Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men
Abstract
:1. Introduction
2. Results and Discussion
2.1. Subject Clinical Characteristics
2.2. Transcriptomic Profiling of Muscle Aging and Comparison with Other Databases
2.3. Transcriptomic Analysis of Muscle Healthy Aging in Men
2.4. Transcriptomic Analysis of Metabolic Syndrome in Old Man Muscle
2.5. Proteomic Profiling of Chronological Aging and Metabolic Syndrome in Man Muscle
2.6. Perturbations of the Myofilaments Networks during Aging with or without Metabolic Syndrome
2.7. Perturbations in Energy Metabolism during Aging with or without Metabolic Syndrome
2.7.1. Anaerobic Glycolysis
2.7.2. NADH/NAD+ Shuttle
2.7.3. Lipid Metabolism
2.8. Cytoprotection and Cytodetoxification in Old Muscle with or without Metabolic Syndrome
2.9. Proteostasis in Old Muscle with or without SX
2.10. Perturbations in Membrane Repair in the Old Skeletal Muscle
3. Materials and Methods
3.1. Subjects Characteristics
3.2. Sample Preparation
3.3. Microarray Hybridization and Transcriptomic Analysis
3.4. Two-Dimensional Gel Electrophoresis (2DGE)
3.5. Protein Identification by Mass Spectrometry
3.6. Immunoblotting
3.7. Other Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lexell, J.; Taylor, C.C.; Sjostrom, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15 to 83 year-old men. J. Neurol. Sci. 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Evans, W.J.; Lexell, J. Human Aging, Muscle Mass, and Fiber Type Composition. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 1995, 50, 11–16. [Google Scholar] [CrossRef]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R. Skeletal Muscle Strength as a Predictor of All-Cause Mortality in Healthy Men. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2002, 57, B359–B365. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Munoz, F.; Marchand, F.; Chapurlat, R.; Delmas, P.D. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: The prospective MINOS study. Am. J. Clin. Nutr. 2010, 91, 1227–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraibar, M.A.; Gueugneau, M.; Duguez, S.; Butler-Browne, G.; Béchet, D.; Friguet, B. Expression and modification proteomics during skeletal muscle ageing. Biogerontology 2013, 14, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the Metabolic Syndrome Among US Adults: Findings from the Third National Health and Nutrition Examination Survey. Obstet. Gynecol. Surv. 2002, 57, 576–577. [Google Scholar] [CrossRef]
- Lamberts, S.W.; van den Beld, A.W.; van der Lely, A.-J. The Endocrinology of Aging. Science 1997, 278, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Dalle, C.; Ostermann, A.I.; Konrad, T.; Coudy-Gandilhon, C.; Decourt, A.; Barthélémy, J.-C.; Roche, F.; Féasson, L.; Mazur, A.; Béchet, D.; et al. Muscle Loss Associated Changes of Oxylipin Signatures During Biological Aging: An Exploratory Study from the PROOF Cohort. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2018, 74, 608–615. [Google Scholar] [CrossRef]
- Cevenini, E.; Monti, D.; Franceschi, C. Inflamm-ageing. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 14–20. [Google Scholar] [CrossRef]
- Campbell, M.J.; McComas, A.J.; Petito, F. Physiological changes in ageing muscles. J. Neurol. Neurosurg. Psychiatry 1973, 36, 174–182. [Google Scholar] [CrossRef] [Green Version]
- McNeil, C.J.; Doherty, T.J.; Stashuk, D.W.; Rice, C.L. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 2005, 31, 461–467. [Google Scholar] [CrossRef]
