An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates
Abstract
:1. Introduction
2. Results
2.1. Workflow of this Study
2.2. Identification of Significant TWAS Genes Associated with ALS Risk
2.3. Conditional Analysis Supports the TWAS Genes of ALS
2.4. Functional Annotation of TWAS Signals
2.5. Identification of Drug Candidates for ALS
3. Discussion
4. Materials and Methods
4.1. GWAS Summary Statistics of ALS
4.2. Transcriptome-Wide Association Study
4.3. Conditional Analysis Using TWAS Results
4.4. Functional Enrichment Analysis
4.5. Drug Repositioning Analysis Using CMap
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Amyotrophic lateral sclerosis |
GWAS | Genome-wide association studies |
LD | Linkage disequilibrium |
CMap | Connectivity map |
eQTL | Expression quantitative trait loci |
TWAS | Transcriptome-wide association study |
GE | Gene expression |
C9orf72 | C9orf72-SMCR8 complex subunit |
SCFD1 | Sec1 family domain containing 1 |
RSPH10B | Radial spoke head 10 homolog B |
NDUFC2 | NADH:ubiquinone oxidoreductase subunit C2 |
HDGFRP3 | Hepatoma-derived growth factor, related protein 3 |
MYO19 | Myosin XIX |
GGNBP2 | Gametogenetin-binding protein 2 |
USP37 | Ubiquitin-specific peptidase 37 |
PRSS3 | Serine Protease 3 |
ER | Endoplasmic reticulum |
5-LOX | 5-lipoxygenase |
GABAA | γ-aminobutyric acid type A |
JUP | Junction plakoglobin |
MsigDB | Molecular signatures database |
References
- Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet 2011, 377, 942–955. [Google Scholar] [CrossRef] [Green Version]
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chio, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [Google Scholar] [CrossRef]
- Solcà, M.; Ronchi, R.; Bello-Ruiz, J.; Schmidlin, T.; Herbelin, B.; Luthi, F.; Konzelmann, M.; Beaulieu, J.Y.; Delaquaize, F.; Schnider, A.; et al. The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology 2018, 91, e635–e642. [Google Scholar] [CrossRef] [Green Version]
- Kapeli, K.; Martinez, F.J.; Yeo, G.W. Genetic mutations in RNA-binding proteins and their roles in ALS. Hum. Genet. 2017, 136, 1193–1214. [Google Scholar] [CrossRef] [Green Version]
- Benyamin, B.; He, J.; Zhao, Q.Y.; Gratten, J.; Garton, F.; Leo, P.J.; Liu, Z.J.; Mangelsdorf, M.; Al-Chalabi, A.; Anderson, L.; et al. Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Nicolas, A.; Kenna, K.P.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; et al. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 2018, 97, 1268–12683. [Google Scholar] [CrossRef] [Green Version]
- Van Rheenen, W.; Shatunov, A.; Dekker, A.M.; McLaughlin, R.L.; Diekstra, F.P.; Pulit, S.L.; Van der Spek, R.A.A.; Vosa, U.; de Jong, S.; Robinson, M.R.; et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 2016, 48, 1043–1048. [Google Scholar] [CrossRef] [Green Version]
- Hormozdiari, F.; Zhu, A.; Kichaev, G.; Ju, C.J.T.; Segre, A.V.; Joo, J.W.J.; Won, H.J.; Sankararaman, S.; Pasaniuc, B.; Shifman, S.; et al. Widespread allelic heterogeneity in complex traits. Am. J. Hum. Genet. 2017, 100, 789–802. [Google Scholar] [CrossRef] [Green Version]
