From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Results
2.1. Biomarkers of Inflammation
2.1.1. C-Reactive Protein
2.1.2. Fibrinogen
2.1.3. Interleukin-6
2.1.4. Interleukin-37
2.1.5. Procalcitonin
2.2. Biomarkers of Neurohormonal Activation
2.2.1. B-Type Natriuretic Peptide
2.2.2. Mid-regional Proadrenomedullin (MR-proADM)
2.2.3. N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP)
2.2.4. Copeptin
2.3. Biomarkers of Myocardial Necrosis
2.3.1. Platelet-Related Biomarkers
2.3.2. Troponins
2.3.3. Creatin Kinase-MB (CK-MB)
2.3.4. Cystatin C (cysC)
2.3.5. Heart-Type Fatty Acid Binding Protein (H-FABP)
2.3.6. Endothelial Cell-Related Biomarkers
2.3.7. Aspartate Transaminase
2.3.8. Other Biomarkers of Myocardial Necrosis
2.4. Cardiac Remodeling Biomarkers
2.4.1. Galectin-3
2.4.2. Soluble Suppression of Tumorigenicity 2 (sST2)
2.4.3. Growth Differentiation Factor-15 (GDF-15)
2.4.4. Syndecan-1 (Sdc1)
2.4.5. Circulating LIPCAR
2.4.6. Thrombospondin-1 (TSP-1)
2.4.7. Uric Acid
2.5. Vasoactive Biomarkers
2.5.1. Neuropeptide-Y
2.5.2. Neuregulin-1
2.6. Novel Biomarkers
MicroRNAs
3. Limitations and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. ESC Scientific Document Group, 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Mickley, H.; Crea, F.; van de Werf, F.; et al. ESC Scientific Document Group, Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, C.; Gu, J.; Chen, J.; Wang, L.-C.; Lu, Y.; Huang, C.-Y.; He, Y.-M.; Yang, X.-J. Impact of C-reactive protein on long-term mortality in acute myocardial infarction patients with diabetes and those without. Clin. Chim. Acta 2018, 480, 220–224. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Biomarkers of acute myocardial infarction: Diagnostic and prognostic value. Part 2 (Literature review). J. Clin. Pract. 2020, 11, 70–82. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Kiefer, J.; Braig, D.; Loseff-Silver, J.; Potempa, L.A.; Eisenhardt, S.U.; Peter, K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front. Immunol. 2018, 9, 1351. [Google Scholar] [CrossRef]
- Trinh, K.; Julovi, M.S.; Rogers, M.N. The Role of Matrix Proteins in Cardiac Pathology. Int. J. Mol. Sci. 2022, 23, 1338. [Google Scholar] [CrossRef]
- Lukin, A.; Novak, K.; Polić, S.; Puljak, L. Prognostic value of low and moderately elevated C-reactive protein in acute coronary syndrome: A 2-year follow-up study. Med. Sci. Monit. 2013, 19, 777–786. [Google Scholar]
- Didangelos, A.; Simper, D.; Monaco, C.; Mayr, M. Proteomics of acute coronary syndromes. Curr. Atheroscler. Rep. 2009, 11, 188–195. [Google Scholar] [CrossRef]
- Gu, H.J.; Gao, C.B.; Gong, J.L.; Li, X.J.; Sun, B.; Li, X.N. Comparative proteomic analysis in left ventricular remodeling following myocardial infarction in rats. Biomed. Environ. Sci. 2012, 25, 117–123. [Google Scholar]
- Shavadia, J.S.; Alemayehu, W.; Defilippi, C.; Westerhout, C.M.; Tromp, J.; Granger, C.B.; Armstrong, P.W.; van Diepen, S. Novel multi-marker proteomics in phenotypically matched patients with ST-segment myocardial infarction: Association with clinical outcomes. J. Thromb. Thrombolysis 2022, 53, 841–850. [Google Scholar] [CrossRef]
- Williams, S.A.; Ostroff, R.; Hinterberg, M.A.; Coresh, J.; Ballantyne, C.M.; Matsushita, K.; Mueller, C.E.; Walter, J.; Jonasson, C.; Holman, R.R.; et al. A proteomic surrogate for cardiovascular outcomes that is sensitive to multiple mechanisms of change in risk. Sci. Transl. Med. 2022, 14, eabj9625. [Google Scholar] [CrossRef]
- Swiatkiewicz, I.; Taub, P.R. The usefulness of C-reactive protein for the prediction of post-infarct left ventricular systolic dysfunction and heart failure. Kardiologia Polska 2018, 76, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Anzai, T. Post-infarction inflammation and left ventricular remodeling: A double-edged sword. Circ. J. 2013, 77, 580–587. [Google Scholar] [CrossRef]
- Mincu, R.I.; Rolf, A.J.; Vinereanu, D.; Rassaf, T.; Totzeck, M. Preprocedural C-Reactive Protein Predicts Outcomes after Primary Percutaneous Coronary Intervention in Patients with ST-elevation Myocardial Infarction a systematic meta-analysis. Sci. Rep. 2017, 7, 41530. [Google Scholar] [CrossRef]
- Vanhaverbeke, M.; Veltman, D.; Pattyn, N.; De Crem, N.; Gillijns, H.; Msc, V.C.; Janssens, S.; Sinnaeve, P.R. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin. Cardiol. 2018, 41, 1201–1206. [Google Scholar] [CrossRef]
- Stumpf, C.; Sheriff, A.; Zimmermann, S.; Schaefauer, L.; Schlundt, C.; Raaz, D.; Garlichs, C.D.; Achenbach, S. C-reactive protein levels predict systolic heart failure and outcome in patients with first ST-elevation myocardial infarction treated with coronary angioplasty. Arch. Med. Sci. 2017, 5, 1086–1093. [Google Scholar] [CrossRef]
- Iwona, S.; Magielski, P.; Kubica, J. C-Reactive Protein as a Risk Marker for Post-Infarct Heart Failure over a Multi-Year Period. Int. J. Mol. Sci 2021, 22, 3169. [Google Scholar]
- Zahler, D.; Rozenfeld, K.-L.; Stein, M.; Milwidsky, A.; Berliner, S.; Banai, S.; Arbel, Y.; Shacham, Y. C-reactive protein velocity and the risk of acute kidney injury among ST elevation myocardial infarction patients undergoing primary percutaneous intervention. J. Nephrol. 2019, 32, 437–443. [Google Scholar] [CrossRef]
- Fu, E.L.; Franko, M.A.; Obergfell, A.; Dekker, F.W.; Gabrielsen, A.; Jernberg, T.; Carrero, J.J. High-sensitivity C-reactive protein and the risk of chronic kidney disease progression or acute kidney injury in post–myocardial infarction patients. Am. Heart J. 2019, 216, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Söğüt, O.; AKDEMİR, T.; Can, M.M. Prognostic value of the C-reactive protein to albumin ratio in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Turk. J. Med. Sci. 2021, 51, 1281–1288. [Google Scholar] [CrossRef]
- Wang, J.; Tan, G.-J.; Han, L.-N.; Bai, Y.-Y.; He, M.; Liu, H.-B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol. 2017, 14, 135–150. [Google Scholar]
- Song, J.; Yu, T.; Sun, Z.; Li, Z.; He, D.; Sun, Z. Comparison of prognostic significance between serum fibrinogen and Global Registry of Acute Coronary Events score for prognosis of patients with non-ST-elevation acute coronary syndromes undergoing percutaneous coronary intervention. Coron. Artery Dis. 2020, 31, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.; Behnamfar, O.; Palakodeti, S.; Lin, F.; Pourdjabbar, A.; Patel, M.P.; Reeves, R.R.; Mahmud, E. Elevated Baseline Serum Fibrinogen: Effect on 2-Year Major Adverse Cardiovascular Events Following Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2017, 6, e006580. [Google Scholar] [CrossRef] [PubMed]
- Çetin, M.; Erdoğan, T.; Kırış, T.; Özer, S.; Yılmaz, A.S.; Durak, H.; Aykan, A.; Şatıroğlu, O. Predictive value of fibrinogen-to-albumin ratio in acute coronary syndrome. Herz 2019, 45, 145–151. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.; Ji, Y.; Wang, S.; Wang, T.; Wang, F.; Tang, J. Usefulness of fibrinogen-to-albumin ratio to predict no-reflow and short-term prognosis in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessels 2019, 34, 1600–1607. [Google Scholar] [CrossRef]
- Liu, G.; Fan, C.M.; Guo, H.; Fan, W.N.; Li, M.L.; Cui, G.X. Fibrinogen-to-albumin ratio predicts long-term outcomes for patients with ST-elevation myocardial infarction and multivessel disease: A prospective observational cohort study. Exp. Ther. Med. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Celik Ibrahim, E.; Kurtul, A.; Duran, M.; Yarlioglues, M.; Elcik, D.; Kilic, A.; Koseoglu, C.; Oksuz, F.; Murat, S.N. Elevated serum fibrinogen levels and risk of contrast-induced acute kidney injury in patients undergoing a percutaneous coronary intervention for the treatment of acute coronary syndrome. Coron. Artery Dis. 2016, 27, 13–18. [Google Scholar] [CrossRef]
- Magnus, N.L.; Peder, M.L.; Helge, R.; Torbjørn, O. Novel biomarkers of cardiovascular disease: Applications in clinical practice. Crit. Rev. Clin. Lab. Sci. 2019, 56, 33–60. [Google Scholar]
- Peter, L.; Rocha, V.Z. All roads lead to IL-6: A central hub of cardiometabolic signaling. Int. J. Cardiol. 2018, 259, 213–215. [Google Scholar]
- Berezin, A.; Berezin, A.A. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. Dis. Markers 2020, 2020, 1215802. [Google Scholar] [CrossRef]
- Fanola, C.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Lukas, M.A.; Bode, C.; Hochman, J.S. Interleukin-6 and the Risk of Adverse Outcomes in Patients After an Acute Coronary Syndrome: Observations From the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) Trial. J. Am. Heart Assoc. 2017, 6, e005637. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Bradwin, G.; Hasan, A.A.; Rifai, N. Comparison of interleukin-6, C-reactive protein, and low-density lipoprotein cholesterol as biomarkers of residual risk in contemporary practice: Secondary analyses from the Cardiovascular Inflammation Reduction Trial. Eur. Heart J. 2020, 41, 2952–2961. [Google Scholar] [CrossRef]
- Zhuang, X.; Wu, B.; Li, J.; Shi, H.; Jin, B.; Luo, X. The emerging role of interleukin-37 in cardiovascular diseases. Immun. Inflamm. Dis. 2017, 5, 373–379. [Google Scholar] [CrossRef]