- Conboy, I.M.; Conboy, M.J.; Wagers, A.J.; Girma, E.R.; Weissman, I.L.; Rando, T.A. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nat. Cell Biol. 2005, 433, 760–764. [Google Scholar] [CrossRef]
- Bencze, M.; Negroni, E.; Vallese, D.; Yacoub-Youssef, H.; Chaouch, S.; Wolff, A.; Aamiri, A.; Di Santo, J.P.; Bénédicte, C.; Gillian, B.; et al. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation. Mol. Ther. 2012, 20, 2168–2179. [Google Scholar] [CrossRef] [Green Version]
- Combaret, L.; Dardevet, D.; Béchet, D.; Taillandier, D.; Mosoni, L.; Attaix, D. Skeletal muscle proteolysis in aging. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Sayer, A.A.; Robinson, S.M.; Patel, H.P.; Shavlakadze, T.; Cooper, C.; Grounds, M.D. New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing 2013, 42, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.L. Muscle fibre type adaptation in the elderly human muscle. Scand. J. Med. Sci. Sports 2003, 13, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Gueugneau, M.; Coudy-Gandilhon, C.; Théron, L.; Meunier, B.; Barboiron, C.; Combaret, L.; Taillandier, D.; Polge, C.; Attaix, D.; Picard, B.; et al. Skeletal Muscle Lipid Content and Oxidative Activity in Relation to Muscle Fiber Type in Aging and Metabolic Syndrome. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2014, 70, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Listrat, A.; Meunier, B.; Gueugneau, M.; Coudy-Gandilhon, C.; Combaret, L.; Taillandier, D.; Polge, C.; Attaix, D.; Lethias, C.; et al. Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell 2014, 13, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Purslow, P.P. The structure and functional significance of variations in the connective tissue within muscle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 947–966. [Google Scholar] [CrossRef]
- Gao, Y.; Kostrominova, T.Y.; Faulkner, J.A.; Wineman, A.S. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J. Biomech. 2008, 41, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, K.S.; Palmer, M.L.; Van Der Meulen, J.H.; Renoux, A.; Kostrominova, T.Y.; Michele, D.E.; Faulkner, J.A. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 2011, 589, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Gueugneau, M.; Coudy-Gandilhon, C.; Meunier, B.; Combaret, L.; Taillandier, D.; Polge, C.; Attaix, D.; Roche, F.; Féasson, L.; Barthélémy, J.-C.; et al. Lower skeletal muscle capillarization in hypertensive elderly men. Exp. Gerontol. 2016, 76, 80–88. [Google Scholar] [CrossRef]
- Bigler, M.; Koutsantonis, D.; Odriozola, A.; Halm, S.; Tschanz, S.A.; Zakrzewicz, A.; Weichert, A.; Baum, O. Morphometry of skeletal muscle capillaries: The relationship between capillary ultrastructure and ageing in humans. Acta Physiol. 2016, 218, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenenschimke, J.M.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Proc. Natl. Acad. Sci. USA 2005, 102, 5618–5623. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.M.; Johannsen, D.L.; Ravussin, E. Skeletal Muscle Mitochondria and Aging: A Review. J. Aging Res. 2012, 2012, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hepple, R.T. Mitochondrial Involvement and Impact in Aging Skeletal Muscle. Front. Aging Neurosci. 2014, 6, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, J.D.; Devries, M.C.; Safdar, A.; Hamadeh, M.J.; Tarnopolsky, M.A. The Effect of Aging on Human Skeletal Muscle Mitochondrial and Intramyocellular Lipid Ultrastructure. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2009, 65, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, M.J.; Hoy, A.J. Lipid metabolism in skeletal muscle: Generation of adaptive and maladaptive intracellular signals for cellular function. Am. J. Physiol. Metab. 2012, 302, E1315–E1328. [Google Scholar] [CrossRef] [Green Version]
