat, B.; Phongsamart, W.; Lapphra, K.; Wittawatmongkol, O.; Rungmaitree, S.; Tanchaweng, S.; et al. Adipocytokine dysregulation, abnormal glucose metabolism, and lipodystrophy in HIV-infected adolescents receiving protease inhibitors. Cytokine 2020, 136, 155145. [Google Scholar] [CrossRef]
- Xu, Z.; Fu, T.; Guo, Q.; Sun, W.; Gan, Z. Mitochondrial quality orchestrates muscle-adipose dialog to alleviate dietary obesity. Pharmacol. Res. 2019, 141, 176–180. [Google Scholar] [CrossRef]
- Li, F.; Periasamy, M. Skeletal muscle inefficiency protects against obesity. Nat. Metab. 2019, 1, 849–850. [Google Scholar] [CrossRef]
- Lozano-Velasco, E.; Galiano-Torres, J.; Jodar-Garcia, A.; Aranega, A.E.; Franco, D. miR-27 and miR-125 Distinctly Regulate Muscle-Enriched Transcription Factors in Cardiac and Skeletal Myocytes. Biomed. Res. Int. 2015, 2015, 391306. [Google Scholar] [CrossRef] [PubMed]
- Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016, 410, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Q.; Chamba, Y.; Zhang, B.; Shang, P.; Zhang, H.; Wu, C. Identification of Genes Related to Growth and Lipid Deposition from Transcriptome Profiles of Pig Muscle Tissue. PLoS ONE 2015, 10, e0141138. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Z.; Sun, J.J.; Zhang, L.Z.; Li, C.J.; Womack, J.E.; Li, Z.J.; Lan, X.Y.; Lei, C.Z.; Zhang, C.L.; Zhao, X.; et al. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Sci. Rep. 2014, 4, 6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, Y.; Jin, W.; Fu, S.; Li, D.; Zhang, Y.; Sun, G.; Jiang, R.; Han, R.; Li, Z.; et al. Analyses of MicroRNA and mRNA Expression Profiles Reveal the Crucial Interaction Networks and Pathways for Regulation of Chicken Breast Muscle Development. Front. Genet. 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Park, Y.K.; Lee, K.P.; Lee, S.M.; Kang, T.W.; Kim, H.J.; Dho, S.H.; Kim, S.Y.; Kwon, K.S. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging 2014, 6, 524–544. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Y.L. MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis. Curr. Protein Pept. Sci. 2017, 18, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Li, Y.; Wang, X.Y.; Zhang, D.; Zhang, H.; Wu, Q.; He, Y.Q.; Wang, J.Y.; Zhang, L.; Xia, H.; et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013, 56, 2275–2285. [Google Scholar] [CrossRef]
- Aoi, W.; Naito, Y.; Mizushima, K.; Takanami, Y.; Kawai, Y.; Ichikawa, H.; Yoshikawa, T. The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in response to physical activity. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E799–E806. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, P.; Ling, H.; Xu, Z.; Yi, B.; Zhu, S. MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells. Hum. Cell 2018, 31, 282–291. [Google Scholar] [CrossRef]
- Zhang, W.R.; Zhang, H.N.; Wang, Y.M.; Dai, Y.; Liu, X.F.; Li, X.; Ding, X.B.; Guo, H. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5. In Vitro Cell Dev. Biol. Anim. 2017, 53, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, R.; Liu, T.; Wei, Y.; Li, S.; Yan, Y. bta-miR-378 promote the differentiation of bovine skeletal muscle-derived satellite cells. Gene 2018, 668, 246–251. [Google Scholar] [CrossRef]