- Westra, H.J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.W.; Fairfax, B.P.; Schramm, K.; Powell, J.E.; et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013, 45, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Pain, O.; Pocklington, A.J.; Holmans, P.A.; Bray, N.J.; O’Brien, H.E.; Hall, L.S.; Pardinas, A.F.; O’Donovan, M.C.; Owen, M.J.; Anney, R. Novel Insight into the etiology of autism spectrum disorder gained by integrating expression data with genome-wide association statistics. Biol. Psychiat. 2019, 86, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.S.; Medway, C.W.; Pain, O.; Pardinas, A.F.; Rees, E.G.; Escott-Price, V.; Pocklington, A.; Bray, N.J.; Holmans, P.A.; Walters, J.T.R.; et al. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Hum. Mol. Genet. 2020, 29, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Gusev, A.; Ko, A.; Shi, H.; Bhatia, G.; Chung, W.; Penninx, B.W.J.H.; Jansen, R.; de Geus, E.J.C.; Boomsma, D.I.; Wright, F.A.; et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 2016, 48, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.H.; Zhang, F.T.; Hu, H.; Bakshi, A.; Robinson, M.R.; Powell, J.E.; Montgomery, G.W.; Goddard, M.E.; Wray, N.R.; Visscher, P.M.; et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016, 48, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Gamazon, E.R.; Wheeler, H.E.; Shah, K.P.; Mozaffari, S.V.; Aquino-Michaels, K.; Carroll, R.J.; Eyler, A.E.; Denny, J.C.; Nicolae, D.L.; Cox, N.J.; et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 2015, 47, 1091. [Google Scholar] [CrossRef] [Green Version]
- Bulik-Sullivan, B.K.; Loh, P.R.; Finucane, H.K.; Ripke, S.; Yang, J.; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M.; Grp, S.W. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Majounie, E.; Renton, A.E.; Mok, K.; Dopper, E.G.P.; Waite, A.; Rollinson, S.; Chio, A.; Restagno, G.; Nicolaou, N.; Simon-Sanchez, J.; et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study. Lancet Neurol. 2012, 11, 323–330. [Google Scholar] [CrossRef]
- Volk, A.E.; Weishaupt, J.H.; Andersen, P.M.; Ludolph, A.C.; Kubisch, C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med. Genet. Berlin 2018, 30, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ferreira, T.; Morris, A.P.; Medland, S.E.; Madden, P.A.F.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; Weedon, M.N.; Loos, R.J.; et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012, 44, 369–375. [Google Scholar] [CrossRef]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef] [Green Version]
- Mitsumoto, H.; Brooks, B.R.; Silani, V. Clinical trials in amyotrophic lateral sclerosis: Why so many negative trials and how can trials be improved? Lancet Neurol. 2014, 13, 1127–1138. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, Z.; Jin, S.; Wang, T.; Huang, S.; Zeng, P. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated with Amyotrophic Lateral Sclerosis. Front. Genet. 2020, 11, 1440. [Google Scholar] [CrossRef] [PubMed]
- Freibaum, B.D.; Chitta, R.K.; High, A.A.; Taylor, J.P. Global Analysis of TDP-43 Interacting Proteins Reveals Strong Association with RNA Splicing and Translation Machinery. J. Proteome Res. 2010, 9, 1104–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacoangeli, A.; Lin, T.; Al Khleifat, A.; Jones, A.R.; Opie-Martin, S.; Coleman, J.R.I.; Shatunov, A.; Sproviero, W.; Williams, K.L.; Garton, F.; et al. Genome-wide meta-analysis finds the ACSL5-ZDHHC6 Locus is associated with als and links weight loss to the disease genetics. Cell Rep. 2020, 33, 108323. [Google Scholar] [CrossRef]
