Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae
Abstract
:1. Introduction
2. Maturation of Iron-Sulfur Proteins by the SUF Machinery
2.1. Lessons from Escherichia coli and Arabidopsis thaliana
2.2. Occurrence of the SUF Components in Microalgae
3. Fe-S Protein-Dependent Metabolic Processes in Algal Chloroplasts
3.1. Fe-S Proteins Connected to the Photosynthetic Electron Transfer Reactions
3.1.1. Synthesis of Isoprenoids: Fe-S Dependent vs. Independent Pathways
3.1.2. Dark-Operative Protochlorophyllide a Oxidoreductase
3.1.3. Type I NADH Dehydrogenase in Microalgae
3.1.4. Photosystem II Protein 33
3.1.5. Chloroplast Sensor Kinase
3.2. Contribution of Fe-S Enzymes to the Fermentative Metabolism
3.2.1. Pyruvate-Formate Lyase Activating Enzyme
3.2.2. Pyruvate-Ferredoxin Oxidoreductase
3.2.3. Hydrogenases and Their Maturation Factors
3.2.4. Hybrid Cluster Protein
3.2.5. Sulfite Reductase
3.2.6. Fermentative Pathways in Other Microalgae
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CD | cysteine desulfurase |
CSK | chloroplast sensor kinase |
DPOR | dark-operative protochlorophyllide a oxidoreductase |
FDX | ferredoxin |
Fe-S | iron-sulfur |
GRX | glutaredoxin |
HCF101 | high chlorophyll fluorescence 101 |
HCP | hybrid cluster protein |
HYD | hydrogenases |
LPOR | light-dependent protochlorophyllide a oxidoreductase |
MEP | 2-C-methyl-d-erythritol 4-phosphate |
MRP | multiple resistance and pH adaptation |
MVA | mevalonate |
NDH | NADH dehydrogenase |
NIR | nitrite reductase |
PFL | Pyruvate-formate lyase |
PFO | Pyruvate-ferredoxin oxidoreductase |
SIR | sulfite reductase |
SUF | sulfur mobilization |
References
- Przybyla-Toscano, J.; Boussardon, C.; Law, S.; Rouhier, N.; Keech, O. Gene Atlas of Iron-Containing Proteins in Arabidopsis thaliana. Plant J. 2021. [Google Scholar] [CrossRef]
- Zanello, P. Structure and Electrochemistry of Proteins Harboring Iron-Sulfur Clusters of Different Nuclearities. Part IV. Canonical, Non-Canonical and Hybrid Iron-Sulfur Proteins. J. Struct. Biol. 2019, 205, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Lill, R. Function and Biogenesis of Iron-Sulphur Proteins. Nature 2009, 460, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Przybyla-Toscano, J.; Christ, L.; Keech, O.; Rouhier, N. Iron-Sulfur Proteins in Plant Mitochondria: Roles and Maturation. J. Exp. Bot. 2020. [Google Scholar] [CrossRef]
- Przybyla-Toscano, J.; Roland, M.; Gaymard, F.; Couturier, J.; Rouhier, N. Roles and Maturation of Iron-Sulfur Proteins in Plastids. J. Biol. Inorg. Chem. 2018, 23, 545–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, S.; Sawaya, M.R. The Light Reactions: A Guide to Recent Acquisitions for the Picture Gallery. Plant Cell 2005, 17, 648–663. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Cao, D.; Xie, F.; Xu, F.; Su, X.; Mi, H.; Zhang, X.; Li, M. Structural Basis for Electron Transport Mechanism of Complex I-like Photosynthetic Nad(p)h Dehydrogenase. Nat. Commun. 2020, 11, 610. [Google Scholar] [CrossRef] [Green Version]
- Hertle, A.P.; Blunder, T.; Wunder, T.; Pesaresi, P.; Pribil, M.; Armbruster, U.; Leister, D. PGRL1 Is the Elusive Ferredoxin-Plastoquinone Reductase in Photosynthetic Cyclic Electron Flow. Mol. Cell 2013, 49, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Yamori, W.; Shikanai, T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. Annu. Rev. Plant Biol. 2016, 67, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Couturier, J.; Touraine, B.; Briat, J.-F.; Gaymard, F.; Rouhier, N. The Iron-Sulfur Cluster Assembly Machineries in Plants: Current Knowledge and Open Questions. Front. Plant Sci. 2013, 4, 259. [Google Scholar] [CrossRef] [Green Version]
- Garcia, P.S.; Gribaldo, S.; Py, B.; Barras, F. The SUF System: An ABC ATPase-Dependent Protein Complex with a Role in Fe–S Cluster Biogenesis. Res. Microbiol. 2019, 170, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Boyd, E.S.; Thomas, K.M.; Dai, Y.; Boyd, J.M.; Outten, F.W. Interplay between Oxygen and Fe-S Cluster Biogenesis: Insights from the Suf Pathway. Biochemistry 2014, 53, 5834–5847. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Chen, T.; Happe, T.; Lu, Y.; Sawyer, A. Iron-Sulphur Cluster Biogenesis via the SUF Pathway. Metallomics 2018, 10, 1038–1052. [Google Scholar] [CrossRef] [PubMed]
- Gao, F. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front. Microbiol. 2020, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Outten, F.W. Recent Advances in the Suf Fe-S Cluster Biogenesis Pathway: Beyond the Proteobacteria. Biochim. Biophys. Acta 2015, 1853, 1464–1469. [Google Scholar] [CrossRef] [Green Version]
- Blahut, M.; Sanchez, E.; Fisher, C.E.; Outten, F.W. Fe-S Cluster Biogenesis by the Bacterial Suf Pathway. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118829. [Google Scholar] [CrossRef] [PubMed]
- Braymer, J.J.; Freibert, S.A.; Rakwalska-Bange, M.; Lill, R. Mechanistic Concepts of Iron-Sulfur Protein Biogenesis in Biology. Biochim. Biophys. Acta Mol. Cell Res. 2020, 118863. [Google Scholar] [CrossRef]
- Loiseau, L.; Ollagnier-de-Choudens, S.; Nachin, L.; Fontecave, M.; Barras, F. Biogenesis of Fe-S Cluster by the Bacterial Suf System: SufS and SufE Form a New Type of Cysteine Desulfurase. J. Biol. Chem. 2003, 278, 38352–38359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outten, F.W.; Wood, M.J.; Munoz, F.M.; Storz, G. The SufE Protein and the SufBCD Complex Enhance SufS Cysteine Desulfurase Activity as Part of a Sulfur Transfer Pathway for Fe-S Cluster Assembly in Escherichia coli. J. Biol. Chem. 2003, 278, 45713–45719. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Abdel-Ghany, S.E.; Anderson, T.D.; Pilon-Smits, E.A.H.; Pilon, M. CpSufE Activates the Cysteine Desulfurase CpNifS for Chloroplastic Fe-S Cluster Formation. J. Biol. Chem. 2006, 281, 8958–8969. [Google Scholar] [CrossRef] [Green Version]
