Lifestage Sex-Specific Genetic Effects on Metabolic Disorders in an Adult Population in Korea: The Korean Genome and Epidemiology Study
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Study Groups
2.2. Overall Results of the GWASs
2.3. Study Group-Specific Associations
3. Discussion
3.1. Significant Associations in Peri- and Postmenopausal Women
3.2. Newly Identified Metabolic Syndrome Gene Loci
3.3. Confirmed the Previous Associations
3.4. Study Limitations
3.5. Conclusions
4. Materials and Methods
4.1. Study Participants
4.2. Measurement of Anthropometric and Laboratory Data and Definition of Lifestyle Factors
4.3. Study Phenotypes and Covariates
4.4. Study Genotypes
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | abdominal obesity BMI |
BMI | Body mass index CH |
CH | hypercholesterolemia |
CVD | cardiovascular disease |
DBP | diastolic blood pressure |
DM | Type 2 diabetes mellitus |
GO | general obesity |
GWAS | genome-wide association study |
HDL | hypo-high-density lipoprotein |
HDL | hypo-HDL cholesterolemia |
HTN | hypertension |
KoGES | Korean Genome and Epidemiology Study |
LD | linkage disequilibrium |
MAF | minor allele frequency |
MetS | Metabolic syndrome |
SBP | Systolic blood pressure |
SNP | single nucleotide polymorphism |
T2D | type 2 diabetes mellitus |
TFAP2A | Transcription factor activating enhancer binding protein 2 alpha |
TG | hypertriglyceridemia |
TLE4 | Transducin-like enhancer of split 4 |
References
- Janssen, I.; Powell, L.H.; Crawford, S.; Lasley, B.; Sutton-Tyrrell, K. Menopause and the metabolic syndrome: The Study of Women’s Health Across the Nation. Arch. Intern. Med. 2008, 168, 1568–1575. [Google Scholar] [CrossRef] [Green Version]
- Rosamond, W.; Flegal, K.; Friday, G.; Furie, K.; Go, A.; Greenlund, K.; Hasse, N.; Ho, M.; Howard, V.; Kissela, B.; et al. Heart disease and stroke statistics: 2007 Update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007, 115, e69–e171. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Cason, A.P.; Chamberlain, A.M.; Chang, A.R.; Delling, F.N.; Djousse, L.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the Americ Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Goff Jr, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, J.S.C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Jones, D.; Adams, R.; Carnethon, M.; De Simone, G.; Ferguson, T.B.; Flegal, K.; Fordd, E.; Furie, K.; Go, A.; Greenlund, K.; et al. Heart disease and stroke statistics—2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119, e21–e181. [Google Scholar] [CrossRef] [PubMed]
- Nolan, P.B.; Carrick-Ranson, G.; Stinear, J.W.; Reading, S.A.; Dalleck, L.C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017, 7, 211–215. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, Y.; Chen, Y.; Chen, Y.; Li, Q.; Zhu, C.; Wang, N.; Han, B.; Zhai, H.; Zhai, H.; et al. Age and gender-sp cific distribution of metabolic syndrome components in East China: Role of hypertriglyceridemia in the SPECT-China study. Lipids Health Dis. 2018, 17, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishram, J.K.; Borglykke, A.; Andreasen, A.H.; Jeppesen, J.; Ibsen, H.; Jørgensen, T.; Palmieri, L.; Giampaoli, S.; Dofrancesco, C.; Kee, F.; et al. Impact of age and gender on the prevalence and prognostic importance of the metabolic syndrome and its components in europeans. the MORGAM prospective cohort project. PLoS ONE 2014, 9, e107294. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Kang, D.R.; Kim, J.Y.; Koh, K.K. Metabolic Syndrome Fact Sheet 2021: Executive Report. Cardiometab. Syndr. J. 2021, 1, 125–134. [Google Scholar] [CrossRef]