- Shao, J.H.; Wang, J.; Li, Y.H.; Elzo, M.A.; Tang, T.; Lai, T.F.; Ma, Y.; Gan, M.C.; Wang, L.; Jia, X.B.; et al. Growth, behavioural, serum biochemical and morphological changes in female rabbits fed high–fat diet. J. Anim. Physiol. Anim. Nutr. 2021, 105, 345–353. [Google Scholar]
- Guimarães, V.H.D.; Lelis, D.F.; Oliveira, L.P.; Borém, L.M.A.; Guimarães, F.A.D.; Farias, L.C.; de Paula, A.M.B.; Guimarães, A.L.S.; Santos, S.H.S. Comparative study of dietary fat: Lard and sugar as a better obesity and metabolic syndrome mice model. Arch. Physiol. Biochem. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Van Schothorst, E.M.; Bunschoten, A.; Schrauwen, P.; Mensink, R.P.; Keijer, J. Effects of a high-fat, low- versus high-glycemic index diet: Retardation of insulin resistance involves adipose tissue modulation. FASEB J. 2009, 23, 1092–1101. [Google Scholar] [CrossRef]
- van der Kolk, B.W.; Goossens, G.H.; Jocken, J.W.; Blaak, E.E. Altered skeletal muscle fatty acid handling is associated with the degree of insulin resistance in overweight and obese humans. Diabetologia 2016, 59, 2686–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsumata, M. Promotion of intramuscular fat accumulation in porcine muscle by nutritional regulation. Anim. Sci. J. 2011, 82, 17–25. [Google Scholar] [CrossRef]
- Sun, J.; Huang, T.; Qi, Z.; You, S.; Dong, J.; Zhang, C.; Qin, L.; Zhou, Y.; Ding, S. Early Mitochondrial Adaptations in Skeletal Muscle to Obesity and Obesity Resistance Differentially Regulated by High–fat diet. Exp. Clin. Endocrinol. Diabetes 2017, 125, 538–546. [Google Scholar] [CrossRef]
- Quah, S.; Holland, P.W. The Hox cluster microRNA miR-615: A case study of intronic microRNA evolution. EvoDevo 2015, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuperus, J.T.; Fahlgren, N.; Carrington, J.C. Evolution and functional diversification of MIRNA genes. Plant Cell 2011, 23, 431–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertel, J.; Bartschat, S.; Wintsche, A.; Otto, C.; Stadler, P.F. Evolution of the let-7 microRNA family. RNA Biol. 2012, 9, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Yuva-Aydemir, Y.; Simkin, A.; Gascon, E.; Gao, F.B. MicroRNA-9: Functional evolution of a conserved small regulatory RNA. RNA Biol. 2011, 8, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLoughlin, H.S.; Wan, J.; Spengler, R.M.; Xing, Y.; Davidson, B.L. Human-specific microRNA regulation of FOXO1: Implications for microRNA recognition element evolution. Hum. Mol. Genet. 2014, 23, 2593–2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Luan, C.; Guo, L.; Zhang, B.; Liu, Y. Low expression of microRNA-328 can predict sepsis and alleviate sepsis-induced cardiac dysfunction and inflammatory response. Braz. J. Med. Biol. Res. 2020, 53, e9501. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Wang, H.; Ji, Q.; Ji, W.; Luo, X.; Wang, J.; Chai, Z.; Xin, J.; Cai, X.; Wu, Z.; et al. Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes Genom. 2020, 42, 1347–1359. [Google Scholar] [CrossRef] [PubMed]
- Sjögren, R.J.; Egan, B.; Katayama, M.; Zierath, J.R.; Krook, A. Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells. Physiol Genomics. 2015, 47, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wu, F.; Zhou, J.; Yan, L.; Jurczak, M.J.; Lee, H.Y.; Yang, L.; Mueller, M.; Zhou, X.B.; Dandolo, L.; et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014, 42, 13799–13811. [Google Scholar] [CrossRef]