- Zahn, J.M.; Sonu, R.; Vogel, H.; Crane, E.; Mazan-Mamczarz, K.; Rabkin, R.; Davis, R.W.; Becker, K.G.; Owen, A.B.; Kim, S.K.; et al. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet. 2006, 2, e115. [Google Scholar] [CrossRef]
- Raue, U.; Trappe, T.A.; Estrem, S.T.; Qian, H.-R.; Helvering, L.M.; Smith, R.C.; Trappe, S. Transcriptome signature of resistance exercise adaptations: Mixed muscle and fiber type specific profiles in young and old adults. J. Appl. Physiol. 2012, 112, 1625–1636. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.E.; Williams, J.P.; Gustafsson, T.; Bouchard, C.; Rankinen, T.; Knudsen, S.; Smith, K.; Timmons, J.A.; Atherton, P.J. Molecular networks of human muscle adaptation to exercise and age. PLoS Genet. 2013, 9, e1003389. [Google Scholar] [CrossRef]
- Su, J.; Ekman, C.; Oskolkov, N.; Lahti, L.; Ström, K.; Brazma, A.; Groop, L.; Rung, J.; Hansson, O. A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skelet. Muscle 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piec, I.; Listrat, A.; Alliot, J.; Chambon, C.; Taylor, R.G.; Bechet, D. Differential proteome analysis of aging in rat skeletal muscle. FASEB J. 2005, 19, 1143–1145. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, D.; Vasso, M.; Fania, C.; Moriggi, M.; Viganò, A.; Procacci, P.; Magnaghi, V.; Gelfi, C. Comparative proteomic profile of rat sciatic nerve and gastrocnemius muscle tissues in ageing by 2-D DIGE. Proteomics 2009, 9, 2004–2020. [Google Scholar] [CrossRef] [PubMed]
- Staunton, L.; Zweyer, M.; Swandulla, D.; Ohlendieck, K. Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle. Int. J. Mol. Med. 2012, 30, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Ibebunjo, C.; Chick, J.M.; Kendall, T.; Eash, J.K.; Li, C.; Zhang, Y.; Vickers, C.; Wu, Z.; Clarke, B.A.; Shi, J.; et al. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia. Mol. Cell. Biol. 2013, 33, 194–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelfi, C.; Viganò, A.; Ripamonti, M.; Pontoglio, A.; Begum, S.; Pellegrino, M.A.; Grassi, B.; Bottinelli, R.; Wait, R.; Cerretelli, P. The Human Muscle Proteome in Aging. J. Proteome Res. 2006, 5, 1344–1353. [Google Scholar] [CrossRef]
- Théron, L.; Gueugneau, M.; Coudy, C.; Viala, D.; Bijlsma, A.; Butler-Browne, G.; Maier, A.; Béchet, D.; Chambon, C. Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging. Mol. Cell. Proteom. 2014, 13, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Gueugneau, M.; Coudy-Gandilhon, C.; Gourbeyre, O.; Chambon, C.; Combaret, L.; Polge, C.; Taillandier, D.; Attaix, D.; Friguet, B.; Maier, A.B.; et al. Proteomics of muscle chronological ageing in post-menopausal women. BMC Genom. 2014, 15, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Barthélémy, J.-C.; Pichot, V.; Dauphinot, V.; Celle, S.; Laurent, B.; Garcin, A.; Maudoux, D.; Kerleroux, J.; Lacour, J.-R.; Kossovsky, M.; et al. Autonomic Nervous System Activity and Decline as Prognostic Indicators of Cardiovascular and Cerebrovascular Events: The ‘PROOF’ Study. Neuroepidemiology 2007, 29, 18–28. [Google Scholar] [CrossRef]