- Black, K.A.; Dos Santos, P.C. Shared-Intermediates in the Biosynthesis of Thio-Cofactors: Mechanism and Functions of Cysteine Desulfurases and Sulfur Acceptors. Biochim. Biophys. Acta 2015, 1853, 1470–1480. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Dai, Y.; Outten, F.W.; Busenlehner, L.S. Escherichia coli SufE Sulfur Transfer Protein Modulates the SufS Cysteine Desulfurase through Allosteric Conformational Dynamics. J. Biol. Chem. 2013, 288, 36189–36200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layer, G.; Gaddam, S.A.; Ayala-Castro, C.N.; Ollagnier-de Choudens, S.; Lascoux, D.; Fontecave, M.; Outten, F.W. SufE Transfers Sulfur from SufS to SufB for Iron-Sulfur Cluster Assembly. J. Biol. Chem. 2007, 282, 13342–13350. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, K.; Yuda, E.; Tanaka, N.; Katayama, S.; Iwasaki, K.; Matsumoto, T.; Kurisu, G.; Outten, F.W.; Fukuyama, K.; Takahashi, Y.; et al. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-Binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis. J. Biol. Chem. 2015, 290, 29717–29731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuda, E.; Tanaka, N.; Fujishiro, T.; Yokoyama, N.; Hirabayashi, K.; Fukuyama, K.; Wada, K.; Takahashi, Y. Mapping the Key Residues of SufB and SufD Essential for Biosynthesis of Iron-Sulfur Clusters. Sci. Rep. 2017, 7, 9387. [Google Scholar] [CrossRef] [Green Version]
- Saini, A.; Mapolelo, D.T.; Chahal, H.K.; Johnson, M.K.; Outten, F.W. SufD and SufC ATPase Activity Are Required for Iron Acquisition during in Vivo Fe-S Cluster Formation on SufB. Biochemistry 2010, 49, 9402–9412. [Google Scholar] [CrossRef] [Green Version]
- Blanc, B.; Clémancey, M.; Latour, J.-M.; Fontecave, M.; Ollagnier de Choudens, S. Molecular Investigation of Iron-Sulfur Cluster Assembly Scaffolds under Stress. Biochemistry 2014, 53, 7867–7869. [Google Scholar] [CrossRef] [PubMed]
- Wollers, S.; Layer, G.; Garcia-Serres, R.; Signor, L.; Clemancey, M.; Latour, J.-M.; Fontecave, M.; Ollagnier de Choudens, S. Iron-Sulfur (Fe-S) Cluster Assembly: The SufBCD Complex Is a New Type of Fe-S Scaffold with a Flavin Redox Cofactor. J. Biol. Chem. 2010, 285, 23331–23341. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Guo, S.; Tennant, W.G.; Pradhan, P.K.; Black, K.A.; Dos Santos, P.C. The Thioredoxin System Reduces Protein Persulfide Intermediates Formed during the Synthesis of Thio-Cofactors in Bacillus subtilis. Biochemistry 2019, 58, 1892–1904. [Google Scholar] [CrossRef]
- Parent, A.; Elduque, X.; Cornu, D.; Belot, L.; Le Caer, J.-P.; Grandas, A.; Toledano, M.B.; D’Autréaux, B. Mammalian Frataxin Directly Enhances Sulfur Transfer of NFS1 Persulfide to Both ISCU and Free Thiols. Nat. Commun. 2015, 6, 5686. [Google Scholar] [CrossRef] [Green Version]
- Gervason, S.; Larkem, D.; Mansour, A.B.; Botzanowski, T.; Müller, C.S.; Pecqueur, L.; Le Pavec, G.; Delaunay-Moisan, A.; Brun, O.; Agramunt, J.; et al. Physiologically Relevant Reconstitution of Iron-Sulfur Cluster Biosynthesis Uncovers Persulfide-Processing Functions of Ferredoxin-2 and Frataxin. Nat. Commun. 2019, 10, 3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blauenburg, B.; Mielcarek, A.; Altegoer, F.; Fage, C.D.; Linne, U.; Bange, G.; Marahiel, M.A. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU. PLoS ONE 2016, 11, e0158749. [Google Scholar] [CrossRef] [Green Version]
- Turowski, V.R.; Aknin, C.; Maliandi, M.V.; Buchensky, C.; Leaden, L.; Peralta, D.A.; Busi, M.V.; Araya, A.; Gomez-Casati, D.F. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis. PLoS ONE 2015, 10, e0141443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roret, T.; Tsan, P.; Couturier, J.; Zhang, B.; Johnson, M.K.; Rouhier, N.; Didierjean, C. Structural and Spectroscopic Insights into Bola-Glutaredoxin Complexes. J. Biol. Chem. 2014, 289, 24588–24598. [Google Scholar] [CrossRef] [Green Version]
- Vinella, D.; Brochier-Armanet, C.; Loiseau, L.; Talla, E.; Barras, F. Iron-Sulfur (Fe/S) Protein Biogenesis: Phylogenomic and Genetic Studies of A-Type Carriers. PLoS Genet. 2009, 5, e1000497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Py, B.; Gerez, C.; Angelini, S.; Planel, R.; Vinella, D.; Loiseau, L.; Talla, E.; Brochier-Armanet, C.; Garcia Serres, R.; Latour, J.-M.; et al. Molecular Organization, Biochemical Function, Cellular Role and Evolution of NfuA, an Atypical Fe-S Carrier. Mol. Microbiol. 2012, 86, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Lezhneva, L.; Amann, K.; Meurer, J. The Universally Conserved HCF101 Protein Is Involved in Assembly of [4Fe-4S]-Cluster-Containing Complexes in Arabidopsis thaliana Chloroplasts. Plant J. 2004, 37, 174–185. [Google Scholar] [CrossRef]
- Abdel-Ghany, S.E.; Ye, H.; Garifullina, G.F.; Zhang, L.; Pilon-Smits, E.A.H.; Pilon, M. Iron-Sulfur Cluster Biogenesis in Chloroplasts. Involvement of the Scaffold Protein Cpisca. Plant Physiol. 2005, 138, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, P.; Becuwe, N.; Tourrette, S.; Rouhier, N. Involvement of Arabidopsis Glutaredoxin S14 in the Maintenance of Chlorophyll Content. Plant Cell Environ. 2017, 40, 2319–2332. [Google Scholar] [CrossRef]
- Touraine, B.; Vignols, F.; Przybyla-Toscano, J.; Ischebeck, T.; Dhalleine, T.; Wu, H.-C.; Magno, C.; Berger, N.; Couturier, J.; Dubos, C.; et al. Iron-Sulfur Protein NFU2 Is Required for Branched-Chain Amino Acid Synthesis in Arabidopsis Roots. J. Exp. Bot. 2019, 70, 1875–1889. [Google Scholar] [CrossRef]