- Fall, T.; Ingelsson, E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. 2014, 382, 740–757. [Google Scholar] [CrossRef]
- Christensen, K.D.; Dukhovny, D.; Siebert, U.; Green, R.C. Assessing the costs and cost- effectiveness of genomic sequencing. J. Pers. Med. 2015, 5, 470–486. [Google Scholar] [CrossRef]
- Arking, D.E.; Chakravarti, A. Understanding cardiovascular disease through the lens of genome-wide association studies. Trends Genet. 2009, 25, 387–941. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, B.S.; Shin, D.J.; Woo, P.K.; Shin, Y.A.; Kim, K.J.; Heo, L.; Lee, J.Y.; Kim, Y.K.; Kim, Y.J.; et al. A genome-wide association study of a coronary artery disease risk variant. J. Hum. Genet. 2013, 58, 120–126. [Google Scholar] [CrossRef]
- Oh, S.W.; Lee, J.E.; Shin, E.; Kwon, H.; Choe, E.K.; Choi, S.Y.; Rhee, H.; Choi, S.H. Genome-wide association study o metabolic syndrome in Korean populations. PLoS ONE 2020, 15, e0227357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S.W.; Chung, M.; Park, S.J.; Cho, S.B.; Hong, K.W. Genome-Wide Association Study of Metabolic Syndrome in Koreans. Genomics Inform. 2014, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Park, M.H.; Kim, N.H.; Lee, J.Y.; Park, H.Y. Genetic loci associated with lipid concentrations and cardiovascular ris factors in the Korean population. J. Med. Genet. 2011, 48, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Lunetta, K.L.; Murabito, J.M.; Andersen, S.L.; Schupf, N.; Perls, T.; Sebastiani, P. Genetic associations with age of menopause in familial longevity. Menopause. 2019, 26, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Laven, J.S.E. Genetics of Early and Normal Menopause. Semin. Reprod. Med. 2015, 33, 377–383. [Google Scholar] [CrossRef]
- Gurka, M.J.; Vishnu, A.; Santen, R.J.; Deboer, M.D. Progression of Metabolic Syndrome Severity During the Menopausal Transition. J. Am. Heart Assoc. 2016, 5, e003609. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.G.; Moon, H.K.; Song, J.H.; Yun, Y.M. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Wang, X.; Maruyama, T.; Ma, Y.; Zhang, X.; Mez, J.; Sherva, E.; Takeyama, H.; Initiative, A.D.N.; Lunettaet, K.L.; et al. Genome-wide association study of Alzheimer’s disease endophenotypes at prediagnosis stages. Alzheimers Dement. 2018, 14, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Salakhov, R.R.; Goncharova, I.A.; Makeeva, O.A.; Golubenko, M.V.; Kulish, E.V.; Kashtalap, V.V.; Barbarash, O.L.; Puzyrev, V.P. TOMM40 Gene Polymorphism Association with Lipid Profile. Hum. Genet. 2014, 50, 198–204. [Google Scholar] [CrossRef]
- Srivastava, N.; Chowdhury, P.R.; Averna, M.; Srivastava, R.A.K. Estrogen increases hepatic lipase levels in inbred strains of mice: A possible mechanism for estrogen- dependent lowering of high density lipoprotein. Mol. Cell. Biochem. 2001, 220, 87–93. [Google Scholar] [CrossRef]
- Parini, P.; Angelin, B.; Rudling, M. Importance of estrogen receptors in hepatic LDL receptor regulation. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1800–1805. [Google Scholar] [CrossRef]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.H.; Afdhal, N.H.; Wang, D.Q.H. Estrogen receptor α, but not β, plays a major role in 17β-estradiol-induced murine cholesterol gallstones. Gastroenterology 2004, 127, 239–249. [Google Scholar] [CrossRef]
- Shin, T.H.; Brynczka, C.; Dayyani, F.; Rivera, M.N.; Sweetser, D.A. TLE4 regulation of wnt-mediated inflammation underlies its role as a tumor suppressor in myeloid leukemia. Leuk. Res. 2016, 48, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Taskinen, M.R.; Kuusi, T. High density lipoproteins in postprandial lipemia. Relation to sex and lipoprotein lipase activity. Atherosclerosis 1986, 5, 121–130. [Google Scholar] [CrossRef]