- Rigaud, A.S.; Forette, B. Hypertension in older adults. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2001, 56, M217–M225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melov, S.; Tarnopolsky, M.A.; Beckman, K.; Felkey, K.; Hubbard, A. Resistance Exercise Reverses Aging in Human Skeletal Muscle. PLoS ONE 2007, 2, e465. [Google Scholar] [CrossRef] [Green Version]
- de Magalhaes, J.P.; Curado, J.; Church, G.M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 2009, 25, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Mercken, E.M.; Crosby, S.D.; Lamming, D.W.; JeBailey, L.; Krzysikwalker, S.M.; Villareal, D.T.; Capri, M.; Franceschi, C.; Zhang, Y.; Becker, K.G.; et al. Calorie restriction in humans inhibits the PI 3 K/AKT pathway and induces a younger transcription profile. Aging Cell 2013, 12, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Sood, S.; Gallagher, I.J.; Lunnon, K.; Rullman, E.; Keohane, A.; Crossland, H.; Phillips, B.E.; Cederholm, T.; Jensen, T.G.; Van Loon, L.J.; et al. A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status. Genome Biol. 2015, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tacutu, R.; Craig, T.; Budovsky, A.; Wuttke, D.; Lehmann, G.; Taranukha, D.; Costa, J.; Fraifeld, V.E.; De Magalhães, J.P. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 2012, 41, D1027–D1033. [Google Scholar] [CrossRef]
- Khatri, P.; Sirota, M.; Butte, A.J. Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput. Biol. 2012, 8, e1002375. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Ebert, S.M.; Al-Zougbi, A.; Bodine, S.C.; Adams, C.M. Skeletal Muscle Atrophy: Discovery of Mechanisms and Potential Therapies. Physiology 2019, 34, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Stöckel, D.; Kehl, T.; Trampert, P.; Schneider, L.; Backes, C.; Ludwig, N.; Gerasch, A.; Kaufmann, M.; Gessler, M.; Graf, N.; et al. Multi-omics enrichment analysis using the GeneTrail2 web service. Bioinformatics 2016, 32, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- De Preter, K.; Barriot, R.; Speleman, F.; Vandesompele, J.; Moreau, Y. Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic Acids Res. 2008, 36, e43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donlon, T.A.; Morris, B.J.; Chen, R.; Masaki, K.H.; Allsopp, R.C.; Willcox, D.C.; Elliott, A.; Willcox, B.J. FOXO3 longevity interactome on chromosome 6. Aging Cell 2017, 16, 1016–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, R.; Cohen, J.A.; Pardo, S.; Basu, A.; Fischman, D.A. Identification of the A-band localization domain of myosin binding proteins C and H (MyBP-C, MyBP-H) in skeletal muscle. J. Cell Sci. 1999, 112 Pt 1, 69–79. [Google Scholar] [PubMed]
- Gomes, A.V.; Potter, J.D.; Szczesna-Cordary, D. The Role of Troponins in Muscle Contraction. IUBMB Life 2002, 54, 323–333. [Google Scholar] [CrossRef]
- Luther, P.K. The vertebrate muscle Z-disc: Sarcomere anchor for structure and signalling. J. Muscle Res. Cell Motil. 2009, 30, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Pappas, C.T.; Bhattacharya, N.; Cooper, J.A.; Gregorio, C.C. Nebulin Interacts with CapZ and Regulates Thin Filament Architecture within the Z-Disc. Mol. Biol. Cell 2008, 19, 1837–1847. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.B.; Joshi, M.; Savic, T.; Chen, Z.; Beggs, A.H. Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum. Mol. Genet. 2012, 21, 2341–2356. [Google Scholar] [CrossRef] [Green Version]