- Berger, N.; Vignols, F.; Przybyla-Toscano, J.; Roland, M.; Rofidal, V.; Touraine, B.; Zienkiewicz, K.; Couturier, J.; Feussner, I.; Santoni, V.; et al. Identification of Client Iron-Sulfur Proteins of the Chloroplastic NFU2 Transfer Protein in Arabidopsis thaliana. J. Exp. Bot. 2020. [Google Scholar] [CrossRef] [PubMed]
- Berger, N.; Vignols, F.; Touraine, B.; Taupin-Broggini, M.; Rofidal, V.; Demolombe, V.; Santoni, V.; Rouhier, N.; Gaymard, F.; Dubos, C. A Global Proteomic Approach Sheds New Light on Potential Iron-Sulfur Client Proteins of the Chloroplastic Maturation Factor NFU3. Int. J. Mol. Sci. 2020, 21, 8121. [Google Scholar] [CrossRef]
- Gao, H.; Subramanian, S.; Couturier, J.; Naik, S.G.; Kim, S.-K.; Leustek, T.; Knaff, D.B.; Wu, H.-C.; Vignols, F.; Huynh, B.H.; et al. Arabidopsis thaliana Nfu2 Accommodates [2Fe-2S] or [4Fe-4S] Clusters and Is Competent for in Vitro Maturation of Chloroplast [2Fe-2S] and [4Fe-4S] Cluster-Containing Proteins. Biochemistry 2013, 52, 6633–6645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Azam, T.; Randeniya, S.; Couturier, J.; Rouhier, N.; Johnson, M.K. Function and Maturation of the Fe-S Center in Dihydroxyacid Dehydratase from Arabidopsis. J. Biol. Chem. 2018, 293, 4422–4433. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ouyang, B.; Li, Y.; Feng, Y.; Jacquot, J.-P.; Rouhier, N.; Xia, B. Glutathione Regulates the Transfer of Iron-Sulfur Cluster from Monothiol and Dithiol Glutaredoxins to Apo Ferredoxin. Protein Cell 2012, 3, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Gama, F.; Molina-Navarro, M.M.; Gualberto, J.M.; Claxton, R.; Naik, S.G.; Huynh, B.H.; Herrero, E.; Jacquot, J.P.; Johnson, M.K.; et al. Chloroplast Monothiol Glutaredoxins as Scaffold Proteins for the Assembly and Delivery of [2Fe-2S] Clusters. EMBO J. 2008, 27, 1122–1133. [Google Scholar] [CrossRef] [Green Version]
- Mapolelo, D.T.; Zhang, B.; Randeniya, S.; Albetel, A.-N.; Li, H.; Couturier, J.; Outten, C.E.; Rouhier, N.; Johnson, M.K. Monothiol Glutaredoxins and A-Type Proteins: Partners in Fe-S Cluster Trafficking. Dalton Trans. 2013, 42, 3107–3115. [Google Scholar] [CrossRef] [Green Version]
- Keeling, P.J.; Burki, F. Progress towards the Tree of Eukaryotes. Curr. Biol. 2019, 29, R808–R817. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Hayes, R.D.; Calhoun, S.; Kamel, B.; Wang, A.; Ahrendt, S.; Dusheyko, S.; Nikitin, R.; Mondo, S.J.; Salamov, A.; et al. PhycoCosm, a Comparative Algal Genomics Resource. Nucleic Acids Res. 2020. [Google Scholar] [CrossRef]
- Janouškovec, J.; Horák, A.; Oborník, M.; Lukeš, J.; Keeling, P.J. A Common Red Algal Origin of the Apicomplexan, Dinoflagellate, and Heterokont Plastids. Proc. Natl. Acad. Sci. USA 2010, 107, 10949–10954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godman, J.; Balk, J. Genome Analysis of Chlamydomonas reinhardtii Reveals the Existence of Multiple, Compartmentalized Iron-Sulfur Protein Assembly Machineries of Different Evolutionary Origins. Genetics 2008, 179, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Terashima, M.; Specht, M.; Naumann, B.; Hippler, M. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics. Mol. Cell. Proteom. 2010, 9, 1514–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, N.U.; Ollagnier-de-Choudens, S.; Sanakis, Y.; Abdel-Ghany, S.E.; Rousset, C.; Ye, H.; Fontecave, M.; Pilon-Smits, E.A.H.; Pilon, M. Characterization of Arabidopsis thaliana SufE2 and SufE3: Functions in Chloroplast Iron-Sulfur Cluster Assembly and Nad Synthesis. J. Biol. Chem. 2007, 282, 18254–18264. [Google Scholar] [CrossRef] [Green Version]
- Couturier, J.; Jacquot, J.-P.; Rouhier, N. Evolution and Diversity of Glutaredoxins in Photosynthetic Organisms. Cell. Mol. Life Sci. 2009, 66, 2539–2557. [Google Scholar] [CrossRef]
- Waller, J.C.; Ellens, K.W.; Alvarez, S.; Loizeau, K.; Ravanel, S.; Hanson, A.D. Mitochondrial and Plastidial COG0354 Proteins Have Folate-Dependent Functions in Iron-Sulphur Cluster Metabolism. J. Exp. Bot. 2012, 63, 403–411. [Google Scholar] [CrossRef]
- Yang, W.; Wittkopp, T.M.; Li, X.; Warakanont, J.; Dubini, A.; Catalanotti, C.; Kim, R.G.; Nowack, E.C.M.; Mackinder, L.C.M.; Aksoy, M.; et al. Critical Role of Chlamydomonas reinhardtii Ferredoxin-5 in Maintaining Membrane Structure and Dark Metabolism. Proc. Natl. Acad. Sci. USA 2015, 112, 14978–14983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawyer, A.; Winkler, M. Evolution of Chlamydomonas reinhardtii Ferredoxins and Their Interactions with [FeFe]-Hydrogenases. Photosynth. Res. 2017, 134, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Goh, F.Q.Y.; Jeyakani, J.; Tipthara, P.; Cazenave-Gassiot, A.; Ghosh, R.; Bogard, N.; Yeo, Z.; Wong, G.K.S.; Melkonian, M.; Wenk, M.R.; et al. Gains and Losses of Metabolic Function Inferred from a Phylotranscriptomic Analysis of Algae. Sci. Rep. 2019, 9, 10482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenthaler, H.K. The 1-Deoxy-d-Xylulose-5-Phosphate Pathway of Isoprenoid Biosynthesis in Plants. Annu. Rev. Plant Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Lohr, M.; Schwender, J.; Polle, J.E.W. Isoprenoid Biosynthesis in Eukaryotic Phototrophs: A Spotlight on Algae. Plant Sci. 2012, 186, 9–22. [Google Scholar] [CrossRef]
- Athanasakoglou, A.; Kampranis, S.C. Diatom Isoprenoids: Advances and Biotechnological Potential. Biotechnol. Adv. 2019, 37, 107417. [Google Scholar] [CrossRef]