- Zhang, B.W.; Cai, H.F.; Wei, X.F.; Sun, J.J.; Lan, X.Y.; Lei, C.Z.; Lin, F.P.; Qi, X.L.; Plath, M.; Chen, H. miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL. Int. J. Mol. Sci. 2016, 17, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guess, M.G.; Barthel, K.K.; Harrison, B.C.; Leinwand, L.A. miR-30 family microRNAs regulate myogenic differentiation and provide negative feedback on the microRNA pathway. PLoS ONE 2015, 10, e0118229. [Google Scholar] [CrossRef]
- Wang, X.Y.; Chen, X.L.; Huang, Z.Q.; Chen, D.W.; Yu, B.; He, J.; Luo, J.Q.; Luo, Y.H.; Chen, H.; Zheng, P.; et al. MicroRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression. Animal 2017, 11, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yang, J.; Jiang, R.; Yang, Z.; Li, H.; Huang, Y.; Lan, X.; Lei, C.; Ma, Y.; Qi, X.; et al. miR-148a-3p regulates proliferation and apoptosis of bovine muscle cells by targeting KLF6. J. Cell. Physiol. 2019, 234, 15742–15750. [Google Scholar] [CrossRef] [PubMed]
- Kern, F.; Ludwig, N.; Backes, C.; Maldener, E.; Fehlmann, T.; Suleymanov, A.; Meese, E.; Hecksteden, A.; Keller, A.; Meyer, T. Systematic Assessment of Blood-Borne MicroRNAs Highlights Molecular Profiles of Endurance Sport and Carbohydrate Uptake. Cells 2019, 8, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, L.N.; Costford, S.R.; Lee, Y.S.; Jensen, T.E.; Bilan, P.J.; Oberbach, A.; Blüher, M.; Olefsky, J.M.; Sams, A.; Klip, A. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity 2014, 22, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Frisard, M.I.; McMillan, R.P.; Marchand, J.; Wahlberg, K.A.; Wu, Y.; Voelker, K.A.; Heilbronn, L.; Haynie, K.; Muoio, B.; Li, L.; et al. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E988–E998. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Weisshaar, N.; Hotz-Wagenblatt, A.; Madi, A.; Ma, S.; Mieg, A.; Hering, M.; Mohr, K.; Schlimbach, T.; Borgers, H.; et al. Skeletal muscle antagonizes antiviral CD8+ T cell exhaustion. Sci. Adv. 2020, 6, eaba3458. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.T.; Cheung, K.K.; Au, S.W.N.; Yeung, S.S.; Yeung, E.W. Overexpression of Mechano-Growth Factor Modulates Inflammatory Cytokine Expression and Macrophage Resolution in Skeletal Muscle Injury. Front. Physiol. 2018, 9, 999. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Hong, J.M.; Lee, J.H.; Shin, H.Y.; Kim, S.M.; Park, K.D.; Lee, J.H.; Choi, Y.C. Comparative transcriptome analysis of skeletal muscle in ADSSL1 myopathy. Neuromuscul. Disord. 2019, 29, 274–281. [Google Scholar] [CrossRef]
- Onogi, Y.; Wada, T.; Okekawa, A.; Matsuzawa, T.; Watanabe, E.; Ikeda, K.; Nakano, M.; Kitada, M.; Koya, D.; Tsuneki, H.; et al. Pro-inflammatory macrophages coupled with glycolysis remodel adipose vasculature by producing platelet-derived growth factor-B in obesity. Sci. Rep. 2020, 10, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujar, M.K.; Vastrad, B.; Vastrad, C. Integrative Analyses of Genes Associated with Subcutaneous Insulin Resistance. Biomolecules 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Amaral, R.J.F.C.; Cavanagh, B.; O’Brien, F.J.; Kearney, C.J. Platelet-derived growth factor stabilises vascularisation in collagen-glycosaminoglycan scaffolds in vitro. J. Tissue Eng. Regen. Med. 2019, 13, 261–273. [Google Scholar] [CrossRef]
