Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin–Thiadiazole Hybrids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. XRD Crystallography
2.3. IR(ATR) Spectroscopy
2.4. NMR Spectroscopy
2.5. UV-Vis Spectroscopy
2.6. Fluorescence Spectroscopy
2.7. AChE and BuChE Inhibition Activity
2.8. Antibacterial Activity
2.9. Antifungal Activity
2.10. Determination of Cytotoxicity
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of a Series of Substituted Coumarin-3-Carboxylic Acids (1-12′)
3.2.1. Synthesis of Coumarin Carboxylic Acids 1′–5′, and 8′ (Method A)
3.2.2. Synthesis of Coumarin Carboxylic Acids 6′ and 7′ (Method B)
3.2.3. Synthesis of Coumarin Carboxylic Acids 9′–12′ (Method C)
3.3. Synthesis of Coumarin–Thiadiazole Hybrids (1–8)
3.4. Synthesis of Coumarin–Thiadiazole Hybrids (9-12)
3.5. AChE and BuChE Inhibition Activity
3.6. Antibacterial Activity
3.7. Antifungal Activity
3.8. MTT Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina, F.G.; Marrero, J.G.; Macías-Alonso, M.; González, M.C.; Córdova-Guerrero, I.; Teissier García, A.G.; Osegueda-Robles, S. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. Nat. Prod. Rep. 2015, 32, 1472–1507. [Google Scholar] [CrossRef]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef]
- Hu, Y.; Li, C.-Y.; Wang, X.-M.; Yang, Y.-H.; Zhu, H.-L. 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry. Chem. Rev. 2014, 114, 5572–5610. [Google Scholar] [CrossRef]
- Serban, G.; Stanasel, O.; Serban, E.; Bota, S. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des. Dev. Ther. 2018, 12, 1545–1566. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. [Google Scholar] [CrossRef]
- Ioannis, F.; Dimitra, H.-L. Hybrids of Coumarin Derivatives as Potent and Multifunctional Bioactive Agents: A Review. Med. Chem. 2020, 16, 272–306. [Google Scholar]
- Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat. 2017, 27, 477–505. [Google Scholar] [CrossRef] [PubMed]
- Maříková, J.; Mamun, A.A.; Shammari, L.A.; Korábečný, J.; Kučera, T.; Hulcová, D.; Kuneš, J.; Malaník, M.; Vašková, M.; Kohelová, E.; et al. Structure Elucidation and Cholinesterase Inhibition Activity of Two New Minor Amaryllidaceae Alkaloids. Molecules 2021, 26, 1279. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Kozik, V.; Pindjakova, D.; Jankech, T.; Smolinski, A.; Stepankova, S.; Hosek, J.; Oravec, M.; Jampilek, J.; Bak, A. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. Int. J. Mol. Sci. 2021, 22, 3444. [Google Scholar] [CrossRef]
- Carneiro, A.; Matos, M.J.; Uriarte, E.; Santana, L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021, 26, 501. [Google Scholar] [CrossRef]
- Şahin, Ö.; Özmen Özdemir, Ü.; Seferoğlu, N.; Adem, Ş.; Seferoğlu, Z. Synthesis, characterization, molecular docking and in vitro screening of new metal complexes with coumarin Schiff base as anticholine esterase and antipancreatic cholesterol esterase agents. J. Biomol. Struct. Dyn. 2021, 39, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Masroor, A.; Chandel, T.I.; Malik, S.; Mateen, Q.N.; Uversky, V.N.; Khan, R.H. Evaluation of ThT augmentation and RLS inner filter effect caused by highly fluorescent coumarin derivative and establishing it as true inhibitor of amyloid fibrillation. Arch. Biochem. Biophys. 2021, 709, 108981. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.G.; Rennó, M.N.; Figueroa-Villar, J.D. Coumarins as cholinesterase inhibitors: A review. Chem.-Biol. Interact. 2016, 254, 11–23. [Google Scholar] [CrossRef]