- Li, H.; Shen, C.; Chen, B.; Du, J.; Peng, B.; Wang, W.; Chi, F.; Dong, X.; Huang, Z.; Yang, C. Interleukin-37 is increased in peripheral blood mononuclear cells of coronary heart disease patients and inhibits the inflammatory reaction. Mol. Med. Rep. 2019, 21, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tang, Q.; Zhu, X.; Yang, X. IL-37 increased in patients with acute coronary syndrome and associated with a worse clinical outcome after ST-segment elevation acute myocardial infarction. Clin. Chim. Acta 2017, 468, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Fang, F.; Chen, Y.; Ma, J.; Xiao, Z.; Zou, S.; Dong, M. Elevated plasma interleukin-37 playing an important role in acute coronary syndrome through suppression of ROCK activation. Oncotarget 2017, 8, 9686–9695. [Google Scholar] [CrossRef]
- Dai, J.; Xia, B.; Wu, X. Elevated plasma procalcitonin level predicts poor prognosis of ST elevation myocardial infarction in Asian elderly. Scand. J. Clin. Lab. Investig. 2018, 78, 49–54. [Google Scholar] [CrossRef]
- Vitkon-Barkay, I.; Lazarovitch, T.; Marchaim, D.; Zaidenstein, R.; Temkin, E.; Martin, E.T.; Segaloff, H.E.; Litovchik, I.; Rum, V.; Richter, C.; et al. Usefulness of Serum Procalcitonin as a Marker for Coexisting Infection in Patients with Acute Myocardial Infarction. Am. J. Cardiol. 2018, 122, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Reindl, M.; Tiller, C.; Holzknecht, M.; Lechner, I.; Henninger, B.; Mayr, A.; Brenner, C.; Klug, G.; Bauer, A.; Metzler, B.; et al. Association of Myocardial Injury with Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Netw. Open 2020, 3, e207030. [Google Scholar] [CrossRef]
- Pavasini, R.; Fabbri, G.; Marchini, F.; Bianchi, N.; Deserio, M.A.; Sanguettoli, F.; Verardi, F.M.; Segala, D.; Pompei, G.; Tonet, E.; et al. Procalcitonin Predicts Bacterial Infection, but Not Long-Term Occurrence of Adverse Events in Patients with Acute Coronary Syndrome. J. Clin. Med. 2022, 11, 554. [Google Scholar] [CrossRef]
- Sharma, Y.P.; Kasinadhuni, G.; Santosh, K.; Parashar, N.K.; Sharma, R.; Bootla, D.; Kanabar, K.; Krishnappa, D. Prognostic role of procalcitonin in ST-elevation myocardial infarction complicated by cardiogenic shock. Asian Cardiovasc. Thorac. Ann. 2021, 29, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, S.-V.; Pourhosseini, H.; Hosseinsabet, A. Correlation between the serum procalcitonin level and the extension and severity of coronary artery disease in patients with non-ST-segment elevation myocardial infarction. Cardiovasc. Endocrinol. Metab. 2019, 8, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tao, Y.; Zhang, L.; Xu, W.; Zhou, X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad. Med. J. 2019, 95, 210–216. [Google Scholar] [CrossRef]
- Israr, M.Z.; Heaney, L.M.; Ng, L.L.; Suzuki, T. B-type natriuretic peptide molecular forms for risk stratification and prediction of outcome after acute myocardial infarction. Am. Heart J. 2018, 200, 37–43. [Google Scholar] [CrossRef]
- Carvalho, L.S.F.; Bogniotti, L.A.C.; de Almeida, O.L.R.; e Silva, J.C.Q.; Nadruz, W.; Coelho, O.R.; Sposito, A.C. Change of BNP between admission and discharge after ST-elevation myocardial infarction (Killip I) improves risk prediction of heart failure, death, and recurrent myocardial infarction compared to single isolated measurement in addition to the GRACE score. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 643–651. [Google Scholar] [CrossRef]
- Wolsk, E.; Claggett, B.; Pfeffer, M.A.; Diaz, R.; Dickstein, K.; Gerstein, H.; Lawson, F.C.; Lewis, E.F.; Maggioni, A.P.; Mcmurray, J.; et al. Role of B-Type Natriuretic Peptide and N-Terminal Prohormone BNP as Predictors of Cardiovascular Morbidity and Mortality in Patients with a Recent Coronary Event and Type 2 Diabetes Mellitus. J. Am. Heart Assoc. 2017, 6, e004743. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Wang, J.-H.; Wang, X.-L.; Liu, J.-Y.; Jiang, F.-Y.; Huang, X.-L.; Hang, J.-Y.; Qin, W.; Ma, S.-X.; Zhang, J.; et al. Roles of ST2, IL-33 and BNP in predicting major adverse cardiovascular events in acute myocardial infarction after percutaneous coronary intervention. J. Cell. Mol. Med. 2017, 21, 2677–2684. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Choi, E.; Khanam, S.S.; Son, J.-W.; Youn, Y.-J.; Ahn, M.-S.; Ahn, S.G.; Kim, J.-Y.; Lee, S.-H.; Yoon, J.; et al. Prognostic value of short-term follow-up B-type natriuretic peptide levels after hospital discharge in patients with acute myocardial infarction. Int. J. Cardiol. 2019, 289, 19–23. [Google Scholar] [CrossRef]
- Shindo, K.; Fukuda, H.; Hitsumoto, T.; Ito, S.; Kim, J.; Washio, T.; Kitakaze, M. Plasma BNP Levels and Diuretics Use as Predictors of Cardiovascular Events in Patients with Myocardial Infarction and Impaired Glucose Tolerance. Cardiovasc. Drugs Ther. 2020, 34, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-T.; Chung, C.-M.; Chu, C.; Lin, Y.-S.; Pan, K.-L.; Chang, J.-J.; Wang, P.; Chang, S.-T.; Yang, T.-Y.; Jang, S.-J.; et al. Predictors of Left Ventricle Remodeling: Combined Plasma B-type Natriuretic Peptide Decreasing Ratio and Peak Creatine Kinase-MB. Int. J. Med. Sci. 2017, 14, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Morbach, C.; Marx, A.; Kaspar, M.; Güder, G.; Brenner, S.; Feldmann, C.; Störk, S.; Vollert, J.O.; Ertl, G.; Angermann, C.E.; et al. Prognostic potential of midregional pro-adrenomedullin following decompensation for systolic heart failure: Comparison with cardiac natriuretic peptides. Eur. J. Heart Fail. 2017, 19, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Kuriyama, N.; Suzuki, Y.; Saito, S.; Tanaka, R.; Iwao, M.; Tanaka, M.; Maki, T.; Itoh, H.; Ihara, M.; et al. Mid-regional pro-adrenomedullin is a novel biomarker for arterial stiffness as the criterion for vascular failure in a cross-sectional study. Sci. Rep. 2021, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Supeł, K.; Kacprzak, M.; Zielińska, M. The prognostic value of MR-proadrenomedullin in patients with acute coronary syndrome complicated by cardiogenic shock. Biomarkers 2017, 22, 296–303. [Google Scholar] [CrossRef]
- Węgiel, M.; Wojtasik-Bakalarz, J.; Malinowski, K.; Surmiak, M.; Dziewierz, A.; Sorysz, D.; Tokarek, T.; Dudek, D.; Bartuś, S.; Surdacki, A.; et al. Mid-regional pro-adrenomedullin and lactate dehydrogenase as predictors of left ventricular remodeling in patients with myocardial infarction treated with percutaneous coronary intervention. Pol. Arch. Intern. Med. 2022, 132, 16150. [Google Scholar] [CrossRef] [PubMed]
- Falkentoft, A.C.; Rørth, R.; Iversen, K.; Høfsten, D.E.; Kelbæk, H.; Holmvang, L.; Frydland, M.; Schoos, M.M.; Helqvist, S.; Axelsson, A.; et al. MR-proADM as a Prognostic Marker in Patients With ST-Segment-Elevation Myocardial Infarction-DANAMI-3 (a Danish Study of Optimal Acute Treatment of Patients With STEMI) Substudy. J. Am. Heart Assoc. 2018, 7, e008123. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, T.; Feng, S.; Song, D.; Chen, Y.; Yao, T.; Han, P.; Liu, Y.; Li, C.; Song, Z.; et al. Association between N-terminal pro-BNP and 12 months major adverse cardiac events among patients admitted with NSTEMI. Ann. Palliat. Med. 2021, 10, 5231–5243. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int. J. Mol. Sci. 2019, 20, 1820. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, R.; Hou, J.; Yu, B. Relationship between Fragmented QRS and NT-proBNP in Patients with ST Elevation Myocardial Infarction Who Underwent Primary Percutaneous Coronary Intervention. Acta Cardiol. Sin. 2018, 34, 13–22. [Google Scholar]
- Lindholm, D.; James, S.K.; Gabrysch, K.; Storey, R.F.; Himmelmann, A.; Cannon, C.P.; Mahaffey, K.W.; Steg, P.G.; Held, C.; Siegbahn, A.; et al. Association of Multiple Biomarkers with Risk of All-Cause and Cause-Specific Mortality After Acute Coronary Syndromes: A Secondary Analysis of the PLATO Biomarker Study. JAMA Cardiol. 2018, 3, 1160–1166. [Google Scholar] [CrossRef]
- Tiller, C.; Reindl, M.; Holzknecht, M.; Klapfer, M.; Beck, A.; Henninger, B. Biomarker assessment for early infarct size estimation in ST-elevation myocardial infarction. Eur. J. Intern. Med. 2019, 64, 57–62. [Google Scholar] [CrossRef]
- Celebi, S.; Celebi, O.O.; Cetin, S.; Cetin, H.O.; Tek, M.; Gokaslan, S.; Amasyali, B.; Berkalp, B.; Diker, E.; Aydogdu, S.; et al. The Usefulness of Admission Plasma NT-pro BNP Level to Predict Left Ventricular Aneurysm Formation after Acute ST-Segment Elevation Myocardial Infarction. Arq. Bras. Cardiol. 2019, 113, 1129–1137. [Google Scholar]
- Zhang, Z.; Guo, J. Predictive risk factors of early onset left ventricular aneurysm formation in patients with acute ST-elevation myocardial infarction. Heart Lung 2020, 49, 80–85. [Google Scholar] [CrossRef]
- Yildirim, E.; Cabbar, A.T. Association between copeptin and contrast-induced nephropathy in patients with ST-elevation myocardial infarction. Rev. Port. Cardiol. 2019, 38, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Roczek-Janowska, M.; Kacprzak, M.; Dzieciol, M.; Zielinska, M.; Chizynski, K. Prognostic value of copeptin in patients with acute myocardial infarction treated with percutaneous coronary intervention: A prospective cohort study. J. Thorac. Dis. 2021, 13, 4094–4103. [Google Scholar] [CrossRef] [PubMed]
- Lattuca, B.; Sy, V.; Nguyen, L.S.; Bernard, M.; Zeitouni, M.; Overtchouk, P.; Yan, Y.; Hammoudi, N.; Ceccaldi, A.; Collet, J.P.; et al. Copeptin as a prognostic biomarker in acute myocardial infarction. Int. J. Cardiol. 2019, 274, 337–341. [Google Scholar] [CrossRef]