- Dodge, J.C. Lipid Involvement in neurodegenerative diseases of the motor system: Insights from lysosomal storage diseases. Front. Mol. Neurosci. 2017, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Saris, C.G.J.; Horvath, S.; van Vught, P.W.J.; van Es, M.A.; Blauw, H.M.; Fuller, T.F.; Langfelder, P.; DeYoung, J.; Wokke, J.H.J.; Veldink, J.H.; et al. Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. BMC Genom. 2009, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Calvo, A.C.; Pradat, P.F.; Mendonca, D.M.F.; Manzano, R. Decoding Amyotrophic Lateral Sclerosis: Discovery of Novel Disease-Related Biomarkers and Future Perspectives in Neurodegeneration. BioMed Res. Int. 2014. [Google Scholar] [CrossRef]
- Hawley, Z.C.E.; Campos-Melo, D.; Strong, M.J. Novel miR-b2122 regulates several ALS-related RNA-binding proteins. Mol. Brain 2017, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Haase, G.; Rabouille, C. Golgi Fragmentation in ALS motor neurons. new mechanisms targeting microtubules, tethers, and transport vesicles. Front. Neurosci. 2015, 9, 448. [Google Scholar] [CrossRef]
- Sundaramoorthy, V.; Sultana, J.M.; Atkin, J.D. Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front. Neurosci. 2015, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Burk, K.; Pasterkamp, R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol. 2019, 137, 859–877. [Google Scholar] [CrossRef] [Green Version]
- Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor Neuron Susceptibility in ALS/FTD. Front. Neurosci. 2019, 13, 532. [Google Scholar] [CrossRef] [Green Version]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.J.; Song, J.Y.; Huang, H.L.; Chen, H.; Qian, K. Modeling hallmark pathology using motor neurons derived from the family and sporadic amyotrophic lateral sclerosis patient-specific iPS cells. Stem Cell Res. Ther. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.X.; McLean, J.; Robertson, J. Neuronal intermediate filaments and ALS: A new look at an old question. BBA Mol. Basis Dis. 2006, 1762, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Klegeris, A.; McGeer, P.L. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol. Aging 2002, 23, 787–794. [Google Scholar] [CrossRef]
- Yoo, Y.E.; Ko, C.P. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 2011, 231, 147–159. [Google Scholar] [CrossRef]
- Sanna, S.; Esposito, S.; Masala, A.; Sini, P.; Nieddu, G.; Galioto, M.; Fais, M.; Iaccarino, C.; Cestra, G.; Crosio, C. HDAC1 inhibition ameliorates TDP-43-induced cell death in vitro and in vivo. Cell Death Dis. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Rahman, M.R.; Islam, T.; Turanli, B.; Zaman, T.; Faruquee, H.M.; Rahman, M.M.; Mollah, M.N.H.; Nanda, R.K.; Arga, K.Y.; Gov, E.; et al. Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer’s disease. Comput. Biol. Chem. 2019, 78, 431–439. [Google Scholar] [CrossRef]
- Li, P.; Bracamontes, J.; Katona, B.W.; Covey, D.F.; Steinbach, J.H.; Akk, G. Natural and enantiomeric ctiocholanolone interact with distinct sites on the rat alpha 1 beta 2 gamma 2L GABA(A) receptor. Mol. Pharmacol. 2007, 71, 1582–1590. [Google Scholar] [CrossRef] [Green Version]