- Severin, I.C.; Soares, A.; Hantson, J.; Teixeira, M.; Sachs, D.; Valognes, D.; Scheer, A.; Schwarz, M.K.; Wells, T.N.; Proudfoot, A.E.; et al. Glycosaminoglycan analogs as a novel anti-inflammatory strategy. Front. Immunol. 2012, 3, 293. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.M.; Boot, R.G.; van Eijk, M.; Groener, J.; Bijl, N.; Lombardo, E.; Bietrix, F.M.; Dekker, N.; Groen, A.K.; Ottenhoff, R.; et al. Glycosphingolipids and insulin resistance. Adv. Exp. Med. Biol. 2011, 721, 99–119. [Google Scholar] [PubMed]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef]
- Song, Y.; Hou, M.; Li, Z.; Luo, C.; Ou, J.S.; Yu, H.; Yan, J.; Lu, L. TLR4/NF-κB/Ceramide signaling contributes to Ox-LDL-induced calcification of human vascular smooth muscle cells. Eur. J. Pharmacol. 2017, 794, 45–51. [Google Scholar] [CrossRef]
- Turpin-Nolan, S.M.; Hammerschmidt, P.; Chen, W.; Jais, A.; Timper, K.; Awazawa, M.; Brodesser, S.; Brüning, J.C. CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance. Cell Rep. 2019, 26, 1–10.e7. [Google Scholar] [CrossRef] [Green Version]
- Brunetta, H.S.; de Paula, G.C.; de Oliveira, J.; Martins, E.L.; Dos Santos, G.J.; Galina, A.; Rafacho, A.; de Bem, A.F.; Nunes, E.A. Decrement in resting and insulin-stimulated soleus muscle mitochondrial respiration is an early event in diet-induced obesity in mice. Exp. Physiol. 2019, 104, 306–321. [Google Scholar] [CrossRef]
- Queralt-Martín, M.; Bergdoll, L.; Teijido, O.; Munshi, N.; Jacobs, D.; Kuszak, A.J.; Protchenko, O.; Reina, S.; Magrì, A.; De Pinto, V.; et al. A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology. J. Gen. Physiol. 2020, 152, e201912501. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Gwak, J.; Hwang, S.; Yang, S.; Jeong, S.M. Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism. Oncogene 2019, 38, 4729–4738. [Google Scholar] [CrossRef]
- Ruiz-Laguna, J.; Abril, N.; Prieto-Alamo, M.J.; López-Barea, J.; Pueyo, C. Tissue, species, and environmental differences in absolute quantities of murine mRNAs coding for alpha, mu, omega, pi, and theta glutathione S-transferases. Gene Expr. 2005, 12, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.; Bilkei-Gorzo, A.; Drews, E.; Otte, D.M.; Diaz-Lacava, A.; Varadarajulu, J.; Turck, C.W.; Wienker, T.F.; Zimmer, A. Analysis of quantitative trait loci in mice suggests a role of Enoph1 in stress reactivity. J. Neurochem. 2014, 128, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ji, H.; Guo, M.; Qin, Q. Isolation and characterization of a thioredoxin domain-containing protein 12 from orange-spotted grouper, Epinephelus coioides. Fish. Shellfish Immunol. 2012, 33, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Skakic, A.; Djordjevic, M.; Sarajlija, A.; Klaassen, K.; Tosic, N.; Kecman, B.; Ugrin, M.; Spasovski, V.; Pavlovic, S.; Stojiljkovic, M. Genetic characterization of GSD I in Serbian population revealed unexpectedly high incidence of GSD Ib and 3 novel SLC37A4 variants. Clin. Genet. 2018, 93, 350–355. [Google Scholar] [CrossRef]