- Ahmed, T.A.N.; Johny, J.S.; Abdel-Malek, M.Y.; Fouad, D.A. The additive value of copeptin for early diagnosis and prognosis of acute coronary syndromes. Am. J. Emerg. Med. 2021, 50, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Smaradottir, M.I.; Andersen, K.; Gudnason, V.; Näsman, P.; Rydén, L.; Mellbin, L.G. Copeptin is associated with mortality in elderly people. Eur. J. Clin. Investig. 2021, 51, e13516. [Google Scholar] [CrossRef]
- Pamukcu, H.E.; Felekoğlu, M.A.; Algül, E.; Şahan, H.F.; Aydinyilmaz, F.; Guliyev, İ.; İnci, S.D.; Özbeyaz, N.B.; Nallbani, A. Copeptin levels predict left ventricular systolic function in STEMI patients: A 2D speckle tracking echocardiography-based prospective observational study. Medicine 2020, 99, e23514. [Google Scholar] [CrossRef]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef]
- Amraotkar, A.R.; Song, D.D.; Otero, D.; Trainor, P.J.; Ismail, I.; Kothari, V.; Singh, A.; Moore, J.B., 4th; Rai, S.N.; DeFilippis, A.P.; et al. Platelet Count and Mean Platelet Volume at the Time of and After Acute Myocardial Infarction. Clin. Appl. Thromb. Hemost. 2017, 23, 1052–1059. [Google Scholar] [CrossRef]
- Attia, S.; Soliman, A.; Ahmed, M.; Lasheen, A. Diagnostic Value of Mean Platelet Volume in Prediction of Acute Myocardial Infarction. Egypt. J. Hosp. Med. 2021, 84, 1893–1900. [Google Scholar] [CrossRef]
- Budzianowski, J.; Pieszko, K.; Burchardt, P.; Rzeźniczak, J.; Hiczkiewicz, J. The Role of Hematological Indices in Patients with Acute Coronary Syndrome. Dis. Markers 2017, 2017, 3041565. [Google Scholar] [CrossRef]
- Avci, E.; Kiris, T.; Çelik, A.; Variş, E.; Esin, F.K.; Köprülü, D.; Kadi, H. Prognostic value of rising mean platelet volume during hospitalization in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. BMC Cardiovasc. Disord. 2018, 18, 226. [Google Scholar] [CrossRef]
- Chang, H.Y.; Hsu, L.W.; Lee, C.H.; Lin, C.C.; Huang, C.W.; Chen, P.W.; Yang, P.K.; Hsueh, Y.C.; Liu, P.Y. Impact of Platelet Volume on the Clinical Outcomes of Patients with Acute Coronary Syndrome. Acta Cardiol. Sin. 2019, 35, 563–570. [Google Scholar]
- Taskesen, T.; Sekhon, H.; Wroblewski, I.; Goldfarb, M.; Ahmad, M.B.; Nguyen, Q.T.; Fughhi, I.A.; Gidron, A.; Dadkhah, S. Usefulness of Mean Platelet Volume to Predict Significant Coronary Artery Disease in Patients with Non-ST-Elevation Acute Coronary Syndromes. Am. J. Cardiol. 2017, 119, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Çanga, Y.; Emre, A.; Karataş, M.; Çalık, A.; Yelgeç, N.; Yıldız, U.; Terzi, S. Mean Platelet Volume Predicts Short-term Prognosis in Young Patients with St-segment Elevation Myocardial Infarction. J. Cardiovasc. Emergencies 2019, 5, 50–58. [Google Scholar] [CrossRef]
- Monteiro Júnior, J.G.M.; Torres, D.O.C.; da Silva, M.C.F.C.; Martins, C.M.H.; da Silva, I.K.; do Nascimento, M.E.M.; Dos Santos, A.C.O.; Montarroyos, U.R.; Filho, D.C.S. Prognostic value of hematological parameters in patients with acute myocardial infarction: Intrahospital outcomes. PLoS ONE 2018, 13, e0194897. [Google Scholar] [CrossRef]
- Kurtul, A.; Acikgoz, S.K. Usefulness of Mean Platelet Volume-to-Lymphocyte Ratio for Predicting Angiographic No-Reflow and Short-Term Prognosis After Primary Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2017, 120, 534–541. [Google Scholar] [CrossRef]
- Zhang, E.; Gao, M.; Gao, J.; Xiao, J.; Li, X.; Zhao, H.; Wang, J.; Zhang, N.; Wang, S.; Liu, Y.; et al. Inflammatory and Hematological Indices as Simple, Practical Severity Predictors of Microdysfunction Following Coronary Intervention: A Systematic Review and Meta-Analysis. Angiology 2020, 71, 349–359. [Google Scholar] [CrossRef]
- Chunyang, T.; Jia, S.; Dongxu, H.; Jiake, W.; Zhijun, S.; Zhaoqing, S. Predictive Value of Mean Platelet Volume/Platelet Count for Prognosis in Acute Myocardial Infarction. Int. Heart J. 2018, 59, 286–292. [Google Scholar]
- Ösken, A.; Hacı, R.; Dinç Asarcıklı, L.; Arıkan, M.E.; Onuk, T.; Ünal Dayı, Ş.; Çam, N. Mean platelet volume/platelet count ratio as a predictor of stent thrombosis in patients with ST-segment-elevation myocardial infarction. Ir. J. Med. Sci. 2021, 190, 1095–1102. [Google Scholar] [CrossRef]
- Soetkamp, D.; Raedschelders, K.; Mastali, M.; Sobhani, K.; Bairey, M.C.N.; Van Eyk, J. The continuing evolution of cardiac troponin I biomarker analysis: From protein to proteoform. Expert Rev. Proteom. 2017, 14, 973–986. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zeljković, I.; Manola, Š.; Radeljić, V.; Delić Brkljačić, D.; Babacanli, A.; Pavlović, N. Routinely available biomarkers as long-term predictors of developing systolic dysfunction in completely revascularized patients with acute ST elevation myocardial infarction. Acta Clin. Croat. 2019, 58, 95–102. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Koul, S.; Lønborg, J.T.; Nepper-Christensen, L.; Høfsten, D.E.; Ahtarovski, K.A. Usefulness of High Sensitivity Troponin T to Predict Long-Term Left Ventricular Dysfunction After ST-Elevation Myocardial Infarction. Am. J. Cardiol. 2020, 134, 8–13. [Google Scholar] [CrossRef]
- Cediel, G.; Rueda, F.; García, C.; Oliveras, T.; Labata, C.; Serra, J.; Núñez, J.; Bodí, V.; Ferrer, M.; Lupón, J.; et al. Prognostic Value of New-Generation Troponins in ST-Segment-Elevation Myocardial Infarction in the Modern Era: The RUTI-STEMI Study. J. Am. Heart Assoc. 2017, 6, e007252. [Google Scholar] [CrossRef] [PubMed]
- Wanamaker, B.L.; Seth, M.M.; Sukul, D.; Dixon, S.R.; Bhatt, D.L.; Madder, R.D.; Rumsfeld, J.S.; Gurm, H.S. Relationship Between Troponin on Presentation and In-Hospital Mortality in Patients With ST-Segment-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2019, 8, e013551. [Google Scholar] [CrossRef]
- Lazar, D.R.; Lazar, F.L.; Homorodean, C.; Cainap, C.; Focsan, M.; Cainap, S.; Olinic, D.M. High-Sensitivity Troponin: A Review on Characteristics, Assessment, and Clinical Implications. Dis. Markers 2022, 2022, 9713326. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Kufner, S.; Hoyos, M.; Harada, Y.; Xhepa, E.; Hieber, J.; Cassese, S.; Fusaro, M.; Laugwitz, K.L.; Schunkert, H.; et al. High-sensitivity cardiac troponin T and prognosis in patients with ST-segment elevation myocardial infarction. J. Cardiol. 2018, 72, 220–226. [Google Scholar] [CrossRef]
- Harada, Y.; Koskinas, K.C.; Ndrepepa, G.; Räber, L.; Braun, S.; Zanchin, T.; Kufner, S.; Hunziker, L.; Byrne, R.A.; Heg, D.; et al. Postprocedural high-sensitivity troponin T and prognosis in patients with non-ST-segment elevation myocardial infarction treated with early percutaneous coronary intervention. Cardiovasc. Revasc. Med. 2018, 19 Pt A, 480–486. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xu, B.; Dou, K.; Guan, C.; Song, L.; Huang, Y.; Zhang, R.; Xie, L.; Zhang, M.; Yan, H.; et al. Implications of Periprocedural Myocardial Biomarker Elevations and Commonly Used MI Definitions After Left Main PCI. JACC Cardiovasc. Interv. 2021, 14, 1623–1634. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G.; Sanchis-Gomar, F. Predicting mortality with cardiac troponins: Recent insights from meta-analyses. Diagnosis 2019, 8, 37–49. [Google Scholar] [CrossRef]
- Sörensen, N.A.; Ludwig, S.; Makarova, N.; Neumann, J.T.; Lehmacher, J.; Hartikainen, T.S.; Haller, P.M.; Keller, T.; Blankenberg, S.; Westermann, D.; et al. Prognostic Value of a Novel and Established High-Sensitivity Troponin I Assay in Patients Presenting with Suspected Myocardial Infarction. Biomolecules 2019, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- Gho, J.M.I.H.; Postema, P.G.; Conijn, M.; Bruinsma, N.; de Jong, J.S.S.G.; Bezzina, C.R.; Wilde, A.A.M.; Asselbergs, F.W. Heart failure following STEMI: A contemporary cohort study of incidence and prognostic factors. Open Heart 2017, 4, e000551. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhao, F.; Yuan, Z.; Wang, C.; Chen, K.; Xiao, W. Analysis of correlation between heart failure in the early stage of acute myocardial infarction and serum pregnancy associated plasma protein-A, prealbumin, C-reactive protein, and brain natriuretic peptide levels. Ann. Palliat. Med. 2022, 11, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, T.; Hartman, M.H.T.; Vlaar, P.J.J.; Prakken, N.H.J.; van der Ende, Y.M.Y.; Lexis, C.P.H.; van Veldhuisen, D.J.; van der Horst, I.C.C.; Lipsic, E.; Nijveldt, R.; et al. Predictors of left ventricular remodeling after ST-elevation myocardial infarction. Int. J. Cardiovasc. Imaging 2017, 33, 1415–1423. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Colleran, R.; Braun, S.; Xhepa, E.; Hieber, J.; Cassese, S.; Fusaro, M.; Kufner, S.; Laugwitz, K.L.; Schunkert, H.; et al. Comparative prognostic value of postprocedural creatine kinase myocardial band and high-sensitivity troponin T in patients with non-ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2018, 91, 215–223. [Google Scholar] [CrossRef]
- Gao, N.; Qi, X.; Dang, Y.; Li, Y.; Wang, G.; Liu, X.; Zhu, N.; Fu, J. Establishment and validation of a risk model for prediction of in-hospital mortality in patients with acute ST-elevation myocardial infarction after primary PCI. BMC Cardiovasc. Disord. 2020, 20, 513. [Google Scholar] [CrossRef]
- Hou, L.L.; Gao, C.; Feng, J.; Chen, Z.F.; Zhang, J.; Jiang, Y.J.; Li, X.X.; Wang, B.N. Prognostic Factors for In-Hospital and Long-Term Survival in Patients with Acute ST-Segment Elevation Myocardial Infarction after Percutaneous Coronary Intervention. Tohoku J. Exp. Med. 2017, 242, 27–35. [Google Scholar] [CrossRef]