- Ebenezer, T.E.; Zoltner, M.; Burrell, A.; Nenarokova, A.; Novák Vanclová, A.M.G.; Prasad, B.; Soukal, P.; Santana-Molina, C.; O’Neill, E.; Nankissoor, N.N.; et al. Transcriptome, Proteome and Draft Genome of Euglena gracilis. BMC Biol. 2019, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhou, W.; Wei, L.; Li, J.; Jia, J.; Li, F.; Smith, S.M.; Xu, J. Regulation of the Cholesterol Biosynthetic Pathway and Its Integration with Fatty Acid Biosynthesis in the Oleaginous Microalga Nannochloropsis oceanica. Biotechnol. Biofuels 2014, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentlage, B.; Rogers, T.S.; Bachvaroff, T.R.; Delwiche, C.F. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates. J. Eukaryot. Microbiol. 2016, 63, 123–137. [Google Scholar] [CrossRef]
- Schoefs, B.; Franck, F. Protochlorophyllide Reduction: Mechanisms and Evolution. Photochem. Photobiol. 2003, 78, 543–557. [Google Scholar] [CrossRef]
- Schneidewind, J.; Krause, F.; Bocola, M.; Stadler, A.M.; Davari, M.D.; Schwaneberg, U.; Jaeger, K.E.; Krauss, U. Consensus Model of a Cyanobacterial Light-Dependent Protochlorophyllide Oxidoreductase in Its Pigment-Free Apo-Form and Photoactive Ternary Complex. Commun. Biol. 2019, 2, 351. [Google Scholar] [CrossRef] [Green Version]
- Moser, J.; Lange, C.; Krausze, J.; Rebelein, J.; Schubert, W.-D.; Ribbe, M.W.; Heinz, D.W.; Jahn, D. Structure of ADP-Aluminium Fluoride-Stabilized Protochlorophyllide Oxidoreductase Complex. Proc. Natl. Acad. Sci. USA 2013, 110, 2094–2098. [Google Scholar] [CrossRef] [Green Version]
- Vedalankar, P.; Tripathy, B.C. Evolution of Light-Independent Protochlorophyllide Oxidoreductase. Protoplasma 2019, 256, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Day, A.; Dowson-Day, M.; Shen, G.F.; Dixon, R. The Klebsiella pneumoniae Nitrogenase Fe Protein Gene (NifH) Functionally Substitutes for the ChlL Gene in Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 2005, 329, 966–975. [Google Scholar] [CrossRef]
- Li, J.; Goldschmidt-Clermont, M.; Timko, M.P. Chloroplast-Encoded ChlB Is Required for Light-Independent Protochlorophyllide Reductase Activity in Chlamydomonas reinhardtii. Plant Cell 1993, 5, 1817–1829. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, A.B.; Timko, M.P. Yellow-in-the-Dark Mutants of Chlamydomonas Lack the CHLL Subunit of Light-Independent Protochlorophyllide Reductase. Plant Cell 2000, 12, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, K.; Krause, K.; Grewe, F.; Nelson, G.F.; Weber, A.P.M.; Christensen, A.C.; Mower, J.P. Extreme Features of the Galdieria sulphuraria Organellar Genomes: A Consequence of Polyextremophily. Genome Biol. Evol. 2014, 7, 367–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, N.; Matsuzaki, M.; Misumi, O.; Miyagishima, S.-y.; Nozaki, H.; Tanaka, K.; Shin-I, T.; Kohara, Y.; Kuroiwa, T. Complete Sequence and Analysis of the Plastid Genome of the Unicellular Red Alga Cyanidioschyzon merolae. DNA Res. 2003, 10, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reith, M.; Munholland, J. Complete Nucleotide Sequence of the Porphyra purpurea Chloroplast Genome. Plant Mol. Biol. Rep. 1995, 13, 333–335. [Google Scholar] [CrossRef]
- Robbens, S.; Derelle, E.; Ferraz, C.; Wuyts, J.; Moreau, H.; Van De Peer, Y. The Complete Chloroplast and Mitochondrial DNA Sequence of Ostreococcus tauri: Organelle Genomes of the Smallest Eukaryote Are Examples of Compaction. Mol. Biol. Evol. 2007, 24, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, C.; Otis, C.; Turmel, M. Six Newly Sequenced Chloroplast Genomes from Prasinophyte Green Algae Provide Insights into the Relationships among Prasinophyte Lineages and the Diversity of Streamlined Genome Architecture in Picoplanktonic Species. BMC Genom. 2014, 15, 857. [Google Scholar] [CrossRef] [Green Version]
- Gallaher, S.D.; Fitz-Gibbon, S.T.; Strenkert, D.; Purvine, S.O.; Pellegrini, M.; Merchant, S.S. High-Throughput Sequencing of the Chloroplast and Mitochondrion of Chlamydomonas reinhardtii to Generate Improved de Novo Assemblies, Analyze Expression Patterns and Transcript Speciation, and Evaluate Diversity among Laboratory Strains and Wild Isolates. Plant J. 2018, 93, 545–565. [Google Scholar] [CrossRef] [Green Version]
- Wakasugi, T.; Nagai, T.; Kapoor, M.; Sugita, M.; Ito, M.; Ito, S.; Tsudzuki, J.; Nakashima, K.; Tsudzuki, T.; Suzuki, Y.; et al. Complete Nucleotide Sequence of the Chloroplast Genome from the Green Alga Chlorella vulgaris: The Existence of Genes Possibly Involved in Chloroplast Division. Proc. Natl. Acad. Sci. USA 1997, 94, 5967–5972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Civan, P.; Foster, P.G.; Embley, M.T.; Séneca, A.; Cox, C.J. Analyses of Charophyte Chloroplast Genomes Help Characterize The ancestral Chloroplast genome of Land Plants. Genome Biol. Evol. 2014, 6, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Turmel, M.; Otis, C.; Lemieux, C. The Chloroplast Genome Sequence of Chara vulgaris Sheds New Light into the Closest Green Algal Relatives of Land Plants. Mol. Biol. Evol. 2006, 23, 1324–1338. [Google Scholar] [CrossRef]
- Oudot-Le Secq, M.P.; Grimwood, J.; Shapiro, H.; Armbrust, E.V.; Bowler, C.; Green, B.R. Chloroplast Genomes of the Diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: Comparison with Other Plastid Genomes of the Red Lineage. Mol. Genet. Genom. 2007, 277, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Xin, Y.; Wang, D.; Jing, X.; Zhou, Q.; Su, X.; Jia, J.; Ning, K.; Chen, F.; Hu, Q.; et al. Nannochloropsis Plastid and Mitochondrial Phylogenomes Reveal Organelle Diversification Mechanism and Intragenus Phylotyping Strategy in Microalgae. BMC Genom. 2013, 14, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbrook, A.C.; Voolstra, C.R.; Howe, C.J. The Chloroplast Genome of a Symbiodinium Sp. Clade C3 Isolate. Protist 2014, 165, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.B.; Gilson, P.R.; Su, V.; McFadden, G.I.; Keeling, P.J. The Complete Chloroplast Genome of the Chlorarachniophyte Bigelowiella natans: Evidence for Independent Origins of Chlorarachniophyte and Euglenid Secondary Endosymbionts. Mol. Biol. Evol. 2007, 24, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Tanifuji, G.; Onodera, N.T.; Brown, M.W.; Curtis, B.A.; Roger, A.J.; Ka-Shu Wong, G.; Melkonian, M.; Archibald, J.M. Nucleomorph and Plastid Genome Sequences of the Chlorarachniophyte Lotharella oceanica: Convergent Reductive Evolution and Frequent Recombination in Nucleomorph-Bearing Algae. BMC Genom. 2014, 15, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez Puerta, V.; Bachvaroff, T.R.; Delwiche, C.F. The Complete Plastid Genome Sequence of the Haptophyte Emiliania huxleyi: A Comparison to Other Plastid Genomes. DNA Res. 2005, 12, 151–156. [Google Scholar] [CrossRef]