- Wang, J.; Cui, H.; Lee, N.C.; Hwu, W.L.; Chien, Y.H.; Craigen, W.J.; Wong, L.J.; Zhang, V.W. Clinical application of massively parallel sequencing in the molecular diagnosis of glycogen storage diseases of genetically heterogeneous origin. Genet. Med. 2013, 15, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Morone, S.; Augeri, S.; Cuccioloni, M.; Mozzicafreddo, M.; Angeletti, M.; Lo Buono, N.; Giacomino, A.; Ortolan, E.; Funaro, A. Binding of CD157 protein to fibronectin regulates cell adhesion and spreading. J. Biol. Chem. 2014, 289, 15588–15601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; et al. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phi, J.H.; Kim, S.K. Clinical Pearls and Advances in Molecular Researches of Epilepsy-Associated Tumors. J. Korean Neurosurg. Soc. 2019, 62, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Ju, I.G.; Huh, E.; Kim, N.; Lee, S.; Choi, J.G.; Hong, J.; Oh, M.S. Artemisiae Iwayomogii Herba inhibits lipopolysaccharide-induced neuroinflammation by regulating NF-κB and MAPK signaling pathways. Phytomedicine 2021, 84, 153501. [Google Scholar] [CrossRef] [PubMed]
- Ambati, S.; Yu, P.; McKinney, E.C.; Kandasamy, M.K.; Hartzell, D.; Baile, C.A.; Meagher, R.B. Adipocyte nuclei captured from VAT and SAT. BMC Obes. 2016, 3, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Clean Reads | Clean Bases | Q20(%) 1 | GC(%) 2 |
---|---|---|---|---|
CON–M1 | 10,342,003 | 228,333,247 | 99.85 | 46.81 |
CON–M2 | 10,354,071 | 230,699,706 | 99.58 | 45.86 |
CON–M3 | 10,268,517 | 226,301,819 | 99.6 | 45.47 |
HFD–M1 | 10,097,828 | 223,290,399 | 99.57 | 46.89 |
HFD–M2 | 10,314,308 | 228,316,610 | 99.85 | 46.54 |
HFD–M3 | 10,293,639 | 228,541,211 | 99.57 | 45.57 |
Gene ID | CON-G Mean | HFD-G Mean | log2FC | p-Value | Regulation |
---|---|---|---|---|---|
miR-499-5p | 220.6667 | 19,848 | 6.435477 | 7.98 × 10−8 | Up |
miR-30e-5p | 708 | 12,837.67 | 4.043857 | 0.000164 | Up |
miR-363-3p | 248.6667 | 3624.333 | 3.755788 | 0.000396 | Up |
let-7i-3p | 10857.33 | 103,267.7 | 3.202507 | 0.001939 | Up |
miR-19b-3p | 26.66667 | 255 | 3.170493 | 0.002356 | Up |
miR-26c | 28,567 | 260,880.7 | 3.065703 | 0.002842 | Up |
miR-199a-5p | 1258.666667 | 20,851 | 3.857928946 | 0.000287665 | Up |
miR-148a-3p | 8216 | 55,153 | 2.715061 | 0.007331 | Up |
miR-30c-5p | 1221.667 | 6581.333 | 2.313511 | 0.020359 | Up |
miR-92a-3p | 464.6667 | 1771.333 | 2.019203 | 0.040922 | Up |
miR-30a-5p | 18,928 | 5391 | −1.94918 | 0.047754 | Down |
miR-30d-5p | 61,709.33 | 16,716 | −2.00517 | 0.042075 | Down |
miR-125b-3p | 22,741.33 | 5481.667 | −2.15275 | 0.029903 | Down |
miR-7 | 3289.667 | 652.6667 | −2.47901 | 0.013516 | Down |
miR-99a-3p | 129,929 | 23,586 | −2.50911 | 0.012485 | Down |
miR-3596 | 25,770.33 | 3702.667 | −2.82627 | 0.005459 | Down |
let-7f-2-3p | 22,724.67 | 3421 | −2.85288 | 0.005083 | Down |
miR-218b | 471.3333 | 65.33333 | −2.92167 | 0.004402 | Down |
miR-20a-2-3p | 360.3333 | 42.33333 | −3.09849 | 0.002779 | Down |
miR-133-3p | 182,602.7 | 18,092 | −3.29051 | 0.001512 | Down |
Gene ID | GO Function | KEGG Signaling Pathway | Transcribed Genes (log2FC) | Translated Proteins (log2FC) |
---|---|---|---|---|
CRYL1 | Primary metabolic process | Pentose and glucuronate interconversions (map00040) | −0.34786 | −0.2887 |