- Zbierska-Rubinkiewicz, K.; Trębacz, O.; Tomala, M.; Rubinkiewicz, M.; Chrzan, I.; Gackowski, A. Creatine kinase-MB and red cell distribution width as predictors of contrast-induced nephropathy after percutaneous coronary intervention in acute myocardial infarction. Folia Med. Cracov. 2017, 57, 87–99. [Google Scholar]
- Wei, W.; Zhang, L.; Zhang, Y.; Tang, R.; Zhao, M.; Huang, Z.; Liu, J.; Xu, D.; He, Y.; Wang, B.; et al. Predictive value of creatine kinase MB for contrast-induced acute kidney injury among myocardial infarction patients. BMC Cardiovasc. Disord. 2021, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Pöyhönen, P.; Kylmälä, M.; Vesterinen, P.; Kivistö, S.; Holmström, M.; Lauerma, K.; Väänänen, H.; Toivonen, L.; Hänninen, H. Peak CK-MB has a strong association with chronic scar size and wall motion abnormalities after revascularized non-transmural myocardial infarction—A prospective CMR study. BMC Cardiovasc. Disord. 2018, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Zhu, H.; Ding, H.; Sun, C.; Zhou, K.; Fan, Y.; Li, T.; Men, M.; Chen, Y.; Lu, Q.; et al. Increased Cystatin C Level in ST-Elevation Myocardial Infarction Predisposes the Prognosis of Angioplasty. Am. J. Med. Sci. 2018, 355, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, Y.; Dai, C.; Wang, Y.; Zeng, R.; Liu, Q. Serum cystatin C is associated with the prognosis in acute myocardial infarction patients after coronary revascularization: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2022, 22, 156. [Google Scholar] [CrossRef]
- Einwoegerer, C.F.; Domingueti, C.P. Association Between Increased Levels of Cystatin C and the Development of Cardiovascular Events or Mortality: A Systematic Review and Meta-Analysis. Arq. Bras. Cardiol. 2018, 111, 796–807. [Google Scholar] [CrossRef]
- Gevorgyan, M.M.; Voronina, N.P.; Goncharova, N.V.; Kozaruk, T.V.; Russkikh, G.S.; Bogdanova, L.A.; Korolenko, T.A. Cystatin C as a Marker of Progressing Cardiovascular Events during Coronary Heart Disease. Bull. Exp. Biol. Med. 2017, 162, 421–424. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Feng, J.; Zhou, G.; Jin, X.; Pan, J. Higher serum level of Cystatin C: An additional risk factor of CAD. Medicine 2021, 100, e24269. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, X.B.; Bi, S.J.; Lu, Q.H.; Zhang, J. Serum cystatin C levels relate to no-reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction. PLoS ONE 2019, 14, e0220654. [Google Scholar] [CrossRef]
- Lou, B.; Luo, Y.; Zhang, H.; Wu, H.; Jiang, G.T.; Liu, H.; Kan, K.; Hao, X.; Sun, L.; Yuan, Z.; et al. Association between Cystatin C and Cardiac Function in Acute Myocardial Infarction Patients: A Real-World Analysis. Dis. Markers 2022, 2022, 7267937. [Google Scholar] [CrossRef]
- Brankovic, M.; Kardys, I.; van den Berg, V.; Oemrawsingh, R.; Asselbergs, F.W.; van der Harst, P.; Hoefer, I.E.; Liem, A.; Maas, A.; Ronner, E.; et al. BIOMArCS investigators. Evolution of renal function and predictive value of serial renal assessments among patients with acute coronary syndrome: BIOMArCS study. Int. J. Cardiol. 2020, 299, 12–19. [Google Scholar] [CrossRef]
- Barbarash, O.L.; Bykova, I.S.; Kashtalap, V.V.; Zykov, M.V.; Hryachkova, O.N.; Kalaeva, V.V.; Shafranskaya, K.S.; Karetnikova, V.N.; Kutikhin, A.G. Serum neutrophil gelatinase-associated lipocalin has an advantage over serum cystatin C and glomerular filtration rate in prediction of adverse cardiovascular outcome in patients with ST-segment elevation myocardial infarction. BMC Cardiovasc. Disord. 2017, 17, 81. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Gao, P.; Yan, P. Correlations of serum cystatin C and glomerular filtration rate with vascular lesions and severity in acute coronary syndrome. BMC Cardiovasc. Disord. 2017, 17, 47. [Google Scholar] [CrossRef]
- Ma, L.; Dai, W.; Lin, Y.; Zhang, Z.; Pan, Y.; Han, H.; Jia, H.; Peng, J.; Zhao, J.; Xu, L.; et al. Leukocyte Rho kinase activity and serum cystatin C affect cardiovascular events in acute coronary syndrome. Medicine 2020, 99, e20060. [Google Scholar] [CrossRef] [PubMed]
- Correa, S.; Morrow, D.A.; Braunwald, E.; Davies, R.Y.; Goodrich, E.L.; Murphy, S.A. Cystatin C for Risk Stratification in Patients After an Acute Coronary Syndrome. J. Am. Heart Assoc. 2018, 7, e009077. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Zhao, N.; Wang, Y.; Li, Y.; Xiang, C.; Li, L.; Zheng, W.; Xu, S.; Zhao, X.H. Association of Cystatin C with Metabolic Syndrome and Its Prognostic Performance in Non-ST-Segment Elevation Acute Coronary Syndrome with Preserved Renal Function. Biomed. Res. Int. 2019, 2019, 8541402. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fan, Y.; Men, M.; Shen, G.; Ma, A. High cystatin C levels predict long-term mortality in patients with ST-segment elevation myocardial infarction undergoing late percutaneous coronary intervention: A retrospective study. Clin. Cardiol. 2019, 42, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Arashi, H.; Yamaguchi, J.; Mori, F.; Ogawa, H.; Hagiwara, N. Elevated Cystatin-C Levels Are Associated with Increased Mortality in Acute Coronary Syndrome Patients: An HIJ-PROPER Sub-Analysis. Cardiorenal. Med. 2022, 12, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.S.; Spagnoli, V.; Kerneis, M.; Hauguel-Moreau, M.; Barthélémy, O.; Collet, J.P. Evaluation of neutrophil gelatinase-associated lipocalin and cystatin C as biomarkers of acute kidney injury after ST-segment elevation myocardial infarction treated by percutaneous coronary intervention. Arch Cardiovasc. Dis. 2019, 112, 180–186. [Google Scholar] [CrossRef]
- Ye, X.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol. Sin. 2018, 39, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Goel, H.; Melot, J.; Krinock, M.D.; Kumar, A.; Nadar, S.K.; Lip, G.Y.H. Heart-type fatty acid-binding protein: An overlooked cardiac biomarker. Ann. Med. 2020, 52, 444–461. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.G.; Yoon, C.H.; Lee, K.; Kang, S.H.; Youn, T.J.; Chae, I.H. Evaluation of Heart-type Fatty Acid-binding Protein in Early Diagnosis of Acute Myocardial Infarction. J. Korean Med. Sci. 2021, 36, e61. [Google Scholar] [CrossRef]
- Zhang, H.W.; Jin, J.L.; Cao, Y.X.; Liu, H.H.; Zhang, Y.; Guo, Y.L.; Wu, N.Q.; Zhu, C.G.; Gao, Y.; Xu, R.X.; et al. Heart-type fatty acid binding protein predicts cardiovascular events in patients with stable coronary artery disease: A prospective cohort study. Ann. Transl. Med. 2020, 8, 1349. [Google Scholar] [CrossRef]
- Ho, S.K.; Wu, Y.W.; Tseng, W.K.; Leu, H.B.; Yin, W.H.; Lin, T.H. The prognostic significance of heart-type fatty acid binding protein in patients with stable coronary heart disease. Sci. Rep. 2018, 8, 14410. [Google Scholar] [CrossRef]
- Bivona, G.; Agnello, L.; Bellia, C.; Lo Sasso, B.; Ciaccio, M. Diagnostic and prognostic value of H-FABP in acute coronary syndrome: Still evidence to bring. Clin. Biochem. 2018, 58, 1–4. [Google Scholar] [CrossRef]
- Jones, J.D.; Chew, P.G.; Dobson, R.; Wootton, A.; Ashrafi, R.; Khand, A. The Prognostic Value of Heart Type Fatty Acid Binding Protein in Patients with Suspected Acute Coronary Syndrome: A Systematic Review. Curr. Cardiol. Rev. 2017, 13, 189–198. [Google Scholar] [CrossRef]
- Ağaç, M.T.; Kahyaoğlu, B.; Aksoy, M.M.N.; Cinemre, F.B.; Vatan, M.B.; Gündüz, Y. Is endocan a biochemical marker for asymptomatic target organ damage in hypertensive patients? Anatol. J. Cardiol. 2019, 21, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Kosir, G.; Jug, B.; Novakovic, M.; Mijovski, M.B.; Ksela, J. Endocan Is an Independent Predictor of Heart Failure-Related Mortality and Hospitalizations in Patients with Chronic Stable Heart Failure. Dis. Markers 2019, 2019, 9134096. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, L.; Yu, X.H.; Hu, M.; Zhang, Y.K.; Liu, X.; He, P.; Ouyang, X. Endocan: A Key Player of Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 8, 798699. [Google Scholar] [CrossRef]
- Zhao, T.; Kecheng, Y.; Zhao, X.; Hu, X.; Zhu, J.; Wang, Y.; Ni, J. The higher serum endocan levels may be a risk factor for the onset of cardiovascular disease: A meta-analysis. Medicine 2018, 97, e13407. [Google Scholar] [CrossRef]
- Ziaee, M.; Mashayekhi, S.; Ghaffari, S.; Mahmoudi, J.; Sarbakhsh, P.; Garjani, A. Predictive Value of Endocan Based on TIMI Risk Score on Major Adverse Cardiovascular Events After Acute Coronary Syndrome. Angiology 2019, 70, 952–959. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y.; Guo, K.; Lao, Y.; Huang, X.; Feng, L. Value of Galectin-3 in Acute Myocardial Infarction. Am. J. Cardiovasc. Drugs 2020, 2020, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Cimen, A.O.; Emet, S.; Elitok, A. Endocan: A biomarker predicting successful reperfusion after coronary artery by-pass surgery of acute coronary syndrome patients. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 338–342. [Google Scholar]
- Dogdus, M.; Yenercag, M.; Ozyasar, M.; Yilmaz, A.; Can, L.H.; Kultursay, H. Serum Endocan Levels Predict Angiographic No-Reflow Phenomenon in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Coronary Intervention. Angiology 2021, 72, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Cheng, Y.; Zheng, Y.; Zhang, W.; Wang, L.; Qin, L. Association of serum transaminases with short- and long-term outcomes in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. BMC Cardiovasc. Disord. 2017, 17, 43. [Google Scholar] [CrossRef]