- Delahanty, R.J.; Fadiel, A.B.; Xiang, Y.B.; Long, J.; Cai, Q.; Wen, W.; Xu, W.H.; Cai, H.; He, J.; Gao, Y.T.; et al. Association of obesity-related genetic variants with endometrial cancer risk: A report from the shanghai endometrial cancer genetics study. Am. J. Epidemiol. 2011, 174, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Elks, C.E.; Perry, J.R.B.; Sulem, P.; Chasman, D.I.; Franceschini, N.; He, C.; Lunetta, K.L.; Visser, J.A.; Byrne, E.M.; Cousminer, D.L.; et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 2010, 42, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Rhodes, L.; Malinowski, J.R.; Wang, Y.; Tao, R.; Pankratz, N.; Jeff, J.M.; Yoneyama, S.; Carty, C.L.; Setiawan, V.W.; Marchand, L.L.; et al. The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic meta-analysis. PLoS ONE 2018, 13, e0200486. [Google Scholar] [CrossRef] [PubMed]
- Xiangfeng, L.; Wang, L.; Lin, X.; Huang, J.; Gu, C.C.; He, M.; Shen, H.; He, J.; Zhu, J.; Li, H.; et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum. Mol. Genet. 2015, 24, 865–874. [Google Scholar] [CrossRef]
- Freel, E.M.; Ingram, M.; Wallace, A.M.; White, A.; Fraser, R.; Davies, E.; Connell, J.M.C. Effect of variation in CYP11B1 and CYP11B2 on corticosteroid phenotype and hypothalamic–pituitary–adrenal axis activity in hypertensive and normotensive subjects. Clin. Endocrinol. 2008, 68, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.X.; Wang, B.J.; Ouyang, J.Z.; Deng, X.Y.; Ma, X.; Li, H.Z.; Wu, Z.; Liu, S.L.; Xu, H.; Zhang, X.; et al. Polymorphisms in CYP11B2 and CYP11B1 genes associated with primary hyperaldosteronism. Hypertens. Res. 2010, 33, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Fumihiko, T.; Akiyama, M.; Matoba, N.; Katsuya, T.; Nakatochi, M.; Tabara, Y.; Narita, A.; Saw, W.Y.; Moon, S.; Spracklen, C.N.; et al. Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat. Commun. 2018, 9, 5052. [Google Scholar] [CrossRef] [Green Version]
- Kichaev, G.; Bhatia, G.; Loh, P.R.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Kominami, S.; Tanabe, N.; Ota, M.; Naruse, T.K.; Katsuyama, Y.; Nakanishi, N.; Tomoike, H.; Sakuma, M.; Shirato, K.; Takahashi, M.; et al. HLA-DPB1 and NFKBIL1 may confer the susceptibility to chronic thromboembolic pulmonary hypertension in the absence of deep vein thrombosis. J. Hum. Genet. 2009, 54, 108–114. [Google Scholar] [CrossRef]
- Coviello, A.D.; Haring, R.; Wellons, M.; Vaidya, D.; Lehtimäki, T.; Keildson, S.; Lunetta, K.K.; He, C.; Fornage, M.; Lagou, V.; et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012, 8, e1002805. [Google Scholar] [CrossRef]
- Koppes, E.; Shaffer, B.; Sadovsky, E.; Himes, K.; Barak, Y.; Sadovsky, Y.; Chaillet, J.R. Klf14 is an imprinted transcription factor that regulates placental growth. Placenta 2019, 88, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Footz, T.K.; Brinkman-Mills, P.; Banting, G.S.; Maier, S.A.; Riazi, M.A.; Bridgland, L.; Hu, S.; Birren, B.; Minosihma, S.; Shimizu, N.; et al. Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice: A search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res. 2001, 11, 1053–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Goff, G.C.; Brès, J.C.; Rigal, D.; Blum, L.J.; Marquette, C.A. Robust, high-throughput solution for blood group genotyping. Anal. Chem. 2010, 82, 6185–6192. [Google Scholar] [CrossRef] [PubMed]
- Cerhan, J.R.; Berndt, S.I.; Vijai, J.; Ghesquières, H.; McKay, J.; Wang, S.S.; Wang, Z.; Yeager, M.; Conde, L.; Bakker, P.I.W.; et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat. Genet. 2014, 46, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- Scott, C.C.; Vossio, S.; Rougemont, J.; Gruenberg, J. TFAP2 transcription factors are regulators of lipid droplet biogenesis. Elife 2018, 7, 1–24. [Google Scholar] [CrossRef]