- Ujan, R.; Saeed, A.; Channar, P.A.; Larik, F.A.; Abbas, Q.; Alajmi, M.F.; El-Seedi, H.R.; Rind, M.A.; Hassan, M.; Raza, H.; et al. Drug-1,3,4-Thiadiazole Conjugates as Novel Mixed-Type Inhibitors of Acetylcholinesterase: Synthesis, Molecular Docking, Pharmacokinetics, and ADMET Evaluation. Molecules 2019, 24, 860. [Google Scholar] [CrossRef] [Green Version]
- Skrzypek, A.; Matysiak, J.; Karpińska, M.; Czarnecka, K.; Kręcisz, P.; Stary, D.; Kukułowicz, J.; Paw, B.; Bajda, M.; Szymański, P.; et al. Biological evaluation and molecular docking of novel 1,3,4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors. Bioorg. Chem. 2021, 107, 104617. [Google Scholar] [CrossRef]
- Balewski, Ł.; Szulta, S.; Jalińska, A.; Kornicka, A. A Mini-Review: Recent Advances in Coumarin-Metal Complexes with Biological Properties. Front. Chem. 2021, 9, 1. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Pombeiro, A.J.L.; Kopylovich, M.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord. Chem. Rev. 2016, 308, 32–55. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Y.-L.; Liu, X.-Z.; Shen, P.; Zheng, Y.-G.; Lan, X.-R.; Lu, C.-B.; Wang, J.-Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Huat, T.J.; Camats-Perna, J.; Newcombe, E.A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, M.; Robert, A.; Meunier, B. Metal Ions in Alzheimer’s Disease: A Key Role or Not? Acc. Chem. Res. 2019, 52, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Bakulski, K.M.; Seo, Y.A.; Hickman, R.C.; Brandt, D.; Vadari, H.S.; Hu, H.; Park, S.K. Heavy Metals Exposure and Alzheimer’s Disease and Related Dementias. J. Alzheimer’s Dis. JAD 2020, 76, 1215–1242. [Google Scholar] [CrossRef]
- MacLean, L.; Karcz, D.; Jenkins, H.; McClean, S.; Devereux, M.; Howe, O.; Pereira, M.D.; May, N.V.; Enyedy, É.A.; Creaven, B.S. Copper (II) complexes of coumarin-derived Schiff base ligands: Pro- or antioxidant activity in MCF-7 cells? J. Inorg. Biochem. 2019, 197, 110702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karcz, D.; Matwijczuk, A.; Boroń, B.; Creaven, B.; Fiedor, L.; Niewiadomy, A.; Gagoś, M. Isolation and spectroscopic characterization of Zn(II), Cu(II), and Pd(II) complexes of 1,3,4-thiadiazole-derived ligand. J. Mol. Struct. 2017, 1128, 44–50. [Google Scholar] [CrossRef]
- Karcz, D.; Starzak, K.; Matwijczuk, A.; Ciszkowicz, E.; Lecka-Szlachta, K.; Matwijczuk, A.; Ciupak, A.; Gładyszewska, B.; Niewiadomy, A. Synthesis, spectroscopy and biological activity of novel Cu (II) and Cn (II) complexes with 1,3,4-thiadiazole derivatives. Przem. Chem. 2018, 97, 1095–1101. [Google Scholar]