- Baars, T.; Sowa, J.P.; Neumann, U.; Hendricks, S.; Jinawy, M.; Kälsch, J.; Gerken, G.; Rassaf, T.; Heider, D.; Canbay, A. Liver parameters as part of a non-invasive model for prediction of all-cause mortality after myocardial infarction. Arch. Med. Sci. 2018, 16, 71–80. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Jiang, H.; Jiang, M.; Yu, G.; Li, X. Predictive value of elevated alanine aminotransferase for in-hospital mortality in patients with acute myocardial infarction. BMC Cardiovasc. Disord. 2021, 21, 82. [Google Scholar] [CrossRef]
- Steininger, M.; Winter, M.P.; Reiberger, T.; Koller, L.; El-Hamid, F.; Forster, S. De-Ritis Ratio Improves Long-Term Risk Prediction after Acute Myocardial Infarction. J. Clin. Med. 2018, 7, 474. [Google Scholar] [CrossRef]
- Djakpo, D.K.; Wang, Z.Q.; Shrestha, M. The significance of transaminase ratio (AST/ALT) in acute myocardial infarction. Arch. Med. Sci. Atheroscler. Dis. 2020, 5, e279–e283. [Google Scholar] [CrossRef] [PubMed]
- Servonnet, A.; Dubost, C.; Martin, G.; Lefrère, B.; Fontan, E.; Ceppa, F.; Delacour, H. Y a-t-il un intérêt au dosage de la myoglobine en 2017? [Myoglobin: Still a useful biomarker in 2017?]. Ann. Biol. Clin. 2018, 76, 137–141. [Google Scholar]
- Vicent, B.; Sanchis, J.; Llacer, A.; Lorenzo, F.; Julio, N.; Mauricio, P.; Vicente, B.; Bertomeu, V.; Ruiz, V.; Chorro, F.J. Prognostic Markers of Non-ST Elevation Acute Coronary Syndromes. Rev. Española Cardiol. 2003, 56, 857–864. [Google Scholar]
- Svensson, L.; Axelsson, C.; Nordlander, R.; Herlitz, J. Prognostic value of biochemical markers, 12-lead ECG and patient characteristics amongst patients calling for an ambulance due to a suspected acute coronary syndrome. J. Intern. Med. 2004, 255, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Karaismailoğlu, E.; Dikmen, Z.G.; Akbıyık, F.; Karaağaoğlu, A.E. A statistical approach to evaluate the performance of cardiac biomarkers in predicting death due to acute myocardial infarction: Time-dependent ROC curve. Turk. J. Med. Sci. 2018, 48, 237–245. [Google Scholar] [PubMed]
- Richards, A.M. Cardiac myosin-binding protein C as a candidate biomarker in heart failure: Rational but not revolutionary. Eur. J. Heart Fail. 2021, 23, 726–728. [Google Scholar] [CrossRef]
- Marber, M.S.; Mills, N.L.; Morrow, D.A.; Mueller, C. Study Group on Biomarkers of the ESC Association for Acute CardioVascular Care. Cardiac myosin-binding protein C as a biomarker of acute myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 963–965. [Google Scholar] [CrossRef] [PubMed]
- Kaier, T.E.; Twerenbold, R.; Puelacher, C.; Marjot, J.; Imambaccus, N.; Boeddinghaus, J. Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction. Circulation 2017, 136, 1495–1508. [Google Scholar] [CrossRef]
- Kaier, T.E.; Stengaard, C.; Marjot, J.; Sørensen, J.T.; Alaour, B.; Stavropoulou-Tatla, S. Cardiac Myosin-Binding Protein C to Diagnose Acute Myocardial Infarction in the Pre-Hospital Setting. J. Am. Heart Assoc. 2019, 8, e013152. [Google Scholar] [CrossRef]
- Wahab, M.A.K.A. Ischemia modified albumin (IMA) in acute coronary syndrome (ACS) and left bundle branch block (LBBB). Does it make the difference? Egypt. Heart J. 2017, 69, 183–190. [Google Scholar] [CrossRef]
- Ding, M.; Li, M.; Yang, H. Clinical diagnostic value of combined detection of IMA, D-D and MCP-1 in acute myocardial infarction. Exp. Ther. Med. 2021, 21, 457. [Google Scholar] [CrossRef]
- Demirtas, A.O.; Karabag, T.; Demirtas, D. Ischemic Modified Albumin Predicts Critical Coronary Artery Disease in Unstable Angina Pectoris and Non-ST-Elevation Myocardial Infarction. J. Clin. Med. Res. 2018, 10, 570–575. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med. 2018, 41, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Bivona, G.; Lo Sasso, B.; Scazzone, C.; Bazan, V.; Chiara, B.; Ciaccio, M. Galectin-3 in acute coronary syndrome. Clb 2017, 50, 797–803. [Google Scholar] [CrossRef]
- Ahmed, B.H.; Bouzid, K.; Allouche, E.; Boussaid, H.; Kamoun, M.; Lahiani, S. Relation entre le taux de Galectine-3 et la sévérité de la maladie coronaire dans l’infarctus du myocarde avec élévation du segment ST. Tunis. Med. 2020, 98, 567–572. [Google Scholar] [PubMed]
- Di Tano, G.; Caretta, G.; De Maria, R.; Bettari, L.; Parolini, M.; Testa, S.; Pirelli, S. Galetin-3 and outcomes after anterior-wall myocardial infarction treated by primary percutanoeus coronary intervention. Biomark. Med. 2017, 12, 127–142. [Google Scholar]
- Rabea, A.; Enriquez-Sarano, M.; Jaffe, S.A.; Manemann, M.S.; Weston, S.A.; Jiang, R.; Roger, V.L. Galectin-3 Levels and Outcomes after Myocardial Infarction: A Community Study. J. Am. Coll. Cardiol. 2019, 73, 2286–2295. [Google Scholar]
- Gagno, G.; Padoan, L.; Stenner, E.; Alessandro, B.; Ziberna, F.; Hiche, C.; Paldino, A.; Barbati, G.; Biolo, G.; Fiotti, N.; et al. Galectin 3 and Galectin 3 Binding Protein Improve the Risk Stratification after Myocardial Infarction. J. Clin. Med. 2019, 8, 570. [Google Scholar] [CrossRef]
- Branka, M.; Andriana, J.; Valentina, N.N.; Dragana, S.; Oliviera, M.A.; Rada, M.V. Trend of Galectin-3 Levels in Patients with Non-ST-Elevation and ST-Elevation Myocardial Infarction. Medicina 2022, 58, 286. [Google Scholar]
- Sharma, U.C.; Mosleh, W.; Chaudhari, M.; Katkar, R.; Weil, B.; Evelo, C. Myocardial and Serum Galectin-3 Expression Dynamics Marks Post-Myocardial Infarction Cardiac Remodelling. Heart Lung Circ. 2017, 26, 736–745. [Google Scholar] [CrossRef]
- George, M.; Shanmugam, E.; Srivatsan, V.; Vasanth, K.; Ramraj, B.; Rajaram, M. Value of pentraxin-3 and galectin-3 in acute coronary syndrome: A short-term prospective cohort study. Ther. Adv. Cardiovasc. Dis. 2015, 9, 275–284. [Google Scholar] [CrossRef]
- Andrejic, O.M.; Vucic, R.M.; Pavlovic, M.; McClements, L.; Stokanovic, D.; Tatjana, J.-S. Association between Galectin-3 levels within central and peripheral venous blood, and adverse left ventricular remodelling after first acute myocardial infarction. Sci. Rep. 2019, 9, 13145. [Google Scholar] [CrossRef] [PubMed]
- Turan, Y.; Demir, V. The relation of endocan and galectin-3 with ST-segment resolution in patients with ST-segment elevation myocardial infarction. Adv. Clin. Exp. Med. 2020, 29, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, D.; Apostolovic, S.; Stokanovic, D.; Stefan, M.; Tatjana, J.-S.; Sonja, S.-M. Galectin-3 in Acute Myocardial Infarction Patients with Atrial Fibrillation. Med. Princ. Pract. 2019, 28, 284–290. [Google Scholar] [CrossRef]
- Święcki, P.; Sawicki, R.; Knapp, M.; Kamiński, K.A.; Ptaszyńska-Kopczyńska, K.; Sobkowicz, B.; Lisowska, A. Galectin-3 as the Prognostic Factor of Adverse Cardiovascular Events in Long-Term Follow up in Patients after Myocardial Infarction-A Pilot Study. J. Clin. Med. 2020, 9, 1640. [Google Scholar] [CrossRef]
- Agata, T.; Agnieszka, K.-C.; Krzysztof, O.; Budnik, M.; Wancerz, A.; Piotr, S.; Peller, M.; Balsam, P.; Opolski, G.; Filipiak, K.J. Association of Galectin-3 and Soluble ST2, and Their Changes, with Echocardiographic Parameters and Development of Heart Failure after ST-Segment Elevation Myocardial Infarction. Dis. Markers 2019, 2019, 9529053. [Google Scholar]
- Agata, T.; Agnieszka, K.-C.; Krzysztof, O.; Budnik, M.; Wancerz, A.; Piotr, S. Association of galectin-3 and soluble ST2 with in-hospital and 1-year outcomes in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Pol. Arch. Intern. Med. 2019, 129, 770–780. [Google Scholar]
- Homsak, E.; Gruson, D. Soluble ST2: A complex and diverse role in several diseases. Clin. Chim. Acta 2020, 507, 75–87. [Google Scholar] [CrossRef]
- Somuncu, M.U.; Avci, A.; Kalayci, B.; Gudul, N.E.; Tatar, F.P.; Demir, A.R.; Can, M.; Akgul, F. Predicting long-term cardiovascular outcomes in myocardial infarction survivors using multiple biomarkers. Biomark. Med. 2021, 15, 899–910. [Google Scholar] [CrossRef]
- Hartopo, A.B.; Sukmasari, I.; Puspitawati, I. The Utility of Point of Care Test for Soluble ST2 in Predicting Adverse Cardiac Events during Acute Care of ST-Segment Elevation Myocardial Infarction. Cardiol. Res. Pract. 2018, 2018, 3048941. [Google Scholar] [CrossRef]
- Aleksova, A.; Paldino, A.; Beltrami, A.P.; Padoan, L.; Iacoviello, M.; Sinagra, G. Cardiac Biomarkers in the Emergency Department: The Role of Soluble ST2 (sST2) in Acute Heart Failure and Acute Coronary Syndrome-There is Meat on the Bone. J. Clin. Med. 2019, 8, 270. [Google Scholar] [CrossRef]
- Jha, D.; Goenka, L.; Thilagavathi, R.; Sharma, M.; Dhandapani, V.E.; George, M. Prognostic role of soluble ST2 in acute coronary syndrome with diabetes. Eur. J. Clin. Investig. 2018, 48, e12994. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, W.S.; Roger, V.L.; Jaffe, A.S.; Weston, S.A.; AbouEzzeddine, O.F.; Jiang, R. Prognostic Value of Soluble ST2 After Myocardial Infarction: A Community Perspective. Am. J. Med. 2017, 130, 1112.e9–1112.e15. [Google Scholar] [CrossRef] [PubMed]
- Zagidullin, N.; Motloch, L.J.; Gareeva, D.; Hamitova, A.; Lakman, I.; Krioni, I. Combining Novel Biomarkers for Risk Stratification of Two-Year Cardiovascular Mortality in Patients with ST-Elevation Myocardial Infarction. J. Clin. Med. 2020, 9, 550. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, C.; Zhao, R.; Cao, Z. Diagnostic Value of sST2 in Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 697837. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Oh, P.C.; Kim, M.; Moon, J.; Park, Y.M.; Lee, K.; Suh, S.Y.; Han, S.H.; Byun, K.; Ahn, T.; et al. Improved early risk stratification of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention using a combination of serum soluble ST2 and NT-proBNP. PLoS ONE 2017, 12, e0182829. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Huang, W.; Zhang, G.; Cao, S.; Yan, X.; Li, L.; Zhang, L.; Zheng, X. Soluble ST2 for Prediction of Clinical Outcomes in Patients with ST-Segment Elevation Myocardial Infarction Receiving Primary PCI. Int. Heart J. 2019, 60, 19–26. [Google Scholar] [CrossRef]