- Zolkowska, D.; Dhir, A.; Krishnan, K.; Covey, D.F.; Rogawski, M.A. Anticonvulsant potencies of the enantiomers of the neurosteroids androsterone and etiocholanolone exceed those of the natural forms. Psychopharmacology 2014, 231, 3325–3332. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, T.S.; Lau, E.Y.; Lightstone, F.C. Identification of a possible secondary picrotoxin-binding site on the GABA(A) Receptor. Chem. Res. Toxicol. 2013, 26, 1444–1454. [Google Scholar] [CrossRef]
- Qu, C.B.; Li, Y.; Li, Y.L.; Yu, P.F.; Li, P.F.; Donkers, J.M.; van de Graaf, S.F.J.; de Man, R.A.; Peppelenbosch, M.P.; Pan, Q.W. FDA-drug screening identifies deptropine inhibiting hepatitis E virus involving the NF-kappa B-RIPK1-caspase axis. Antivir. Res. 2019, 170, 104588. [Google Scholar] [CrossRef]
- Volonte, C.; Apolloni, S.; Sabatelli, M. Histamine beyond its effects on allergy: Potential therapeutic benefits for the treatment of amyotrophic lateral sclerosis (ALS). Pharmacol. Therapeut. 2019, 202, 120–131. [Google Scholar] [CrossRef]
- Wang, M.L.; Liu, Z.; Sun, W.N.; Yuan, Y.C.; Jiao, B.; Zhang, X.W.; Shen, L.; Jiang, H.; Xia, K.; Tang, B.S.; et al. Association between vitamins and amyotrophic lateral sclerosis: A center-based survey in mainland China. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef]
- Cieslak, M.; Roszek, K.; Wujak, M. Purinergic implication in amyotrophic lateral sclerosisfrom pathological mechanisms to therapeutic perspectives. Purinerg. Signal. 2019, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Orsucci, D.; Mancuso, M.; Filosto, M.; Siciliano, G. Tetracyclines and neuromuscular disorders. Curr. Neuropharmacol. 2012, 10, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.L.; Lee, J.K. Amyotrophic lateral sclerosis with an acute hypertensive crises. Ann. Rehabil. Med. 2012, 36, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Kott, E.; Legendre, M.; Copin, B.; Papon, J.F.; Dastot-Le Moal, F.; Montantin, G.; Duquesnoy, P.; Piterboth, W.; Amram, D.; Bassinet, L.; et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am. J. Hum. Genet. 2013, 93, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Migita, A.; Hayashi, K.; Hirahara, T.; Kimura, E.; Maeda, Y.; Hirano, T.; Uchino, M. Amyotrophic lateral sclerosis in a patient with Kartagener syndrome. Amyotroph. Lateral Scler. 2010, 11, 402–404. [Google Scholar] [CrossRef]
- Stroud, D.A.; Surgenor, E.E.; Formosa, L.E.; Reljic, B.; Frazier, A.E.; Dibley, M.G.; Osellame, L.D.; Stait, T.; Beilharz, T.H.; Thorburn, D.R.; et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 2016, 538, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Tumer, M.R.; Goldacre, R.; Talbot, K.; Goldacre, M.J. Cerebrovascular injury as a risk factor for amyotrophic lateral sclerosis. J. Neurol. Neurosur. Psychiatry 2016, 87, 244–246. [Google Scholar] [CrossRef] [Green Version]
- Rubattu, S.; Di Castro, S.; Schulz, H.; Geurts, A.M.; Cotugno, M.; Bianchi, F.; Maatz, H.; Hummel, O.; Falak, S.; Stanzione, R.; et al. Ndufc2 Gene Inhibition Is Associated with Mitochondrial Dysfunction and Increased Stroke Susceptibility in an Animal Model of Complex Human Disease. J. Am. Heart Assoc. 2016, 5, e002701. [Google Scholar] [CrossRef] [Green Version]
- Puente, X.S.; Sanchez, L.M.; Overall, C.M.; Lopez-Otin, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet. 2003, 4, 544–558. [Google Scholar] [CrossRef]