- Méndez-Leyva, A.B.; Guo, J.; Mudd, E.A.; Wong, J.; Schwartz, J.M.; Day, A. The Chloroplast Genome of the Marine Microalga Tisochrysis lutea. Mitochondrial DNA Part B Resour. 2019, 4, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Bi, G. The Complete Chloroplast Genome of Guillardia theta Strain CCMP2712. Mitochondrial DNA Part DNA Mapp. Seq. Anal. 2016, 27, 4423–4424. [Google Scholar] [CrossRef]
- Khan, H.; Parks, N.; Kozera, C.; Curtis, B.A.; Parsons, B.J.; Bowman, S.; Archibald, J.M. Plastid Genome Sequence of the Cryptophyte Alga Rhodomonas salina CCMP1319: Lateral Transfer of Putative DNA Replication Machinery and a Test of Chromist Plastid Phylogeny. Mol. Biol. Evol. 2007, 24, 1832–1842. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Moore, C.E.; Archibald, J.M.; Bhattacharya, D.; Yi, G.; Yoon, H.S.; Shin, W. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Genome Biol. Evol. 2017, 9, 1859–1872. [Google Scholar] [CrossRef] [Green Version]
- Hallick, R.B.; Hong, L.; Drager, R.G.; Favreau, M.R.; Monfort, A.; Orsat, B.; Spielmann, A.; Stutz, E. Complete Sequence of Euglena gracilis Chloroplast DNA. Nucleic Acids Res. 1993, 21, 3537–3544. [Google Scholar] [CrossRef] [Green Version]
- Dabbagh, N.; Bennett, M.S.; Triemer, R.E.; Preisfeld, A. Chloroplast Genome Expansion by Intron Multiplication in the Basal Psychrophilic Euglenoid Eutreptiella pomquetensis. PeerJ 2017, 5, e3725. [Google Scholar] [CrossRef] [Green Version]
- Hunsperger, H.M.; Randhawa, T.; Cattolico, R.A. Extensive Horizontal Gene Transfer, Duplication, and Loss of Chlorophyll Synthesis Genes in the Algae. BMC Evol. Biol. 2015, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvetkovska, M.; Orgnero, S.; Hüner, N.P.A.; Smith, D.R. The Enigmatic Loss of Light-Independent Chlorophyll Biosynthesis from an Antarctic Green Alga in a Light-Limited Environment. New Phytol. 2019, 222, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Peltier, G.; Aro, E.M.; Shikanai, T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. Annu. Rev. Plant Biol. 2016, 67, 55–80. [Google Scholar] [CrossRef]
- Schuller, J.M.; Birrell, J.A.; Tanaka, H.; Konuma, T.; Wulfhorst, H.; Cox, N.; Schuller, S.K.; Thiemann, J.; Lubitz, W.; Sétif, P.; et al. Structural Adaptations of Photosynthetic Complex I Enable Ferredoxin-Dependent Electron Transfer. Science 2019, 363, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.; Sabater, B. Plastid Ndh Genes in Plant Evolution. Plant Physiol. Biochem. 2010, 48, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Jans, F.; Mignolet, E.; Houyoux, P.A.; Cardol, P.; Ghysels, B.; Cuiné, S.; Cournac, L.; Peltier, G.; Remacle, C.; Franck, F. A Type Ii Nad(p)h Dehydrogenase Mediates Light-Independent Plastoquinone Reduction in the Chloroplast of Chlamydomonas. Proc. Natl. Acad. Sci. USA 2008, 105, 20546–20551. [Google Scholar] [CrossRef] [Green Version]
- Desplats, C.; Mus, F.; Cuiné, S.; Billon, E.; Cournac, L.; Peltier, G. Characterization of Nda2, a Plastoquinone-Reducing Type II NAD (P) H Dehydrogenase in Chlamydomonas Chloroplasts. J. Biol. Chem. 2009, 284, 4148–4157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saroussi, S.; Sanz-Luque, E.; Kim, R.G.; Grossman, A.R. Nutrient Scavenging and Energy Management: Acclimation Responses in Nitrogen and Sulfur Deprived Chlamydomonas. Curr. Opin. Plant Biol. 2017, 39, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Baltz, A.; Dang, K.V.; Beyly, A.; Auroy, P.; Richaud, P.; Cournac, L.; Peltier, G. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii. Plant Physiol. 2014, 165, 1344–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, A.; Sanz-Luque, E.; Yi, H.; Yang, W. Building the Greencut2 Suite of Proteins to Unmask Photosynthetic Function and Regulation. Microbiology 2019, 165, 697–718. [Google Scholar] [CrossRef]
- Fristedt, R.; Herdean, A.; Blaby-Haas, C.E.; Mamedov, F.; Merchant, S.S.; Last, R.L.; Lundin, B. PHOTOSYSTEM II PROTEIN33, a Protein Conserved in the Plastid Lineage, Is Associated with the Chloroplast Thylakoid Membrane and Provides Stability to Photosystem II Supercomplexes in Arabidopsis. Plant Physiol. 2015, 167, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Yokono, M.; Akimoto, S.; Takabayashi, A.; Tanaka, A.; Tanaka, R. Deficiency of the Stroma-Lamellar Protein LIL8/PSB33 Affects Energy Transfer Around PSI in Arabidopsis. Plant Cell Physiol. 2017, 58, 2026–2039. [Google Scholar] [CrossRef] [PubMed]
- Urzica, E.I.; Casero, D.; Yamasaki, H.; Hsieh, S.I.; Adler, L.N.; Karpowicz, S.J.; Blaby-Haas, C.E.; Clarke, S.G.; Loo, J.A.; Pellegrini, M.; et al. Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage. Plant Cell 2012, 24, 3921–3948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, I.M.; Wu, H.; Ezhov, R.; Kayanja, G.E.; Zakharov, S.D.; Du, Y.; Tao, W.A.; Pushkar, Y.; Cramer, W.A.; Puthiyaveetil, S. An Evolutionarily Conserved Iron-Sulfur Cluster Underlies Redox Sensory Function of the Chloroplast Sensor Kinase. Commun. Biol. 2020, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.H. The Chlamydomonas Sourcebook; Elsevier Academic Press Inc.: New York, NY, USA, 1989; ISBN 978-0-12-326880-8. [Google Scholar]