- Bai, S.; Liu, H.; Wu, H.; Wang, X.; Li, R.; Li, X. Predictive value of soluble suppression of tumorigenicity 2 on myocardial reperfusion. Intern. Med. J. 2020, 50, 985–992. [Google Scholar] [CrossRef]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Peiró, Ó.M.; García-Osuna, Á.; Ordóñez-Llanos, J.; Cediel, G.; Bonet, G.; Rojas, S.; Quintern, V.; Bardají, A. Long-term prognostic value of growth differentiation factor-15 in acute coronary syndromes. Clin. Biochem. 2019, 73, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Duan, L.; Cai, Y.L.; Li, H.Y.; Hao, B.C.; Chen, J.Q.; Liu, H.B. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc. Diabetol. 2020, 19, 120. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Jarolim, P.; Silverman, M.G.; Bohula, E.A.; Park, J.G.; Bonaca, M.P. Prognostic role of GDF-15 across the spectrum of clinical risk in patients with NSTE-ACS. Clin. Chem. Lab. Med. 2019, 57, 1084–1092. [Google Scholar] [CrossRef]
- Vyshnevska, I.R.; Kopytsya, M.P.; Kutya, I.M.; Protsenko, O.S. The role of growth differentiation factor 15 as a predictor of 5-year survival of patients after acute coronary syndrome. Pol. Merkur. Lekarski. 2020, 48, 297–301. [Google Scholar]
- Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allho, T.; Peter, T.; Tongers, J.; Wollert, K.C.; Wallentin, L. Growth-diferentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007, 28, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.H.; de Carvalho Borges, M.; Schmidt, A.; Marin-Neto, J.A.; Pazin-Filho, A. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Atherosclerosis 2016, 247, 184–188. [Google Scholar] [CrossRef]
- Wernly, B.; Fuernau, G.; Masyuk, M.; Muessig, J.M.; Pfeiler, S.; Bruno, R.R.; Desch, S.; Muench, P.; Lichtenauer, M.; Kelm, M.; et al. Syndecan-1 Predicts Outcome in Patients with ST-Segment Elevation Infarction Independent from Infarct-related Myocardial Injury. Sci. Rep. 2019, 9, 18367. [Google Scholar] [CrossRef]
- Huang, Y.; Lei, D.; Chen, Z.; Xu, B. Factors associated with microvascular occlusion in patients with ST elevation myocardial infarction after primary percutaneous coronary intervention. J. Int. Med. Res. 2021, 49, 3000605211024490. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Y.; Wang, M.; Wang, L.; Zhang, W.; Ge, Z.R. Circulating LIPCAR is a potential biomarker of heart failure in patients post-acute myocardial infarction. Exp. Biol. Med. 2021, 246, 2589–2594. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.F.; Yang, X.C.; Xu, L.; Li, W.M.; Xia, K.; Zhang, D.P.; Wu, R.N.; Gan, T. Circulating Long Noncoding RNA LIPCAR Acts as a Novel Biomarker in Patients with ST-Segment Elevation Myocardial Infarction. Med. Sci. Monit. 2018, 24, 5064–5070. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E.; Suto, M.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 2018, 68–69, 28–43. [Google Scholar] [CrossRef]
- Stenina-Adognravi, O. Invoking the power of thrombospondins: Regulation of thrombospondins expression. Matrix Biol. 2014, 37, 69–82. [Google Scholar] [CrossRef]
- Lopez-Dee, Z.; Pidcock, K.; Gutierrez, L.S. Thrombospondin-1: Multiple paths to inflammation. Mediat. Inflamm. 2011, 2011, 296069. [Google Scholar] [CrossRef]
- Liao, W.; Xu, L.; Pan, Y.; Wei, J.; Wang, P.; Yang, X.; Chen, M.; Gao, Y. Association of atrial arrhythmias with thrombospondin-1 in patients with acute myocardial infarction. BMC Cardiovasc. Disord. 2021, 21, 507. [Google Scholar] [CrossRef]
- Maloberti, A.; Biolcati, M.; Ruzzenenti, G.; Giani, V.; Leidi, F.; Monticelli, M.; Algeri, M.; Scarpellini, S.; Nava, S.; Soriano, F.; et al. The Role of Uric Acid in Acute and Chronic Coronary Syndromes. J. Clin. Med. 2021, 10, 4750. [Google Scholar] [CrossRef]
- Kannel, W.B.; Castelli, W.P.; McNamara, P.M. The coronary profile: 12-year follow-up in the Framingham study. J. Occup. Med. 1967, 9, 611–619. [Google Scholar]
- Tscharre, M.; Herman, R.; Rohla, M.; Huber, K.; Weiss, T.W. Uric acid is associated with long-term adverse cardiovascular outcomes in patientswith acute coronary syndrome undergoing percutaneous coronary intervention. Atherosclerosis 2018, 270, 173–179. [Google Scholar] [CrossRef]
- Magnoni, M.; Berteotti, M.; Ceriotti, F.; Mallia, V.; Vergani, V.; Peretto, G. Serum uric acid on admission predicts in-hospital mortality in patients with acute coronary syndrome. Int. J. Cardiol. 2017, 240, 25–29. [Google Scholar] [CrossRef]
- Timóteo, A.T.; Lousinha, A.; Labandeiro, J.; Ferreira, M.L.; Ferreira, R.C. Serum uric acid: A forgotten prognostic marker in acute coronary syndromes? Eur. Heart J. Acute Cardiovasc. Care 2013, 2, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Lazaros, G.; Tsiachris, D.; Aznaouridis, K.; Vlachopoulos, C.; Tsioufis, C.; Chrysohoou, C. Uric acid in-hospital changes predict mortality in patients with acute myocardial infarction. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1202–1209. [Google Scholar] [CrossRef]
- Tang, X.F.; He, C.; Zhu, P.; Zhang, C.; Song, Y.; Xu, J.J. Hyperuricemia is Associated With 2- and 5-Year Adverse Outcomes in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Front. Endocrinol. 2022, 13, 852247. [Google Scholar] [CrossRef]
- Kaya, M.G.; Uyarel, H.; Akpek, M.; Kalay, N.; Ergelen, M.; Ayhan, E. Prognostic value of uric acid in patients with ST-elevated myocardial infarction undergoing primary coronary intervention. Am. J. Cardiol. 2012, 109, 486–491. [Google Scholar] [CrossRef]
- Çanga, Y.; Emre, A.; Karataş, M.B.; Çalık, A.N.; Yelgeç, N.S.; İnan, D. Prognostic value of serum uric acid levels in patients with non-STEMI undergoing percutaneous coronary intervention. Herz 2020, 45, 389–396. [Google Scholar] [CrossRef]
- Centola, M.; Maloberti, A.; Castini, D.; Persampieri, S.; Sabatelli, L.; Ferrante, G.; Lucreziotti, S.; Morici, N.; Sacco, A.; Oliva, F.; et al. Impact of admission serum acid uric levels on in-hospital outcomes in patients with acute coronary syndrome. Eur. J. Intern. Med. 2020, 82, 62–67. [Google Scholar] [CrossRef]
- Rebora, P.; Centola, M.; Morici, N.; Sacco, A.; Occhino, G.; Viola, G.; Oreglia, J.; Castini, D.; Persampieri, S.; Sabatelli, L.; et al. Uric acid associated with acute heart failure presentation in Acute Coronary Syndrome patients. Eur. J. Intern. Med. 2022, 99, 30–37. [Google Scholar] [CrossRef]
- Wang, J.W.; Chen, Y.D.; Wang, C.H.; Zhu, X.L. Correlation of serum uric acid levels with coronary flow in patients with ST-segment elevation myocardial infarction undergoing primary coronary intervention. Zhonghua Yi Xue Za Zhi 2012, 92, 3100–3103. [Google Scholar]
- Wang, H.; Yang, J.; Sao, J.; Zhang, J.; Pang, X. The Prediction of Cardiac Events in Patients with Acute ST Segment Elevation Myocardial Infarction: A Meta-analysis of Serum Uric Acid. Open Life Sci. 2018, 13, 413–421. [Google Scholar] [CrossRef]
- Cuculi, F.; Herring, N.; De Caterina, A.R.; Banning, A.P.; Prendergast, B.D.; Forfar, J.C.; Choudhury, R.P.; Channon, K.M.; Kharbanda, R.K. Relationship of plasma neuropeptide Y with angiographic, electrocardiographic and coronary physiology indices of reperfusion during ST elevation myocardial infarction. Heart 2013, 99, 1198–1203. [Google Scholar] [CrossRef]
- Ullman, B.; Hulting, J.; Lundberg, J.M. Prognostic value of plasma neuropeptide-Y in coronary care unit patients with and without acute myocardial infarction. Eur. Heart J. 1994, 15, 454–461. [Google Scholar] [CrossRef]
- Clarke, J.G.; Davies, G.J.; Kerwin, R.; Hackett, D.; Larkin, S.; Dawbarn, D.; Lee, Y.; Bloom, S.R.; Yacoub, M.; Maseri, A. Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1987, 1, 1057–1059. [Google Scholar] [CrossRef]
- Herring, N.; Tapoulal, N.; Kalla, M.; Ye, X.; Borysova, L.; Lee, R.; Dall’Armellina, E.; Stanley, C.; Ascione, R.; Lu, C.J.; et al. Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur. Heart J. 2019, 40, 1920–1929. [Google Scholar] [CrossRef]
- Niccoli, G.; Burzotta, F.; Galiuto, L.; Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 2009, 54, 281–292. [Google Scholar] [CrossRef]
- Heusch, G. Coronary microvascular obstruction: The new frontier in cardioprotection. Basic Res. Cardiol. 2019, 114, 45. [Google Scholar] [CrossRef]
- Gibbs, T.; Tapoulal, N.; Shanmuganathan, M.; Burrage, M.K.; Borlotti, A.; Banning, A.P.; Choudhury, R.P.; Neubauer, S.; Kharbanda, R.K.; Ferreira, V.M.; et al. OxAMI (Oxford Acute Myocardial Infarction) Study. Neuropeptide-Y Levels in ST-Segment-Elevation Myocardial Infarction: Relationship with Coronary Microvascular Function, Heart Failure, and Mortality. J. Am. Heart Assoc. 2022, 11, e024850. [Google Scholar] [CrossRef]
- Kalla, M.; Hao, G.; Tapoulal, N.; Tomek, J.; Liu, K.; Woodward, L. The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. Eur. Heart J. 2020, 41, 2168–2179. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, H.; Wang, X. Neuregulin-1, a microvascular endothelial-derived protein, protects against myocardial ischemia-reperfusion injury (Review). Int. J. Mol. Med. 2020, 46, 925–935. [Google Scholar] [CrossRef]