- Belgrano, A.; Rakicevic, L.; Mittempergher, L.; Campanaro, S.; Martinelli, V.C.; Mouly, V.; Valle, G.; Kojic, S.; Faulkner, G. Multi-Tasking Role of the Mechanosensing Protein Ankrd2 in the Signaling Network of Striated Muscle. PLoS ONE 2011, 6, e25519. [Google Scholar] [CrossRef] [Green Version]
- Frey, N.; Frank, D.; Lippl, S.; Kuhn, C.; Kögler, H.; Barrientos, T.; Rohr, C.; Will, R.; Müller, O.J.; Weiler, H.; et al. Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation. J. Clin. Investig. 2008, 118, 3598–3608. [Google Scholar] [CrossRef] [Green Version]
- Ohlendieck, K. Proteomic profiling of fast-to-slow muscle transitions during aging. Front. Physiol. 2011, 2, 105. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dash, R.K.; Kim, J.; Saidel, G.M.; Cabrera, M.E. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: In Silico studies. Am. J. Physiol. Physiol. 2009, 296, C25–C46. [Google Scholar] [CrossRef] [Green Version]
- Schantz, P.; Henriksson, J. Enzyme levels of the NADH shuttle systems: Measurements in isolated muscle fibres from humans of differing physical activity. Acta Physiol. Scand. 1987, 129, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Fischer, H.; Gustafsson, T.; Sundberg, C.J.; Norrbom, J.; Ekman, M.; Johansson, O.; Jansson, E. Fatty acid binding protein 4 in human skeletal muscle. Biochem. Biophys. Res. Commun. 2006, 346, 125–130. [Google Scholar] [CrossRef]
- Luiken, J.J.F.P.; Koonen, D.P.Y.; Coumans, W.A.; Pelsers, M.M.A.L.; Binas, B.; Bonen, A.; Glatz, J.F.C. Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice. Lipids 2003, 38, 491–496. [Google Scholar] [CrossRef]
- Saenger, A.K.; Nguyen, T.V.; Vockley, J.; Stankovich, M.T. Biochemical and electrochemical characterization of two variant human short-chain acyl-CoA dehydrogenases. Biochemistry 2005, 44, 16035–16042. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qi, W.; Richardson, A.; Van Remmen, H.; Ikeno, Y.; Salmon, A.B. Oxidative damage associated with obesity is prevented by overexpression of CuZn or Mn-superoxide dismutase. Biochem. Biophys. Res. Commun. 2013, 438, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orosz, F.; Oláh, J.; Ovádi, J. Triosephosphate isomerase deficiency: New insights into an enigmatic disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2009, 1792, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Won, K.-A.; Schumacher, R.J.; Farr, G.W.; Horwich, A.L.; Reed, S.I. Maturation of Human Cyclin E Requires the Function of Eukaryotic Chaperonin CCT. Mol. Cell. Biol. 1998, 18, 7584–7589. [Google Scholar] [CrossRef] [Green Version]
- Attaix, D.; Bechet, D. FoxO3 Controls Dangerous Proteolytic Liaisons. Cell Metab. 2007, 6, 425–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, S.S. Deubiquitinases in skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 2013, 45, 2130–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazek, A.D.; Paleo, B.J.; Weisleder, N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiol. 2015, 30, 438–448. [Google Scholar] [CrossRef]
- Carmeille, R.; Bouvet, F.; Tan, S.; Croissant, C.; Gounou, C.; Mamchaoui, K.; Mouly, V.; Brisson, A.R.; Bouter, A. Membrane repair of human skeletal muscle cells requires Annexin-A5. Biochim. Biophys. Acta (BBA) Bioenerg. 2016, 1863, 2267–2279. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Masumiya, H.; Weisleder, N.; Matsuda, N.; Nishi, M.; Hwang, M.; Ko, J.-K.; Lin, P.; Thornton, A.; Zhao, X.; et al. MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 2008, 11, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Lin, P.; De, G.; Choi, K.