AQP4 | Transport | Bile secretion (map04976) | −0.41118 | 0.458027 |
VDAC3 | Intracellular | Cholesterol metabolism (map04979) | −0.4851 | −0.62335 |
BST1 | Hydrolase activity, acting on glycosyl bonds | Nicotinate and nicotinamide metabolism (map00760) | −0.17229 | −0.34353 |
APIP | intracellular | Cysteine and methionine metabolism (map00270) | −0.40076 | −0.46668 |
ENOPH1 | - | Cysteine and methionine metabolism (map00270) | −0.13566 | −0.30252 |
TXNDC12 | Regulation of biological quality | Glutathione metabolism (map00480) | 0.049503 | 0.349659 |
FLOT2 | - | Insulin signaling pathway (map04910) | 0.126643 | −0.26827 |
SLC37A4 | Transport | Carbohydrate digestion and absorption (map04973) | −0.33128 | −0.2698 |
GSTO1 | Intracellular | Glutathione metabolism (map00480) | −0.28975 | −0.26433 |
L2HGDH | - | Butanoate metabolism (map00650) | 0.17351 | −0.47531 |
GPT2 | Biosynthetic process | 2-Oxocarboxylic acid metabolism (map01210) | 0.208941 | −0.26321 |
Gene ID | Transcribed Genes (log2FC) | Translated Proteins (log2FC) | miRNA Regulation | Gene Description | Transcription Factor |
---|---|---|---|---|---|
MAP3K3 | 0.22279 | −0.35343 | let-7i-3p | Mitogen-activated protein kinase kinase kinase 3 | - |
MYH9 | 0.539348 | 0.143813 | miR-92a-3p,miR-363-3p | Myosin heavy chain 9 | - |
PARP12 | 0.74067 | - | let-7i-3p | Poly(ADP-ribose) polymerase family member 12 | - |
GPT2 | 0.208941 | -0.26321 | miR-30a-5p,miR-30c-5p | Glutamic--pyruvic transaminase 2 | - |
VDAC3 | −0.4851 | −0.62335 | miR-7-5p | Voltage dependent anion channel 3 | - |
NCAM1 | 0.593775 | - | miR-30d-5p,miR-30a-5p | Neural cell adhesion molecule 1 | - |
GCLC | 0.449528 | −0.16912 | miR-30a-5p | Glutamate-cysteine ligase catalytic subunit | - |
MYBL2 | 1.563326 | - | miR-30c-5p,miR-30a-5p,miR-30d-5p | MYB proto-oncogene like 2 | MYB |
STAT1 | 0.849922 | 0.078617 | miR-30c-5p | Signal transducer and activator of transcription 1 | STAT |
IKZF1 | 1.978475 | - | miR-30c-5p,miR-92a-3p | IKAROS family zinc finger 1 | zf-C2H2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Elzo, M.A.; Gan, M.; Tang, T.; Shao, J.; Lai, T.; Ma, Y.; Jia, X.; Lai, S. Multi–Omics Analysis of Key microRNA–mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits. Int. J. Mol. Sci. 2021, 22, 4204. https://doi.org/10.3390/ijms22084204
Li Y, Wang J, Elzo MA, Gan M, Tang T, Shao J, Lai T, Ma Y, Jia X, Lai S. Multi–Omics Analysis of Key microRNA–mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits. International Journal of Molecular Sciences. 2021; 22(8):4204. https://doi.org/10.3390/ijms22084204
Chicago/Turabian StyleLi, Yanhong, Jie Wang, Mauricio A. Elzo, Mingchuan Gan, Tao Tang, Jiahao Shao, Tianfu Lai, Yuan Ma, Xianbo Jia, and Songjia Lai. 2021. "Multi–Omics Analysis of Key microRNA–mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits" International Journal of Molecular Sciences 22, no. 8: 4204. https://doi.org/10.3390/ijms22084204
APA StyleLi, Y., Wang, J., Elzo, M. A., Gan, M., Tang, T., Shao, J., Lai, T., Ma, Y., Jia, X., & Lai, S. (2021). Multi–Omics Analysis of Key microRNA–mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits. International Journal of Molecular Sciences, 22(8), 4204. https://doi.org/10.3390/ijms22084204