- Atteia, A.; Van Lis, R.; Tielens, A.G.M.; Martin, W.F. Anaerobic Energy Metabolism in Unicellular Photosynthetic Eukaryotes. Biochim. Biophys. Acta Bioenerg. 2013, 1827, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Catalanotti, C.; Yang, W.; Posewitz, M.C.; Grossman, A.R. Fermentation Metabolism and Its Evolution in Algae. Front. Plant Sci. 2013, 4, 150. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Catalanotti, C.; Wittkopp, T.M.; Posewitz, M.C.; Grossman, A.R. Algae after Dark: Mechanisms to Cope with Anoxic/Hypoxic Conditions. Plant J. 2015, 82, 481–503. [Google Scholar] [CrossRef]
- Olson, A.C.; Carter, C.J. The Involvement of Hybrid Cluster Protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii. PLoS ONE 2016, 11, e0149816. [Google Scholar] [CrossRef] [Green Version]
- Atteia, A.; van Lis, R.; Gelius-Dietrich, G.; Adrait, A.; Garin, J.; Joyard, J.; Rolland, N.; Martin, W. Pyruvate Formate-Lyase and a Novel Route of Eukaryotic ATP Synthesis in Chlamydomonas Mitochondria. J. Biol. Chem. 2006, 281, 9909–9918. [Google Scholar] [CrossRef] [Green Version]
- Broderick, J.B.; Henshaw, T.F.; Cheek, J.; Wojtuszewski, K.; Smith, S.R.; Trojan, M.R.; McGhan, R.M.; Kopf, A.; Kibbey, M.; Broderick, W.E. Pyruvate Formate-Lyase-Activating Enzyme: Strictly Anaerobic Isolation Yields Active Enzyme Containing a [3Fe-4S]+ Cluster. Biochem. Biophys. Res. Commun. 2000, 269, 451–456. [Google Scholar] [CrossRef]
- Shisler, K.A.; Hutcheson, R.U.; Horitani, M.; Duschene, K.S.; Crain, A.V.; Byer, A.S.; Shepard, E.M.; Rasmussen, A.; Yang, J.; Broderick, W.E.; et al. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. J. Am. Chem. Soc. 2017, 139, 11803–11813. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.F.V.; Frey, M.; Neugebauer, F.A.; Schafer, W.; Knappe, J. The Free Radical in Pyruvate Formate-Lyase Is Located on Glycine-734. Proc. Natl. Acad. Sci. USA 1992, 89, 996–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M.C.; Grossman, A.R. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase. Plant Cell 2012, 24, 692–707. [Google Scholar] [CrossRef] [Green Version]
- Van Lis, R.; Baffert, C.; Couté, Y.; Nitschke, W.; Atteia, A. Chlamydomonas reinhardtii Chloroplasts Contain a Homodimeric Pyruvate:Ferredoxin Oxidoreductase That Functions with FDX1. Plant Physiol. 2013, 161, 57–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noth, J.; Krawietz, D.; Hemschemeier, A.; Happe, T. Pyruvate:Ferredoxin Oxidoreductase Is Coupled to Light-Independent Hydrogen Production in Chlamydomonas reinhardtii. J. Biol. Chem. 2013, 288, 4368–4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, E.; Kino, H.; Matsuzawa, H.; Wakagi, T. Role of a Highly Conserved YPITP Motif in 2-Oxoacid:Ferredoxin Oxidoreductase. Eur. J. Biochem. 2001, 268, 5639–5646. [Google Scholar] [CrossRef]
- Meuser, J.E.; D’Adamo, S.; Jinkerson, R.E.; Mus, F.; Yang, W.; Ghirardi, M.L.; Seibert, M.; Grossman, A.R.; Posewitz, M.C. Genetic Disruption of Both Chlamydomonas reinhardtii [FeFe]-Hydrogenases: Insight into the Role of HYDA2 in H2 Production. Biochem. Biophys. Res. Commun. 2012, 417, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Mulder, D.W.; Boyd, E.S.; Sarma, R.; Lange, R.K.; Endrizzi, J.A.; Broderick, J.B.; Peters, J.W. Stepwise FeFe-Hydrogenase H-Cluster Assembly Revealed in the Structure of HydA ΔeFG. Nature 2010, 465, 248–252. [Google Scholar] [CrossRef]
- Peters, J.W. X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 1998, 282, 1853–1858. [Google Scholar] [CrossRef]
- Esselborn, J.; Muraki, N.; Klein, K.; Engelbrecht, V.; Metzler-Nolte, N.; Apfel, U.P.; Hofmann, E.; Kurisu, G.; Happe, T. A Structural View of Synthetic Cofactor Integration into [Fefe]-Hydrogenases. Chem. Sci. 2016, 7, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Byer, A.S.; Shepard, E.M.; Ratzloff, M.W.; Betz, J.N.; King, P.W.; Broderick, W.E.; Broderick, J.B. H-Cluster Assembly Intermediates Built on HydF by the Radical SAM Enzymes HydE and HydG. J. Biol. Inorg. Chem. 2019, 24, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, A.; Bai, Y.; Lu, Y.; Hemschemeier, A.; Happe, T. Compartmentalisation of [FeFe]-Hydrogenase Maturation in Chlamydomonas reinhardtii. Plant J. 2017, 90, 1134–1143. [Google Scholar] [CrossRef] [Green Version]
- Posewitz, M.C.; King, P.W.; Smolinski, S.L.; Zhang, L.; Seibert, M.; Ghirardi, M.L. Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase. J. Biol. Chem. 2004, 279, 25711–25720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, P.W.; Posewitz, M.C.; Ghirardi, M.L.; Seibert, M. Functional Studies of [FeFe] Hydrogenase Maturation in an Escherichia coli Biosynthetic System. J. Bacteriol. 2006, 188, 2163–2172. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, S.; Jinkerson, R.E.; Boyd, E.S.; Brown, S.L.; Baxter, B.K.; Peters, J.W.; Posewitz, M.C. Evolutionary and Biotechnological Implications of Robust Hydrogenase Activity in Halophilic Strains of Tetraselmis. PLoS ONE 2014, 9, e85812. [Google Scholar] [CrossRef] [Green Version]
- Vieler, A.; Wu, G.; Tsai, C.H.; Bullard, B.; Cornish, A.J.; Harvey, C.; Reca, I.B.; Thornburg, C.; Achawanantakun, R.; Buehl, C.J.; et al. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 2012, 8, e1003064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragão, D.; Macedo, S.; Mitchell, E.P.; Romão, C.V.; Liu, M.Y.; Frazão, C.; Saraiva, L.M.; Xavier, A.V.; LeGall, J.; Van Dongen, W.M.A.M.; et al. Reduced Hybrid Cluster Proteins (HCP) from Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio vulgaris (Hildenborough): X-Ray Structures at High Resolution Using Synchrotron Radiation. J. Biol. Inorg. Chem. 2003, 8, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.J.; Garner, C.D.; Hagen, W.R.; Lindley, P.F.; Bailey, S. Hybrid-Cluster Protein (HCP) from Desulfovibrio vulgaris (Hildenborough) at 1.6 \AA Resolution. Biochemistry 2000, 39, 15044–15054. [Google Scholar] [CrossRef]