- Galindo, C.L.; Kasasbeh, E.; Murphy, A.; Ryzhov, S.; Lenihan, S.; Ahmad, F.A. Anti-remodeling and anti-fibrotic effects of the neuregulin-1beta glial growth factor 2 in a large animal model of heart failure. J. Am. Heart Assoc. 2014, 3, e000773. [Google Scholar] [CrossRef]
- Ryzhov, S.; Matafonov, A.; Galindo, C.L.; Zhang, Q.; Tran, T.; Lenihan, D.J. ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am. J. Physiol.-Heart Circ. Physiol. 2017, 312, H907–H918. [Google Scholar] [CrossRef] [PubMed]
- Pilz, P.M.; Hamza, O.; Gidlöf, O.; Gonçalves, I.F.; Tretter, E.V.; Trojanek, S. Remote ischemic perconditioning attenuates adverse cardiac remodeling and preserves left ventricular function in a rat model of reperfused myocardial infarction. Int. J. Cardiol. 2019, 285, 72–79. [Google Scholar] [CrossRef]
- Jabbour, A.; Hayward, C.S.; Keogh, A.M.; Kotlyar, E.; McCrohon, J.A.; England, J.F.; Amor, R.; Liu, X.; Li, X.Y.; Zhou, M.D.; et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur. J. Heart Fail. 2011, 13, 83–92. [Google Scholar] [CrossRef]
- Haller, P.M.; Gonçalves, I.F.; Acar, E.; Jäger, B.; Pilz, P.M.; Wojta, J. Relationship between plasma Neuregulin-1 and cardiac function in patients with ST-elevation myocardial infarction. Rev. Cardiovasc. Med. 2022, 23, 63. [Google Scholar] [CrossRef] [PubMed]
- Rohrbach, S.; Niemann, B.; Silber, R.E.; Holtz, J. Neuregulin receptors erbB2 and erbB4 in failing human myocardium. Basic Res. Cardiol. 2005, 100, 240–249. [Google Scholar] [CrossRef]
- Haller, P.M.; Vargas, K.G.; Haller, M.C.; Piackova, E.; Wojta, J.; Gyöngyösi, M.; Gersh, B.J.; Kiss, A.; Podesser, B.K.; Huber, K. Remote ischaemic conditioning for myocardial infarction or elective PCI: Systematic review and meta-analyses of randomised trials. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 82–92. [Google Scholar] [CrossRef]
- Garbayo, E.; Gavira, J.J.; de Yebenes, M.G.; Pelacho, B.; Abizanda, G.; Lana, H.; Blanco-Prieto, M.J.; Prosper, F. Catheter-based Intramyocardial Injection of FGF1 or NRG1-loaded MPs Improves Cardiac Function in a Preclinical Model of Ischemia-Reperfusion. Sci. Rep. 2016, 6, 25932. [Google Scholar] [CrossRef]
- Yang, G.; Wu, C.; Li, L.; Zeng, Z.; Ma, X.; Wei, J.; Gui, C. Neuregulin-1 protects cardiac electrical conduction through downregulating matrix metalloproteinase-9 and upregulating connexin 43 in a rat myocardial infarction model. Pharmazie 2019, 74, 231–234. [Google Scholar]
- Rao, P.; Liu, Z.; Duan, H.; Dang, S.; Li, H.; Zhong, L. Pretreatment with neuregulin-1 improves cardiac electrophysiological properties in a rat model of myocardial infarction. Exp. Ther. Med. 2019, 17, 3141–3149. [Google Scholar] [CrossRef]
- Bostan, M.M.; Stătescu, C.; Anghel, L.; Șerban, I.L.; Cojocaru, E.; Sascău, R. Post-Myocardial Infarction Ventricular Remodeling Biomarkers-The Key Link between Pathophysiology and Clinic. Biomolecules 2020, 10, 1587. [Google Scholar] [CrossRef]
- Sayed, A.S.; Xia, K.; Salma, U.; Yang, T.; Peng, J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ. 2014, 23, 503–510. [Google Scholar] [CrossRef]
- Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef]
- Widera, C.; Gupta, S.K.; Lorenzen, J.M.; Bang, C.; Bauersachs, J.; Bethmann, K.; Kempf, T.; Wollert, K.C.; Thum, T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol.Cell. Cardiol. 2011, 51, 872–875. [Google Scholar] [CrossRef]
- Goretti, E.; Vausort, M.; Wagner, D.R.; Devaux, Y. Association between circulating microRNAs, cardiovascular risk factors and outcome in patients with acute myocardial infarction. Int. J. Cardiol. 2013, t168, 4548–4550. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Shen, B.; Li, J.; Lv, D.; Zhao, Y.; Wang, F.; Xu, J. Serum microRNA-499 and microRNA-208a as biomarkers of acute myocardial infarction. Int. J. Clin. Exp. Med. 2014, 7, 136–141. [Google Scholar]
- Olivieri, F.; Antonicelli, R.; Spazzafumo, L.; Santini, G.; Rippo, M.R.; Galeazzi, R. Admission levels of circulatingmiRNA-499-5p and risk of death in elderly patients after acute non-ST elevation myocardial infarction. Int. J. Cardiol. 2014, 172, 276–278. [Google Scholar] [CrossRef]
- Matsumoto, S.; Sakata, Y.; Nakatani, D.; Suna, S.; Mizuno, H.; Shimizu, M.; Usami, M.; Sasaki, T.; Sato, H.; Kawahara, Y.; et al. A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem. Biophys. Res. Commun. 2012, 427, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Sakata, Y.; Suna, S.; Nakatani, D.; Usami, M.; Hara, M.; Kitamura, T.; Hamasaki, T.; Nanto, S.; Kawahara, Y.; et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infaction. Circ. Res. 2013, 113, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.M.; Liu, X.X.; Wei, G.Q.; Da, Y.N.; Cha, L.; Ma, C.S. Prediction of long-term outcome after acute myocardial infaction using circulating miRNA-145. Scand. J. Clin. Lab. Investig. 2015, 75, 85–91. [Google Scholar] [CrossRef]
- Wang, C.; Jing, Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol. Sin. 2018, 39, 1110–1119. [Google Scholar] [CrossRef]
- Gidlöf, O.; Smith, J.G.; Miyazu, K.; Gilje, P.; Spencer, A.; Blomquist, S.; Erlinge, D. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc. Disord. 2013, 13, 12. [Google Scholar] [CrossRef]
- Eitel, L.; Adams, V.; Dieterich, P.; Fuernau, G.; de Waha, S.; Desch, S.; Schuler, G.; Thiele, H. Relation of circular microRNS-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infaction. Am. Heart J. 2012, 164, 706–714. [Google Scholar] [CrossRef]
- Lv, P.; Zhou, M.; He, J.; Meng, W.; Ma, X.; Dong, S. Circulating miR-208b and miR-34a are Associated with Left Ventricular Remodeling after Acute Myocardial Infarction. Int. J. Mol. Sci. 2014, 15, 5774–5788. [Google Scholar] [CrossRef] [PubMed]
- Devaux, Y.; Vausort, M.; McCann, G.P.; Zangrando, J.; Kelly, D.; Razvi, N. MicroRNA-150: A novel marker of left ventricular remodeling after acute myocardial infarction. Circ. Cardiovasc. Genet. 2013, 6, 290–298. [Google Scholar] [CrossRef]
- Devaux, Y.; Vausort, M.; McCann, G.P.; Kelly, D.; Collignon, O.; Ng, L.L.; Wagner, D.R.; Squire, I.B. A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS ONE 2013, 8, e70644. [Google Scholar] [CrossRef]
- Liu, X.; Dong, Y.; Chen, S.; Zhang, G.; Zhang, M.; Gong, Y.; Li, X. Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction. Cardiology 2015, 132, 233–241. [Google Scholar] [CrossRef]
- Rincón, L.M.; Rodríguez-Serrano, M.; Conde, E.; Lanza, V.F.; Sanmartín, M.; González-Portilla, P.; Paz-García, M.; Del Rey, J.M.; Menacho, M.; García Bermejo, M.L.; et al. Serum microRNAs are key predictors of long-term heart failure and cardiovascular death after myocardial infarction. ESC Heart Fail. 2022, 15. ahead of print. [Google Scholar] [CrossRef]
Biomarker | Study | Prognostic Value |
---|---|---|
C-reactive protein (CRP) | Iwona et al. [18] | In patients with STEMI undergoing pPCI, CRP was associated with HF hospitalization risk and HF-related mortality in long-term follow-up (median period of 5.6 years) |
Söğüt et al. [21] | CRP/albumin ratio could predict clinical outcomes of STEMI | |
Fibrinogen | Song et al. [23] | In patients with NSTEMI undergoing pPCI, fibrinogen was a predictor of death or non-fatal reinfarction within 1 year of follow-up |
Zhao et al. [26] | In patients with STEMI undergoing pPCI, fibrinogen/albumin ratio was an independent predictor of 30-day mortality and no-reflow after pPCI | |
Interleukin-6 (IL-6) | Fanola et al. [32] | IL-6 levels, after ACS, were significantly correlated with the risk of MACEs independent of established risk predictors or other biomarkers (median follow-up of 2.5 years) |
Interleukin-37 (IL-37) | Liu et al. [36] | In STEMI patients treated with pPCI, higher levels of IL-37 were an independent predictor for in-hospital MACEs |
B-type natriuretic peptide (BNP) | Zubair et al. [45] | Blood-stream BNP molecular forms were related to MACE, death and HF at 6 months and 1 and 2 years follow-up in AMI patients |
Wolsk et al. [47] | In patients with ACS and diabetes mellitus, BNP was associated with significant predictions for death, CV death and HF (median follow-up of 26 months) | |
Wang et al. [48] | AMI patients with high BNP levels presented low survival rates within 1 year of follow-up | |
Lee et al. [49] | High initial or follow-up BNP levels were potent independent indicators for all-cause death and MACEs in AMI patients | |
Hsu et al. [51] | BNP was a substantial independent predictor of LV remodeling after 6 months in AMI patients | |
Mid-regional proadrenomedullin(MR-proADM) | Supel et al. [54] | Elevated level of MR-proADM in plasma, measured 24 h after the diagnosis of CS, was a predictor of in-hospital mortality in patients with AMI complicated by CS |
Falkentoft et al. [56] | In patients with STEMI, increased plasma concentrations of MR-proADM were linked to elevated risks of short- and long-term all-cause mortality and cardiovascular mortality and hospital admission for heart failure, regardless of other risk factors (median follow-up of 1105 days) | |
N-terminal pro-B-type natriuretic peptide (NT-proBNP) | Gong et al. [57] | In NSTEMI patients, NT-proBNP was a powerful prognostic marker for all-cause death, hospital admission for HF and non-fatal MI or TLR (313 days median follow-up) |