- David, M.; Budziak-Wieczorek, I.; Karcz, D.; Florescu, M.; Matwijczuk, A. Insight into dual fluorescence effects induced by molecular aggregation occurring in membrane model systems containing 1,3,4-thiadiazole derivatives. Eur. Biophys. J. 2021, 50, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Czernel, G.; Budziak, I.; Oniszczuk, A.; Karcz, D.; Pustuła, K.; Górecki, A.; Matwijczuk, A.; Gładyszewska, B.; Gagoś, M.; Niewiadomy, A.; et al. ESIPT-Related Origin of Dual Fluorescence in the Selected Model 1,3,4-Thiadiazole Derivatives. Molecules 2020, 25, 4168. [Google Scholar] [CrossRef] [PubMed]
- Starzak, K.; Matwijczuk, A.; Creaven, B.; Matwijczuk, A.; Wybraniec, S.; Karcz, D. Fluorescence quenching-based mechanism for determination of hypochlorite by coumarin-derived sensors. Int. J. Mol. Sci. 2019, 20, 281. [Google Scholar] [CrossRef] [Green Version]
- Karcz, D.; Matwijczuk, A.; Kamiński, D.; Creaven, B.; Ciszkowicz, E.; Lecka-Szlachta, K.; Starzak, K. Structural features of 1,3,4-thiadiazole-derived ligands and their Zn (II) and Cu (II) complexes which demonstrate synergistic antibacterial effects with kanamycin. Int. J. Mol. Sci. 2020, 21, 5735. [Google Scholar] [CrossRef] [PubMed]
- Karcz, D.; Starzak, K.; Ciszkowicz, E.; Lecka-Szlachta, K.; Kamiński, D.; Creaven, B.; Jenkins, H.; Radomski, P.; Miłoś, A.; Ślusarczyk, L.; et al. Novel Coumarin-Thiadiazole Hybrids and Their Cu (II) and Zn (II) Complexes as Potential Antimicrobial Agents and Acetylcholinesterase Inhibitors. Int. J. Mol. Sci. 2021, 22, 9709. [Google Scholar] [CrossRef]
- Yusufzai, S.K.; Khan, M.S.; Sulaiman, O.; Osman, H.; Lamjin, D.N. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem. Cent. J. 2018, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem. 2016, 123, 236–255. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Tagliapietra, S.; Martina, K.; Palmisano, G.; Cravotto, G. Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Adv. 2016, 6, 46394–46405. [Google Scholar] [CrossRef]
- Chudzik, B.; Bonio, K.; Dabrowski, W.; Pietrzak, D.; Niewiadomy, A.; Olender, A.; Malodobry, K.; Gagoś, M. Synergistic antifungal interactions of amphotericin B with 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol. Sci. Rep. 2019, 9, 12945. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; El-Shahawi, M.M.; Abu El-Azm, F.S.; Abdeen, M. Synthesis and Antimicrobial Activity of Polyfunctionally Substituted Heterocyclic Compounds Derived from 5-Cinnamoylamino-2-Cyanomethyl-1,3,4-Thiadiazole. J. Heterocycl. Chem. 2017, 54, 2352–2359. [Google Scholar] [CrossRef]
- Bhalla, M.; Hitkari, A.; Gujrati, V.R.; Bhalla, T.N.; Shanker, K. Benzopyran-2-one derivatives: Antiinflammatory, analgesic and antiproteolytic agents. Eur. J. Med. Chem. 1994, 29, 713–717. [Google Scholar] [CrossRef]
- Gomha, S.; Abdel-Aziz, H. Synthesis and Antitumor Activity of 1,3,4-Thiadiazole Derivatives Bearing Coumarine Ring. Heterocycles 2015, 91, 583. [Google Scholar] [CrossRef]
- Creaven, B.S.; Egan, D.A.; Kavanagh, K.; McCann, M.; Noble, A.; Thati, B.; Walsh, M. Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver (I) complexes. Inorg. Chim. Acta 2006, 359, 3976–3984. [Google Scholar] [CrossRef]
- Song, A.; Wang, X.; Lam, K.S. A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett. 2003, 44, 1755–1758. [Google Scholar] [CrossRef]