- Boland, B.; Yu, W.H.; Corti, O.; Mollereau, B.; Henriques, A.; Bezard, E.; Pastores, G.M.; Rubinsztein, D.C.; Nixon, R.A.; Duchen, M.R.; et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2018, 17, 660–688. [Google Scholar] [CrossRef]
- Zhang, T.; Periz, G.; Lu, Y.N.; Wang, J.O. USP7 regulates ALS-associated proteotoxicity and quality control through the NEDD4L-SMAD pathway. Proc. Natl. Acad. Sci. USA 2020, 117, 28114–28125. [Google Scholar] [CrossRef]
- Kunkel, S.D.; Suneja, M.; Ebert, S.M.; Bongers, K.S.; Fox, D.K.; Malmberg, S.E.; Alipour, F.; Shields, R.K.; Adams, C.M. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 2011, 13, 627–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Zhao, S.P.; Frasor, J.M.; Dai, Y. An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F activity as distinct features of tamoxifen resistant breast tumors. PLoS ONE 2011, 6, e0154756. [Google Scholar] [CrossRef] [PubMed]
- Siu, F.M.; Ma, D.L.; Cheung, Y.W.; Lok, C.N.; Yan, K.; Yang, Z.Q.; Yang, M.S.; Xu, S.X.; Ko, B.C.B.; He, Q.Y.; et al. Proteomic and transcriptomic study on the action of a cytotoxic saponin (Polyphyllin D): Induction of endoplasmic reticulum stress and mitochondria-mediated apoptotic pathways. Proteomics 2008, 8, 3105–3117. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, S.J.; Koeller, K.M.; Wong, J.C.; Grozinger, C.M.; Schreiber, S.L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 2003, 100, 4389–4394. [Google Scholar] [CrossRef] [Green Version]
- Nuotio, J.; Oikonen, M.; Magnussen, C.G.; Jokinen, E.; Laitinen, T.; Hutri-Kahonen, N.; Kahonen, M.; Lehtimaki, T.; Taittonen, L.; Tossavainen, P.; et al. Cardiovascular risk factors in 2011 and secular trends since 2007: The cardiovascular risk in young finns study. Scand. J. Public Health 2014, 42, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, O.T.; Juonala, M.; Ronnemaa, T.; Keltikangas-Jarvinen, L.; Rasanen, L.; Pietikainen, M.; Hutri-Kahonen, N.; Taittonen, L.; Jokinen, E.; Marniemi, J.; et al. Cohort profile: The cardiovascular risk in Young Finns Study. Int. J. Epidemiol. 2008, 37, 1220–1226. [Google Scholar] [CrossRef] [Green Version]
- Wright, F.A.; Sullivan, P.F.; Brooks, A.I.; Zou, F.; Sun, W.; Xia, K.; Madar, V.; Jansen, R.; Chung, W.; Zhou, Y.H.; et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 2014, 46, 430–437. [Google Scholar] [CrossRef] [PubMed]
- GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 2017, 550, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Carbonetto, P.; Stephens, M. Polygenic Modeling with Bayesian Sparse Linear Mixed Models. PLoS Genet. 2013, 9, e1003264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberzon, A.; Birger, C.; Thorvaldsdottir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Ziyatdinov, A.; Vazquez-Santiago, M.; Brunel, H.; Martinez-Perez, A.; Aschard, H.; Soria, J.M. Ime4qtl: Linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinform. 2018, 19, 1–5. [Google Scholar] [CrossRef]
Gene | Tissue Panel | Chr | Best GWAS rsID | TWAS Z-Score | TWAS p-Value | FDR |
---|---|---|---|---|---|---|
RSPH10B | GTEx—Pituitary | 7 | rs709930 | −4.68 | 2.90 × 10−6 | 6.43 × 10−3 |
NDUFC2 | GTEx—Brain Cortex | 11 | rs665278 | −4.25 | 2.18 × 10−5 | 3.04 × 10−2 |
HDGFRP3 | YFS—Blood | 15 | rs13329195 | −4.26 | 2.39 × 10−5 | 3.24 × 10−2 |
USP37 | NTR—Blood | 2 | rs933994 | 4.20 | 2.74 × 10−5 | 3.54 × 10−2 |