Zhao et al. [59] | In STEMI patients undergoing pPCI, NT-proBNP was an independent predictor for in-hospital cardiovascular mortality, TLR, advanced HF, atrioventricular block, stroke, reinfarction and ventricular arrhythmia | |
Lindholm et al. [60] | In patients with ACS, baseline values of NT-proBNP were an independent predictor for all-cause death, sudden cardiac death and death due to HF or arrhythmia | |
Celebi et al. [62] | NT-proBNP assessment at admission was a good predictor for left ventricle aneurism formation in STEMI patients (6 months follow-up) | |
Copeptin | Lattuca et al. [66] | Copeptin assessed on admission in STEMI patients was an independent predictor of 1 year all-cause mortality |
Ahmed et al. [67] | Copeptin was a prognostic marker for any MACE (TLR, HF, stroke, reinfarction, cardiac death and rehospitalization for ischemic events) at 1 year of follow-up in NSTEMI patients | |
Platelet-related biomarkers | Avci et al. [74] | In STEMI patients, increased MPV values during hospitalization were correlated with long-term mortality |
Chang et al. [75] | High MPV levels were associated with increased risk of MACEs (all-cause mortality, time to recurrent ACS, stroke and TLR) in ACS patients (median follow-up of 2.4 years) | |
Çanga et al. [77] | MPV was an independent predictor of MACEs in short-term follow-up (cardiovascular death and non-fatal reinfarction within 30 days) in young STEMI patients | |
Kurtul et al. [79] | MPV was a predictor for short-term mortality and no-reflow phenomena in STEMI patients | |
Chunyang et al. [81] | MPV/PC ratio was a long-term adverse outcome predictor in STEMI patients (30 months of follow-up) | |
Ösken et al. [82] | In STEMI patients, MPV/PC ratio was correlated with long-term ST and mortality (5 years of follow-up) | |
Troponins | Zeljković et al. [85] | cTnT was a predictor for LV systolic dysfunction (<50%) within 1 year of follow-up in STEMI patients |
Mohammad et al. [86] | In STEMI patients, the hs-cTnT level predicted long-term LV dysfunction (12 months of follow-up) | |
Ndrepepa et al. [90] | In patients with STEMI undergoing pPCI, admission or peak post-procedural hs-cTnT were independently linked with the probability of 3 year death | |
Harada et al. [91] | Post-procedural hs-TnT was independently related with higher risk of death up to 1 year after PCI in individuals with NSTEMI who received early PCI | |
Creatine kinase-MB (CK-MB) | Johannes et al. [95] | CK-MB was a risk factor for HF onset after STEMI (median follow-up of 6.7 years) |
Ndrepepa et al. [98] | Peak post-procedural CK-MB was a predictor of 3 year mortality | |
Hsu et al. [51] | CK-MB was an independent predictor of LV remodeling after 6 months in AMI patients | |
Cystatin C (cysC) | Cheng et al. [109] | CysC was a predictor for no-reflow phenomena in STEMI patients undergoing pPCI |
Lou et al. [110] | CysC was a predictor for MACE (cardiovascular mortality and all-cause mortality) in AMI patients | |
Brankovic et al. [111] | Independently of the GRACE risk score, cysC levels predicted death or recurrence of ACS during the first year | |
Barbarash et al. [112] | CysC was a predictor of adverse cardiovascular outcomes within 3 years of follow-up in STEMI patients | |
Correa et al. [115] | CysC was a predictor of adverse cardiovascular outcomes in ACS patients (median follow-up of 2.5 years) | |
Mao et al. [116] | CysC was an independent predictor of MACEs (cardiac death, non-fatal MI, TLR, HF, non-fatal stroke) in NSTEMI patients within 12 months of follow-up | |
Chen et al. [117] | High cysC levels at admission were an independent predictor of cardiac mortality and long-term all-cause mortality in STEMI patients (median follow-up of 40.7 months) | |
Endothelial cell-related biomarkers | Ziaee et al. [131] | Endocan was an independent predictor for MACEs (in-hospital death, HF and recurrent ischemia) comparable with that of the TIMI risk score in ACS patients |
Dogdus et al. [134] | Endocan was an independent predictor for no-reflow phenomena in STEMI patients | |
Aspartate transaminase (AST) | Steiniger et al. [138] | De-Ritis ratio was a strong independent predictor for long-term mortality in AMI patients (median follow-up of 8.7 years) |
Galectin-3 (Gal-3) | Giuseppe Di Tano et al. [154] | In patients with a first anterior STEMI treated with pPCI, Gal-3 levels were a strong independent predictor of long-term all-cause death and HF hospitalization (median follow-up of 22 months) |
Rabea et al. [155] | Gal-3 was an independent predictor of HF and mortality after an AMI (median follow-up of 5.4 years) | |
Stanojevic et al. [162] | STEMI patients with high Gal-3 levels presented 4.4 times greater risk of developing AF | |
Agata et al. [164] | Gal-3 was an independent predictor for HF onset at 1 year of follow-up in STEMI patients treated with pPCI | |
Gagno et al. [156] | Gal-3 was an independent predictor for 1 year all-cause mortality but not for AMI or angina pectoris | |
Soluble suppression of tumorigenicity 2 (sST2) | Somuncu et al. [167] | Within 1 year of follow-up in patients with MI, high levels of sST2 were a strong predictor of poor CV outcomes, including CV death and heart failure |
Hartopo et al. [168] | sST2 levels were an independent predictor of adverse cardiac events (cardiac death, acute HF, reinfarction, resuscitated ventricular arrythmias, cardiogenic shock) during acute intensive care for STEMI | |
Jenkins et al. [171] | Higher values of sST2 after an AMI were correlated with increased risk of HF and death over a long-term follow-up period (median period of 5 years) | |
Shiru et al. [176] | sST2 was a predictor marker for impaired myocardial reperfusion in STEMI patients treated with pPCI | |
Yu et al. [174] | Elevated sST2 levels at admission were independent predictors for 1 year MACEs in STEMI patients | |
Liu et al. [175] | In patients with STEMI undergoing PCI, sST2 was found to be an independent predictor for MACEs (all cause death, a non-fatal MI and HF) and mortality (12 months of follow-up) | |
Growth differentiation factor-15 (GDF-15) | Peiró et al. [178] | Concentrations greater than 1800 ng/L were linked to an elevated risk of all-cause mortality, MACE, hospitalization for HF and cardiovascular death |
Li et al. [179] | ||
Zelniker et al. [180] | ||
Syndecan-1 (Sdc1) | Wernly et al. [184] | Sdc1 > 120 ng/mL was independently linked with death at 6 months |
Circulating LIPCAR | Yan et al. [186] | LIPCAR may be a biomarker of early HF following AMI |
Li et al. [187] | In STEMI, greater levels of LIPCAR were found to be independent predictors of significant adverse cardiovascular events | |
Thrombospondin-1 (TSP-1) | Liao et al. [191] | TSP-1 was an independent risk factor for atrial arrhythmias in patients with AMI |
Uric acid (UA) | Lazaros et al. [197] | In ACS, peak admission UA levels could predict both 30 day and 1 year mortality Hyperuricemia has been linked to an increased risk of 2 and 5 year all-cause mortality in STEMI patients following PCI, with the best cut-off value to predict MACE in young patients with NSTEMI being 5.2 mg/dL |
Tang et al. [198] | ||
Kaya et al. [199] | ||
Çanga et al. [200] | ||
Neuropeptide-Y (NPY) | Herring et al. [208] | NPY was independently associated with coronary microvascular dysfunction, increased cardiac injury and decreased LV ejection fraction 6 months after an acute event and with subsequent heart failure and mortality over an average follow-up of 6.4 years |
Gibbs et al. [211] | ||
MicroRNAs (miRNAs) | Widera et al. [227] | miRNA-133a and miRNA-208b were linked to an important rise in all-cause death at 6 months after an AMI |
Goretti et al. [228] | miRNA-499 was found to be effective at predicting death at 30 days, 4 months and 1, 2 and 6 years | |
Xiao et al. [229] | ||
Olivieri et al. [230] | ||
Matsumoto et al. [231,232] | ||
Dong et al. [233] | miRNA-145 has been shown to be able to predict cardiovascular mortality, as well as the onset of heart failure | |
Wang et al. [234] | miRNA-208b and miRNA-34a can be used as indicators of LV remodeling following myocardial infarction and are linked to higher mortality at 6 months, as well as a 23.1% higher probability of having HF | |
Rincón et al. [241] | miR-21-5p, miR-23a-3p, miR27b-3p, miR-122-5p, miR210-3p and miR-221-3p could accurately predict hospital admission for HF or cardiovascular death after a mean follow-up of 2.1 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stătescu, C.; Anghel, L.; Tudurachi, B.-S.; Leonte, A.; Benchea, L.-C.; Sascău, R.-A. From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction. Int. J. Mol. Sci. 2022, 23, 9168. https://doi.org/10.3390/ijms23169168
Stătescu C, Anghel L, Tudurachi B-S, Leonte A, Benchea L-C, Sascău R-A. From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction. International Journal of Molecular Sciences. 2022; 23(16):9168. https://doi.org/10.3390/ijms23169168
Chicago/Turabian StyleStătescu, Cristian, Larisa Anghel, Bogdan-Sorin Tudurachi, Andreea Leonte, Laura-Cătălina Benchea, and Radu-Andy Sascău. 2022. "From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction" International Journal of Molecular Sciences 23, no. 16: 9168. https://doi.org/10.3390/ijms23169168
APA StyleStătescu, C., Anghel, L., Tudurachi, B. -S., Leonte, A., Benchea, L. -C., & Sascău, R. -A. (2022). From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction. International Journal of Molecular Sciences, 23(16), 9168. https://doi.org/10.3390/ijms23169168