- Maggi, R.; Bigi, F.; Carloni, S.; Mazzacani, A.; Sartori, G. Uncatalysed reactions in water: Part 2. Preparation of 3-carboxycoumarins. Green Chem. 2001, 3, 173–174. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creaven, B.S.; Devereux, M.; Georgieva, I.; Karcz, D.; McCann, M.; Trendafilova, N.; Walsh, M. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni (II), Co (II), Zn (II) and Mn (II) ions based on density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 84, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D. Spectrometric Identification of Organic Compounds, 7th ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Georgieva, I.; Trendafilova, N.; Kiefer, W.; Rastogi, V.K.; Kostova, I. Vibrational and theoretical study of coumarin-3-carboxylic acid binding mode in Ce (III) and Nd (III) complexes. Vib. Spectrosc. 2007, 44, 78–88. [Google Scholar] [CrossRef]
- Kristoffersen, A.S.; Erga, S.R.; Hamre, B.; Frette, Ø. Testing Fluorescence Lifetime Standards using Two-Photon Excitation and Time-Domain Instrumentation: Rhodamine B, Coumarin 6 and Lucifer Yellow. J. Fluoresc. 2014, 24, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, I.; Tummeltshammer, C. Fundamental limits of concentration in luminescent solar concentrators revised: The effect of reabsorption and nonunity quantum yield. Optica 2015, 2, 841–849. [Google Scholar] [CrossRef]
- Aggarwal, N.; Jain, S.; Chopra, N. Hybrids of thiazolidin-4-ones and 1,3,4-thiadiazole: Synthesis and biological screening of a potential new class of acetylcholinesterae inhibitors. Biointerface Res. Appl. Chem. 2022, 12, 2800–2812. [Google Scholar]
- Castro, A.; Martinez, A. Peripheral and Dual Binding Site Acetylcholinesterase Inhibitors: Implications in treatment of Alzheimers Disease. Mini-Rev. Med. Chem. 2001, 1, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Bocian, A.; Ciszkowicz, E.; Hus, K.K.; Buczkowicz, J.; Lecka-Szlachta, K.; Pietrowska, M.; Petrilla, V.; Petrillova, M.; Legáth, Ľ.; Legáth, J. Antimicrobial Activity of Protein Fraction from Naja ashei Venom against Staphylococcus epidermidis. Molecules 2020, 25, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusz, J.; Ciszkowicz, E.; Lecka-Szlachta, K.; Wolowiec, S.; Woźnicka, E. Synthesis and antibacterial activity of La (III), Ce (III), Pr (III), and Nd (III) complexes of chrysin-4’-sulfonate. Acta Pol. Pharm. Drug Res. 2017, 74, 1101–1110. [Google Scholar]
- Hoeflinger, J.L.; Hoeflinger, D.E.; Miller, M.J. A dynamic regression analysis tool for quantitative assessment of bacterial growth written in Python. J. Microbiol. Methods 2017, 132, 83–85. [Google Scholar] [CrossRef] [PubMed]
Compound | λmax1 (nm) | λmax2 (nm) | ε (×103 M−1 cm−1) | λEm (nm) |
---|---|---|---|---|
1 | 285 | 445 | 38.12 | 509 |
2 | 307 | 367 | 9.18 | 513 |
3 | 306 | 368 | 10.57 | 511 |
4 | 284 | 370 | 8.71 | 524 |
5 | 284 | 374 | 13.46 | 530 |
6 | 272 | 371 | 1.38 | - |
7 | 286 | 375 | 7.12 | - |
8 | 282 | 370 | 10.34 | 518 |
9 | 290 | 378 | 2.57 | 514 |
10 | 254 | 385 | 14.31 | 504 |
11 | 258 | 364 | 9.83 | 513 |
12 | 272 | 391 | 7.80 | 501 |
Compound | AChE | BuChE |
---|---|---|
IC50 (μM) ± SD * | IC50 (μM) ± SD * | |
1 | 0.184 ± 0.011 | 0.191 ± 0.024 |
2 | 0.213 ± 0.009 | 0.198 ± 0.039 |
3 | 0.152 ± 0.003 | 0.295 ± 0.024 |
4 | 0.211 ± 0.010 | 0.205 ± 0.014 |
5 | 0.183 ± 0.018 | 0.261 ± 0.015 |