-H.; Takeshima, H.; Weisleder, N.; Ma, J. Polymerase Transcriptase Release Factor (PTRF) Anchors MG53 Protein to Cell Injury Site for Initiation of Membrane Repair. J. Biol. Chem. 2011, 286, 12820–12824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monneret, D.; Barthélémy, J.-C.; Hupin, D.; Maudoux, D.; Celle, S.; Sforza, E.; Roche, F. Serum lipid profile, sleep-disordered breathing and blood pressure in the elderly: A 10-year follow-up of the PROOF-SYNAPSE cohort. Sleep Med. 2017, 39, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Metabolic Syndrome: A Multiplex Cardiovascular Risk Factor. J. Clin. Endocrinol. Metab. 2007, 92, 399–404. [Google Scholar] [CrossRef]
- Garet, M.; Barthelemy, J.C.; Degache, F.; Costes, F.; Da-Costa, A.; Isaaz, K.; Lacour, J.R.; Roche, F. A questionnaire-based assessment of daily physical activity in heart failure. Eur. J. Heart Fail 2004, 6, 577–584. [Google Scholar] [CrossRef]
- Verney, J.; Kadi, F.; Saafi, M.A.; Piehl-Aulin, K.; Denis, C. Combined lower body endurance and upper body resistance training improves performance and health parameters in healthy active elderly. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 97, 288–297. [Google Scholar] [CrossRef]
- Henriksson, K.G. “Semi-open” muscle biopsy technique. A simple outpatient procedure. Acta Neurol. Scand. 1979, 59, 317–323. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Berriz, G.F.; King, O.D.; Bryant, B.; Sander, C.; Roth, F.P. Characterizing gene sets with FuncAssociate. Bioinformatics 2003, 19, 2502–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
YO (n = 15) | EL (n = 15 | SX (n = 9) | ||
---|---|---|---|---|
Age (y) | 21.8 ± 0.9 | 73.5 ± 0.2 * | 72.9 ± 0.8 * | |
Body weight (kg) | 74.0 ± 2.3 | 69.5 ± 2.3 | 92.5 ± 4.0 *,† | |
BMI (kg/m2) | 22.8 ± 0.8 | 24.6 ± 0.8 | 30.7 ± 0.4 *,† | |
VO2peak (mL/min/kg) | 38.3 ± 1.6 | 25.7 ± 1.3 * | 13.3 ± 1.3 *,† | |
Blood pressure § (mm Hg) | systolic | 118.1 ± 2.4 | 134.2 ± 3.3 * | 156.3 ± 7.7 *,† |
diastolic | 75.7 ± 2.0 | 82.8 ± 2.0 * | 100.0 ± 2.8 *,† | |
Specific strength (N/m3) | 11.1 ± 0.4 | 7.9 ± 0.2 * | 7.8 ± 0.5 * | |
Daily energy expenditure (kJ/kg/day) | 147 ± 4 | 139 ± 7 | ||
Waist circumference § (cm) | 86.8 ± 2.3 | 104.2 ± 2.9 † | ||
Glucose § (mmol/L) | 4.97 ± 0.09 | 8.88 ± 1.65 † | ||
Lipid levels (mmol/L) | HDL cholesterol § | 1.51 ± 0.10 | 1.32 ± 0.16 | |
Triglycerides § | 0.98 ± 0.08 | 1.82 ± 0.40 † | ||
Body fat mass (% body weight) | 21.6 ± 1.3 | 31.7 ± 1.6 † | ||
Appendicular lean mass (% body weight) | 31.9 ± 0.7 | 27.0 ± 0.6 † |
Spot n° | Accession | Symbol | Protein | Anova (P) | Fold Change | Score | % Cov | PSM | Unique Peptides | ||
---|---|---|---|---|---|---|---|---|---|---|---|
EL vs. YO | EL vs. SX | YO vs. SX | |||||||||
Myofilaments and cytoskeleton | |||||||||||
1820 | P14649 | MYL6B | Myosin light chain 6B | <0.001 | 1.48 | 1.49 | 708 | 46 | 26 | 12 | |
1851 | P14649 | MYL6B | Myosin light chain 6B | <0.001 | 1.57 | 1.92 | 544 | 51 | 39 | 12 | |
979 | P10916 | MYL2 | Myosin regulatory light chain 2, ventricular/cardiac muscle isoform | 0.003 | 1.76 | 2.17 | 928 | 74 | 32 | 10 | |
1930 | Q00872 | MYBPC1 | Myosin-binding protein C, slow-type | 0.019 | −1.25 | 2236 | 36 | 90 | 32 | ||
714 | P68133 | ACTA1 | Actin, alpha skeletal muscle | 0.003 | −1.24 | 1.19 | 395 | 22 | 12 | 6 | |
683 | P68133 | ACTA1 | Actin, alpha skeletal muscle | 0.001 | 1.29 | 274 | 17 | 9 | 5 | ||
754 | P45378 | TNNT3 | Troponin T, fast skeletal muscle | 0.004 | −1.20 | −1.34 | 808 | 33 | 28 | 9 | |