- Arendsen, A.F.; Hadden, J.; Card, G.; McAlpine, A.S.; Bailey, S.; Zaitsev, V.; Duke, E.H.M.; Lindley, P.F.; Kröckel, M.; Trautwein, A.X.; et al. The “prismane” Protein Resolved: X-ray Structure at 1.7 \AA and Multiple Spectroscopy of Two Novel 4Fe Clusters. J. Biol. Inorg. Chem. 1998, 3, 81–95. [Google Scholar] [CrossRef]
- Van Lis, R.; Brugière, S.; Baffert, C.; Couté, Y.; Nitschke, W.; Atteia, A. Hybrid Cluster Proteins in a Photosynthetic Microalga. FEBS J. 2020, 287, 721–735. [Google Scholar] [CrossRef]
- Mus, F.; Dubini, A.; Seibert, M.; Posewitz, M.C.; Grossman, A.R. Anaerobic Acclimation in Chlamydomonas reinhardtii: Anoxic Gene Expression, Hydrogenase Induction, and Metabolic Pathways. J. Biol. Chem. 2007, 282, 25475–25486. [Google Scholar] [CrossRef] [Green Version]
- Jez, J.M. Structural Biology of Plant Sulfur Metabolism: From Sulfate to Glutathione. J. Exp. Bot. 2019, 70, 4089–4103. [Google Scholar] [CrossRef]
- McMinn, A.; Martin, A. Dark Survival in a Warming World. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122909. [Google Scholar] [CrossRef] [Green Version]
- Kamp, A.; De Beer, D.; Nitsch, J.L.; Lavik, G.; Stief, P. Diatoms Respire Nitrate to Survive Dark and Anoxic Conditions. Proc. Natl. Acad. Sci. USA 2011, 108, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Kamp, A.; Stief, P.; Knappe, J.; De Beer, D. Response of the Ubiquitous Pelagic Diatom Thalassiosira weissflogii to Darkness and Anoxia. PLoS ONE 2013, 8, e82605. [Google Scholar] [CrossRef]
- Kamp, A.; Stief, P.; Bristow, L.A.; Thamdrup, B.; Glud, R.N. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates. Front. Microbiol. 2016, 7, 1669. [Google Scholar] [CrossRef] [PubMed]
- Kraft, B.; Strous, M.; Tegetmeyer, H.E. Microbial Nitrate Respiration—Genes, Enzymes and Environmental Distribution. J. Biotechnol. 2011, 155, 104–117. [Google Scholar] [CrossRef]
- Gould, S.B.; Garg, S.G.; Handrich, M.; Nelson-Sathi, S.; Gruenheit, N.; Tielens, A.G.M.; Martin, W.F. Adaptation to Life on Land at High O2 via Transition from Ferredoxin-to NADH-Dependent Redox Balance. Proc. Biol. Sci. 2019, 286, 20191491. [Google Scholar] [CrossRef] [Green Version]
Chlamydomonas Gene Names | Accession Numbers | Function(s) | Arabidopsis Orthologs |
---|---|---|---|
CSD4, SUFS1 | Cre12.g525650 | Cysteine desulfurase, sulfur donor | At1g08490 (NFS2) |
CSD2, NIFS2 | Cre07.g322000 | None | |
SUFE1 | Cre06.g309717 | Sulfur relay system from cysteine desulfurase | At4g26500 (SUFE1) |
At1g67810 (SUFE2) | |||
SUFE3/NIC7 | Cre06.g251450 | Quinolinate synthetase A | At5g50210 (SUFE3) |
SUFB | Cre15.g643600 | Scaffold protein complex | At4g04770 (SUFB) |
SUFC | Cre07.g339700 | Scaffold protein complex | At3g10670 (SUFC) |
SUFD | Cre12.g513950 | Scaffold protein complex | At1g32500 (SUFD) |
GRX3 | Cre07.g325743 | Transfer protein, involved in Fe-S cluster trafficking | At3g54900 (GRXS14) |
GRX6 | Cre01.g047800 | At2g38270 (GRXS16) | |
BOL1 | Cre03.g180700 | Targeting factor, involved in Fe-S cluster trafficking | At1g55805 (BOLA1) |
BOL4 | Cre09.g394701 | At5g17560 (BOLA4) | |
SUFA1 | Cre06g299350* | Transfer protein, involved in Fe-S cluster trafficking | At1g10500 (SUFA1) |
IBA57.2/CGL77 | Cre12.g552850 | Targeting factor, involved in Fe-S cluster trafficking | At1g60990 (IBA57.2) |
NFU1 | Cre17.g710800 | Transfer protein, involved in Fe-S cluster trafficking | At4g01940 (NFU1) |
NFU2 | Cre18.g748447 | At5g49940 (NFU2) | |
At4g25910 (NFU3) | |||
HCF101 | Cre01.g045902 | Transfer protein, involved in Fe-S cluster trafficking | At3g24430 (HCF101) |
Sulfur Supply | Scaffold System | Iron-Sulfur Cluster Transfer | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NIFS2 | SUFS1 | SUFE1 | SUFE3 | SUFB | SUFC | SUFD | SUFA1 | IBA57.2 | GRX3 | GRX6 | BOL1 | BOL4 | NFU1 | NFU2 | HCF101 | |||
Rhodophyta | Galdieria sulphuraria 074W | + | + | + | +,c | + | + | + | + | e | + | + | + | + | + | |||
Glaucophyta | Cyanophora paradoxa CCMP329 | + | + | + | +,c | +,c | + | +,d | + | + | + | + | + | |||||
Chlorophyta | Chlorophyceae | Chlamydomonas reinhardtii | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Ulvophyceae | Caulerpa lentillifera | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
Trebouxiophyceae | Chlorella variabilis NC64A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
Chlorodendrophyceae | Tetraselmis striata | + | + | +,a | + | + | + | + | + | + | + | + | + | + | + | |||
Chloropicophyceae | Chloropicon primus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
Picocystophyceae | Picocystis sp. ML | + | + | + | + | + | + | + | + | + | + | + | ||||||
Mamiellophyceae | Micromonas pusilla CCMP1545 | + | + | +,a | + | + | + | + | + | + | + | + | + | +,f | + | + | ||
Palmophyllophyceae | Prasinoderma coloniale CCMP1413 | + | + | + | + | + | + | +,c | + | + | + | + | + | + | + | |||
Streptophyta | Chlorokybophyceae | Chlorokybus atmophyticus CCAC 0220 | + | + | +,a | + | + | + | + | + | + | + | + | + | + | + | + | + |
Mesostigmatophyceae | Mesostigma viride CCAC 1140 | + | + | +,a | + | + | + | + | + | + | + | + | + | + | + | + | ||
Klebsormidiophyceae | Klebsormidium nitens NIES-2285 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
Zygnemophyceae | Mesotaenium endlicherianum SAG 12.97 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