6 | 0.198 ± 0.016 | 0.166 ± 0.022 |
7 | 0.159 ± 0.015 | 0.494 ± 0.024 |
8 | 0.199 ± 0.003 | 0.392 ± 0.024 |
9 | 0.196 ± 0.022 | 0.235 ± 0.034 |
10 | 0.200 ± 0.012 | 0.380 ± 0.010 |
11 | 0.165 ± 0.003 | 0.202 ± 0.030 |
12 | 0.187 ± 0.015 | 0.264 ± 0.017 |
Tacrine | 0.059 ± 0.002 | 0.079 ± 0.008 |
Compound | MIC/MBC a (mg/mL) | ||||
---|---|---|---|---|---|
Gram-Negative | Gram-Positive | ||||
E. coli | P. aeruginosa | S. aureus | S. epidermidis ATCC 12228 | S. epidermidis ATCC 35984 | |
1 | 1.79 | 1.79 | 0.22 | 0.89/7.14 | 1.79 |
2 | NI | NI | 0.49 | 0.49/0.49 | NI |
3 | NI | NI | 0.51 | 0.51/0.51 | NI |
4 | NI | NI | 3.57 | 0.45/1.79 | 0.45 |
5 | 0.89 | NI | 0.89 | 0.11 | 0.45 |
6 | 0.06 | 0.25 | 0.03 | 0.03 | 0.06 |
7 | 0.89 | NI | 0.89 | 3.57 | 0.89 |
8 | NI | NI | NI | 0.06/0.12 | NI |
9 | NI | NI | 1.22 | 0.61/1.22 | NI |
10 | NI | NI | 0.51 | 0.25/1.02 | NI |
11 | NI | NI | 0.12 | 0.1 | 0.06 |
12 | NI | NI | NI | NI | NI |
chloramphenicol | 3.9 × 10−3 | 0.25 | 7.8 × 10−3 | 7.8 × 10−3 | 1.56 × 10−2 |
gentamicin | 1.9 × 10−3 | 1.9 | 0.97 × 10−3 | 0.24 × 10−3 | 3.12 × 10−2 |
kanamycin | 7.8 × 10−3 | NI | 3.9 × 10−3 | 1.9 × 10−3 | NI |
Compound | Strain/MIC (μg/mL) | ||||
---|---|---|---|---|---|
C. parapsilosis | S. cerevisiae | A. flavus | A. fumigatus | F. oxysporum | |
1 | >256 | >256 | >256 | >256 | 128 |
2 | >256 | >256 | 256 | >256 | 256 |
3 | >256 | >256 | >256 | 128 | >256 |
4 | >256 | >256 | >256 | 64 | >256 |
5 | >256 | >256 | >256 | >256 | >256 |
6 | >256 | >256 | >256 | 64 | >256 |
7 | >256 | >256 | >256 | 64 | 64 |
8 | >256 | 128 | 256 | >256 | >256 |
9 | >256 | >256 | >256 | >256 | 128 |
10 | >256 | >256 | 256 | 64 | >256 |
11 | >256 | >256 | >256 | >256 | >256 |
12 | >256 | >256 | >256 | >256 | >256 |
Amphotericin B | 2 | 2 | 2 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karcz, D.; Starzak, K.; Ciszkowicz, E.; Lecka-Szlachta, K.; Kamiński, D.; Creaven, B.; Miłoś, A.; Jenkins, H.; Ślusarczyk, L.; Matwijczuk, A. Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin–Thiadiazole Hybrids. Int. J. Mol. Sci. 2022, 23, 6314. https://doi.org/10.3390/ijms23116314
Karcz D, Starzak K, Ciszkowicz E, Lecka-Szlachta K, Kamiński D, Creaven B, Miłoś A, Jenkins H, Ślusarczyk L, Matwijczuk A. Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin–Thiadiazole Hybrids. International Journal of Molecular Sciences. 2022; 23(11):6314. https://doi.org/10.3390/ijms23116314
Chicago/Turabian StyleKarcz, Dariusz, Karolina Starzak, Ewa Ciszkowicz, Katarzyna Lecka-Szlachta, Daniel Kamiński, Bernadette Creaven, Anna Miłoś, Hollie Jenkins, Lidia Ślusarczyk, and Arkadiusz Matwijczuk. 2022. "Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin–Thiadiazole Hybrids" International Journal of Molecular Sciences 23, no. 11: 6314. https://doi.org/10.3390/ijms23116314
APA StyleKarcz, D., Starzak, K., Ciszkowicz, E., Lecka-Szlachta, K., Kamiński, D., Creaven, B., Miłoś, A., Jenkins, H., Ślusarczyk, L., & Matwijczuk, A. (2022). Design, Spectroscopy, and Assessment of Cholinesterase Inhibition and Antimicrobial Activities of Novel Coumarin–Thiadiazole Hybrids. International Journal of Molecular Sciences, 23(11), 6314. https://doi.org/10.3390/ijms23116314