NDST2 | YFS—Blood | 10 | rs12256103 | 4.13 | 3.57 × 10−5 | 4.22 × 10−2 |
LCE1C | GTEx—Brain Cerebellar Hemisphere | 1 | rs3126091 | −4.11 | 3.93 × 10−5 | 4.50 × 10−2 |
TRBC2 | NTR—Blood | 7 | rs1964986 | −4.09 | 4.28 × 10−5 | 4.83 × 10−2 |
Gene(s). | Chr | Gene Start Position | Gene Stop Position | GWAS Reported Gene | Index SNP | GWAS Loci Position |
---|---|---|---|---|---|---|
USP37 | 2 | 219,000,000 | 219,000,000 | STK36, TTLL4, ZNF142 | rs2303565 | 218,680,586 |
GPX3, TNIP1 | 5 | 150,000,000 | 150,000,000 | TNIP1 | rs10463311 | 15,103,274 |
C9orf72 | 9 | 27,500,000 | 27,600,000 | IFNK, MOBKL2B, C9orf72 | rs3849943, rs3849942 | 27,543,384 |
PRSS3 | 9 | 33,800,000 | 33,800,000 | Intergenic | rs4879628 | 32,888,522 |
B4GALNT1 | 12 | 58,000,000 | 58,000,000 | KIF5A | rs113247976 | 57,581,917 |
ATXN3, TRIP11, RP11-529H20.6 | 14 | 92,500,000 | 92,500,000 | ATXN3 | rs10143310 | 92,074,037 |
SCFD1 | 14 | 31,100,000 | 31,200,000 | SCFD1 | rs10139154 | 30,678,292 |
MYO19 | 17 | 34,851,477 | 34,900,737 | TMEM132E | rs730547 | 34,785,087 |
Panel | GeneSet | N Mem Avail | N Mem | FDR |
---|---|---|---|---|
Brain Hippocampus | GO: Negative regulation of binding | 14 | 164 | 3.15 × 10−2 |
Brain Hypothalamus | Hallmark: KRAS signaling up | 13 | 200 | 1.30 × 10−2 |
Brain Nucleus accumbens/basal ganglia | Hallmark: KRAS signaling up | 14 | 200 | 2.40 × 10−2 |
GO: Perikaryon | 11 | 127 | 3.60 × 10−2 | |
Whole-Blood | GO: Post Golgi vesicle-mediated transport | 11 | 104 | 3.05 × 10−2 |
CMap Name | PubChem Name | PubChem CID | Enrichment Score | p-Value |
---|---|---|---|---|
MK-886 | MK 886 | 365137 | 0.966 | 2.01 × 10−3 |
STOCK1N-35696 | - | - | 0.965 | 2.07 × 10−3 |
PF-00539758-00 | - | - | 0.949 | 1.20 × 10−4 |
16,16-Dimethylprostaglandin E2 | 16,16-Dimethyl-Pge2 | 5283066 | 0.893 | 2.38 × 10−3 |
Bufexamac | Bufexamac | 2466 | 0.827 | 1.35 × 10−3 |
Androsterone | Androsterone | 5879 | 0.813 | 2.37 × 10−3 |
Picrotoxinin | Picrotoxinin | 442292 | 0.801 | 3 × 10−3 |
Sulfinpyrazone | Sulfinpyrazone | 5342 | 0.795 | 3.46 × 10−3 |
Deptropine | Deptropine | 203911 | 0.77 | 5.43 × 10−3 |
Folic acid | Folic acid | 135398658 | 0.757 | 6.60 × 10−3 |
Mebendazole | Mebendazole | 4030 | 0.741 | 2.68 × 10−3 |
Adenosine phosphate | Adenosine 5’-Monophosphate | 6083 | 0.734 | 9.83 × 10−3 |
Tetracycline | Tetracycline | 54675776 | 0.673 | 9.75 × 10−3 |
Phentolamine | Phentolamine | 5775 | 0.611 | 4.59 × 10−3 |
Trichostatin A | Trichostatin A | 444732 | 0.386 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kim, D.; Song, J.; Joo, J.W.J. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. Int. J. Mol. Sci. 2021, 22, 3216. https://doi.org/10.3390/ijms22063216
Park S, Kim D, Song J, Joo JWJ. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. International Journal of Molecular Sciences. 2021; 22(6):3216. https://doi.org/10.3390/ijms22063216
Chicago/Turabian StylePark, Sungmin, Daeun Kim, Jaeseung Song, and Jong Wha J. Joo. 2021. "An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates" International Journal of Molecular Sciences 22, no. 6: 3216. https://doi.org/10.3390/ijms22063216
APA StylePark, S., Kim, D., Song, J., & Joo, J. W. J. (2021). An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. International Journal of Molecular Sciences, 22(6), 3216. https://doi.org/10.3390/ijms22063216