1926 | P45378 | TNNT3 | Troponin T, fast skeletal muscle | 0.015 | −1.45 | 1219 | 36 | 82 | 11 | ||
1825 | P13805 | TNNT1 | Troponin T, slow skeletal muscle | <0.001 | 1.52 | 1.43 | 1923 | 32 | 60 | 8 | |
1826 | P13805 | TNNT1 | Troponin T, slow skeletal muscle | <0.001 | 1.76 | 349 | 32 | 14 | 8 | ||
1859 | P13805 | TNNT1 | Troponin T, slow skeletal muscle | 0.005 | 1.17 | 1.18 | 1756 | 32 | 92 | 11 | |
1873 | P13805 | TNNT1 | Troponin T, slow skeletal muscle | 0.026 | 1.15 | 1.19 | 1501 | 32 | 65 | 10 | |
962 | P02585 | TNNC2 | Troponin C, skeletal muscle | 0.003 | 1.43 | 1.74 | 139 | 26 | 5 | 3 | |
793 | P47755 | CAPZA2 | F-actin-capping protein subunit alpha-2 | 0.013 | 1.29 | 744 | 38 | 22 | 7 | ||
988 | Q9Y281 | CFL2 | Cofilin-2 | 0.002 | 1.20 | 1.16 | 1197 | 47 | 32 | 7 | |
745 | Q9GZV1 | ANKRD2 | Ankyrin repeat domain-containing protein 2 | 0.042 | 1.26 | 884 | 39 | 29 | 12 | ||
1844 | Q9NP98 | MYOZ1 | Myozenin-1 | 0.002 | −1.28 | 1.40 | 276 | 25 | 6 | 4 | |
Energy metabolism | |||||||||||
1941 | P06732 | CKM | Creatine kinase M-type | 0.006 | 1.17 | 1.25 | 2823 | 50 | 132 | 17 | |
330 | P11217 | PYGM | Glycogen phosphorylase, muscle form | 0.024 | −1.37 | 2683 | 50 | 116 | 35 | ||
341 | P11217 | PYGM | Glycogen phosphorylase, muscle form | 0.001 | −1.42 | −1.55 | 1418 | 32 | 47 | 24 | |
350 | P11217 | PYGM | Glycogen phosphorylase, muscle form | 0.009 | −1.28 | −1.28 | 1885 | 39 | 62 | 28 | |
353 | P11217 | PYGM | Glycogen phosphorylase, muscle form | <0.001 | −1.27 | −1.34 | 3085 | 47 | 114 | 36 | |
355 | P11217 | PYGM | Glycogen phosphorylase, muscle form | 0.011 | −1.39 | −1.52 | 1329 | 37 | 47 | 26 | |
340 | P11217 | PYGM | Glycogen phosphorylase, muscle form | 0.021 | −1.81 | 1087 | 24 | 36 | 17 | ||
347 | P11217 | PYGM | Glycogen phosphorylase, muscle form | 0.015 | −1.58 | 515 | 11 | 15 | 8 | ||
1842 | P60174 | TPI1 | Triosephosphate isomerase | <0.001 | −1.30 | −1.47 | 1063 | 49 | 30 | 11 | |
1862 | P60174 | TPI1 | Triosephosphate isomerase | <0.001 | −1.18 | −1.15 | 1543 | 66 | 63 | 13 | |
1879 | P60174 | TPI1 | Triosephosphate isomerase | 0.009 | −1.23 | −1.33 | 3833 | 77 | 177 | 18 | |
1845 | P60174 | TPI1 | Triosephosphate isomerase | <0.001 | −1.17 | −1.30 | −1.51 | 1827 | 66 | 83 | 14 |
1841 | P60174 | TPI1 | Triosephosphate isomerase | 0.001 | −1.22 | −1.36 | 2676 | 58 | 76 | 14 | |
773 | P04406 | GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | 0.007 | −1.18 | 1563 | 42 | 42 | 11 | ||
748 | P13929 | ENO3 | Beta-enolase | <0.001 | −1.24 | −1.23 | 2358 | 26 | 65 | 9 | |
1857 | P13929 | ENO3 | Beta-enolase | 0.007 | −1.40 | 1604 | 38 | 57 | 12 | ||
1874 | P13929 | ENO3 | Beta-enolase | 0.006 | −1.24 | −1.27 | 2395 | 52 | 85 | 17 | |
672 | P13929 | ENO3 | Beta-enolase | 0.003 | −1.28 | −1.37 | 1356 | 39 | 37 | 13 | |
677 | P13929 | ENO3 | Beta-enolase | 0.002 | −1.35 | 1863 | 40 | 53 | 13 | ||
658 | P06733 | ENO1 | Alpha-enolase | 0.008 | −1.27 | 1351 | 46 | 38 | 14 | ||
561 | P14618 | PKM | Pyruvate kinase isozymes M1/M2 | 0.001 | −1.39 | −1.71 | 1593 | 43 | 49 | 19 | |
562 | P14618 | PKM | Pyruvate kinase isozymes M1/M2 | 0.003 | −1.31 | −1.43 | 1456 | 41 | 50 | 20 | |
799 | O00757 | FBP2 | Fructose-1,6-bisphosphatase isozyme 2 | <0.001 | 1.50 | −1.32 | 919 | 33 | 26 | 9 | |
735 | P17174 | GOT1 | Aspartate aminotransferase, cytoplasmic | 0.043 | −1.20 | 839 | 39 | 32 | 13 | ||
1486 | P05413 | FABP3 | Fatty acid-binding protein, heart | 0.001 | 1.45 | 1.29 | 737 | 64 | 23 | 9 | |