Charophyceae | Chara braunii S276 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
Cryptophyta | Guillardia theta CCMP2712 | + | + | +,a | +,c | + | +,c | + | + | + | + | + | + | + | ||||
Haptophyta | Emiliania huxleyi CCMP1516 v1.0 | + | +,b | +,c | + | + | + | + | + | + | + | + | ||||||
Rhizaria | Chlorarachniophyta | Bigelowiella natans CCMP2755 | + | + | +,a | +,c | + | + | + | + | + | + | + | + | ||||
Heterokonta | Bacillariophyta | Phaeodactylum tricornutum CCAP 1055/1 v2.0 | + | + | +,b | + | +,c | +,c | + | + | + | + | + | + | + | |||
Phaeophyta | Ectocarpus siliculosus Ec 32 | + | + | + | + | +,c | +,c | + | + | + | + | + | + | + | ||||
Eustigmatophyta | Nannochloropsis oceanica CCMP1779 v2.0 | + | + | +,c | +,c | + | + | + | + | + | + | + | + | |||||
Chrysophyta | Ochromonas sp. CCMP1393 v1.4 | + | + | + | +,c | +,c | + | + | + | + | + | |||||||
Pelagophyta | Aureococcus anophagefferens clone 1984 | + | + | +,b | +,c | + | + | + | + | + | ||||||||
Alveolata | Chromerida | Vitrella brassicaformis CCMP3155 | + | +,a | + | + | + | + | + | + | + | + | ||||||
Dinophyta | Symbiodinium microadriaticum CCMP2467 | + | +,a | + | + | + | + | + | + | + | + |
Supergroup | Phylum | Class | DPOR | NDH | Refs |
---|---|---|---|---|---|
Archaeplastida | Glaucophyta | Glaucocystophyceae | |||
Cyanophora paradoxa | + | − | a | ||
Rhodophyta | Bangiophyceae | ||||
Galdieria sulphuraria | + | − | [72] | ||
Cyanidioschizon merolae | − | − | [73] | ||
Porphyra purpurea | + | - | [74] | ||
Chlorophyta | Mamiellophyceae | ||||
Ostreococcus tauri | − | − | [75] | ||
Nephroselmidophyceae | |||||
Nephroselmis astigmatica | +* | − | [76] | ||
Picocystophyceae | |||||
Picocystis salinarum | − | + | [76] | ||
Chlorophyceae | |||||
Chlamydomonas reinhardtii | + | − | [77] | ||
Trebouxiophyceae | |||||
Chlorella vulgaris | + | − | [78] | ||
Streptophyta | Klebsormidiaceae | ||||
Klebsormidium flaccidum | + | + | [79] | ||
Maesotaenium endlicherianum | + | + | [79] | ||
Charophyceae | |||||
Chara vulgaris | + | + | [80] | ||
Heterokonta | Ochrophyta | Bacillariophyceae | |||
Phaeodactylum tricornutum | − | − | [81] | ||
Coscinodiscophyceae | |||||
Thalassiosira pseudonana | − | − | [81] | ||
Eustigmatophyceae | |||||
Nannochloropsis oceanica IMET1 | + | − | [82] | ||
Alveolata | Dinophyta | Dinophyceae | |||
Symbiodinium Clade C3 | − | − | [83] | ||
Chromerida | Vitrella brassicaformis CCMP3155 | +* | − | [50] | |
Chromera velia | − | − | [50] | ||
Rhizaria | Cercozoa | Chlorarachniophyceae | |||
Bigelowiella natans | − | − | [84] | ||
Lotharella oceanica | − | − | [85] | ||
Haptophyta | Prymnesiophyceae | ||||
Emiliania huxleyi | − | − | [86] | ||
Tisochrysis lutea | − | − | [87] | ||
Cryptophyta | Cryptophyceae | ||||
Guillardia theta CCMP2712 | − | − | [88] | ||
Rhodomonas salina CCMP1319 | −♯ | − | [89] | ||
Storeatula species CCMP1868 | + | − | [90] | ||
Excavata | Euglenozoa | Euglenophyceae | |||
Euglena gracilis | − | − | [91] | ||
Eutreptiella pomquetensis | − | − | [92] |
PFLA | PFO | HYDA | HYDE | HYDF | HYDG | HCP | |||
---|---|---|---|---|---|---|---|---|---|
Rhodophyta | Galdieria sulphuraria 074W | ||||||||
Glaucophyta | Cyanophora paradoxa CCMP329 | + | + | + | + | + | + | +,d | |
Chlorophyta | Chlorophyceae | Chlamydomonas reinhardtii | + | + | + | +,a | +,a | + | + |
Ulvophyceae | Caulerpa lentillifera | + | |||||||
Trebouxiophyceae | Chlorella variabilis NC64A | + | +,c | + | +,a | +,a | + | +,c | |
Chlorodendrophyceae | Tetraselmis striata | + | + | + | +,a | +,a | |||
Chloropicophyceae | Chloropicon primus | ||||||||
Picocystophyceae | Picocystis sp. ML | ||||||||
Mamiellophyceae | Micromonas pusilla CCMP1545 | + | |||||||
Palmophyllophyceae | Prasinoderma coloniale CCMP1413 | ||||||||
Streptophyta | Chlorokybophyceae | Chlorokybus atmophyticus CCAC 0220 | |||||||
Mesostigmatophyceae | Mesostigma viride CCAC 1140 | + | |||||||
Klebsormidiophyceae | Klebsormidium nitens NIES-2285 | ||||||||
Zygnemophyceae | Mesotaenium endlicherianum SAG 12.97 | ||||||||
Charophyceae | Chara braunii S276 | + | + | + | + | + | + | ||
Cryptophyta | Guillardia theta CCMP2712 | + | + | ||||||
Haptophyta | Emiliania huxleyi CCMP1516 v1.0 | ||||||||
Rhizaria | Chlorarachniophyta | Bigelowiella natans CCMP2755 | + | ||||||
Heterokonta | Bacillariophyta | Phaeodactylum tricornutum CCAP 1055/1 v2.0 | b | b | b | + | |||
Phaeophyta | Ectocarpus siliculosus Ec 32 | ||||||||
Eustigmatophyta | Nannochloropsis oceanica CCMP1779 v2.0 | + | + | + | + | + | |||
Chrysophyta | Ochromonas sp. CCMP1393 v1.4 | + | |||||||
Pelagophyta | Aureococcus anophagefferens clone 1984 | ||||||||
Alveolata | Chromerida | Vitrella brassicaformis CCMP3155 | + | + | + | +,a | +,a | + | + |
Dinophyta | Symbiodinium microadriaticum CCMP2467 | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybyla-Toscano, J.; Couturier, J.; Remacle, C.; Rouhier, N. Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int. J. Mol. Sci. 2021, 22, 3175. https://doi.org/10.3390/ijms22063175
Przybyla-Toscano J, Couturier J, Remacle C, Rouhier N. Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. International Journal of Molecular Sciences. 2021; 22(6):3175. https://doi.org/10.3390/ijms22063175
Chicago/Turabian StylePrzybyla-Toscano, Jonathan, Jérémy Couturier, Claire Remacle, and Nicolas Rouhier. 2021. "Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae" International Journal of Molecular Sciences 22, no. 6: 3175. https://doi.org/10.3390/ijms22063175
APA StylePrzybyla-Toscano, J., Couturier, J., Remacle, C., & Rouhier, N. (2021). Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. International Journal of Molecular Sciences, 22(6), 3175. https://doi.org/10.3390/ijms22063175