1856 | P16219 | ACADS | Short-chain specific acyl-CoA dehydrogenase, mitochondrial | 0.040 | −1.29 | 325 | 25 | 19 | 8 | ||
839 | Q13011 | ECH1 | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial | 0.013 | 1.33 | 1.42 | 865 | 30 | 22 | 8 | |
837 | Q13011 | ECH1 | Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial | 0.017 | 1.31 | 622 | 18 | 15 | 6 | ||
Detoxification, cytoprotection | |||||||||||
885 | P07451 | CA3 | Carbonic anhydrase 3 | <0.001 | 1.46 | 1.62 | 754 | 31 | 23 | 6 | |
1821 | P07451 | CA3 | Carbonic anhydrase 3 | <0.001 | 1.23 | 1.18 | 1.45 | 911 | 45 | 28 | 8 |
1822 | P07451 | CA3 | Carbonic anhydrase 3 | <0.001 | 1.41 | 1.66 | 1026 | 44 | 31 | 8 | |
937 | P32119 | PRDX2 | Peroxiredoxin-2 | 0.003 | −1.30 | 220 | 24 | 8 | 5 | ||
928 | P04179 | SOD2 | Superoxide dismutase [Mn], mitochondrial | <0.001 | −1.43 | −1.56 | 583 | 39 | 21 | 7 | |
1866 | P05091 | ALDH2 | Aldehyde dehydrogenase, mitochondrial | 0.022 | 1.17 | 1340 | 40 | 48 | 15 | ||
1865 | P49189 | ALDH9A1 | 4-trimethylaminobutyraldehyde dehydrogenase | 0.012 | −1.34 | 544 | 26 | 27 | 11 | ||
815 | Q9HC38 | GLOD4 | Glyoxalase domain-containing protein 4 | 0.029 | 1.33 | 1.39 | 389 | 18 | 10 | 4 | |
Proteostasis | |||||||||||
960 | O14558 | HSPB6 | Heat shock protein beta-6 | <0.001 | 1.21 | 1.32 | 763 | 45 | 31 | 6 | |
893 | P04792 | HSPB1 | Heat shock protein beta-1 | 0.012 | 1.26 | 1.25 | 516 | 46 | 17 | 7 | |
958 | P02511 | CRYAB | Alpha-crystallin B chain | 0.012 | 1.23 | 1501 | 63 | 76 | 11 | ||
619 | P78371 | CCT2 | T-complex protein 1 subunit beta | 0.020 | 1.18 | 783 | 18 | 20 | 7 | ||
563 | P54578 | USP14 | Ubiquitin carboxyl-terminal hydrolase 14 | 0.013 | −1.25 | 743 | 23 | 18 | 9 | ||
850 | P25786 | PSMA1 | Proteasome subunit alpha type 1 | 0.012 | 1.25 | 430 | 36 | 15 | 7 | ||
1854 | P28070 | PSMB4 | Proteasome subunit beta type-4 | 0.020 | 1.17 | 509 | 33 | 12 | 5 | ||
Membrane repair | |||||||||||
1901 | P08758 | ANXA5 | Annexin A5 | 0.038 | −1.30 | 888 | 37 | 38 | 11 | ||
620 | Q6ZMU5 | TRIM72 | Tripartite motif-containing protein 72 | <0.001 | 1.44 | 1.29 | 414 | 24 | 8 | 12 | |
1885 | Q6NZ12 | PTRF | Polymerase I and transcript release factor | 0.022 | 1.20 | 432 | 27 | 14 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueugneau, M.; Coudy-Gandilhon, C.; Chambon, C.; Verney, J.; Taillandier, D.; Combaret, L.; Polge, C.; Walrand, S.; Roche, F.; Barthélémy, J.-C.; et al. Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men. Int. J. Mol. Sci. 2021, 22, 4205. https://doi.org/10.3390/ijms22084205
Gueugneau M, Coudy-Gandilhon C, Chambon C, Verney J, Taillandier D, Combaret L, Polge C, Walrand S, Roche F, Barthélémy J-C, et al. Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men. International Journal of Molecular Sciences. 2021; 22(8):4205. https://doi.org/10.3390/ijms22084205
Chicago/Turabian StyleGueugneau, Marine, Cécile Coudy-Gandilhon, Christophe Chambon, Julien Verney, Daniel Taillandier, Lydie Combaret, Cécile Polge, Stéphane Walrand, Frédéric Roche, Jean-Claude Barthélémy, and et al. 2021. "Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men" International Journal of Molecular Sciences 22, no. 8: 4205. https://doi.org/10.3390/ijms22084205
APA StyleGueugneau, M., Coudy-Gandilhon, C., Chambon, C., Verney, J., Taillandier, D., Combaret, L., Polge, C., Walrand, S., Roche, F., Barthélémy, J. -C., Féasson, L., & Béchet, D. (2021). Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men. International Journal of Molecular Sciences, 22(8), 4205. https://doi.org/10.3390/ijms22084205