- Hoffmann, T.J.; Theusch, E.; Haldar, T.; Ranatunga, D.K.; Jorgenson, E.; Medina, M.W.; Kvale, M.N.; Kwok, P.Y.; Schaefer, C.; Krauss, R.M.; et al. A large electronic-health- record-based genome-wide study of serum lipids. Nat. Genet. 2018, 50, 401–413. [Google Scholar] [CrossRef]
- Willer, C.J.; Sanna, S.; Jackson, A.U.; Scuteri, A.; Bonnycastle, L.L.; Clarke, R.; Heath, S.C.; Timpson, N.J.; Najjar, S.S.; Stringham, H.M.; et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 2008, 40, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, G.L.; Graff, M.; Nishimura, K.K.; Tao, R.; Haessler, J.; Gignoux, C.R.; Highland, H.M.; Patel, Y.M.; Sorokin, E.P.; Avery, C.L.; et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 2019, 570, 514–518. [Google Scholar] [CrossRef]
- Kim, Y.J.; Go, M.J.; Hu, C.; Hong, C.B.; Kim, Y.K.; Lee, J.Y.; Hwang, J.Y.; Oh, J.H.; Kim, D.J.; Kim, N.H.; et al. Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nat. Genet. 2011, 43, 990–997. [Google Scholar] [CrossRef]
- Noordam, R.; Bos, M.M.; Wang, H.; Winkler, T.W.; Bentley, A.R.; Kilpeläinen, T.O.; Vries, P.S.D.; Sung, Y.J.; Schwander, K.; Cade, B.E.; et al. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat. Commun. 2019, 10, 5121. [Google Scholar] [CrossRef]
- Palmer, C.J.; Bruckner, R.J.; Paulo, J.A.; Kazak, L.; Long, J.Z.; Mina, A.I.; Deng, Z.; LeClari, K.B.; Hall, J.A.; Hong, S.; et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol. Metab. 2017, 6, 1212–1225. [Google Scholar] [CrossRef] [PubMed]
- Waterworth, D.M.; Ricketts, S.L.; Song, K.; Chen, L.; Zhao, J.H.; Ripatti, S.; Aulchenko, Y.S.; Zhang, W.; Yuan, X.; Lim, N.; et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2264–2276. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Hachiya, T.; Hara, M.; Shimanoe, C.; Tanaka, K.; Sutoh, Y.; Shimizu, A.; Hishida, A.; Tsukamoto, M.; Kadomatsu, Y.; et al. The interaction between ABCA1 polymorphism and physical activity on the HDL-chole terol levels in a Japanese population. J. Lipid. Res. 2020, 61, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Klarin, D.; Damrauer, S.M.; Cho, K.; Sun, Y.V.; Teslovich, T.M.; Honerlaw, J.; Gangnon, D.R.; DuVall, S.L.; Li, J.; Peloso, G.M.; et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 2018, 50, 1514–1523. [Google Scholar] [CrossRef]
- Kathiresan, S.; Melander, O.; Guiducci, C.; Surti, A.; Burtt, N.P.; Rieder, M.J.; Cooper, G.M.; Roos, C.; Voight, B.F.; Havulinna, A.S.; et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 2008, 40, 189–197. [Google Scholar] [CrossRef]
- Alves, E.S.; Henriques, A.D.; Furioso, A.C.T.; Paula, R.S.; Gomes, L.O.; Moraes, C.F.; Nóbrega, O.T. The APOB rs693 polymorphism impacts the lipid profile of Brazilian older adults. Braz. J. Med. Biol. Res. 2020, 53, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Krashes, M.J.; Lowell, B.B.; Garfield, A.S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 2016, 19, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, A.; Kovacs, P.; Kabisch, S.; Boettcher, Y.; Schloegl, H.; Tönjes, A.; Stumvoll, M.; Pleger, B.; Villringer, A. Common Genetic Variation near MC4R Has a Sex- Specific Impact on Human Brain Structure and Eating Behavior. PLoS ONE 2013, 8, 14–16. [Google Scholar] [CrossRef]
- Stincic, T.L.; Grachev, P.; Bosch, M.A.; Rønnekleiv, O.K.; Kelly, M.J. Estradiol drives the anorexigenic activity of proopiomelanocortin neurons in female mice. eNeuro 2018, 5, 0103–0118. [Google Scholar] [CrossRef]
- Akadam-Teker, B.; Kurnaz, O.; Coskunpinar, E.; Daglar-Aday, A.; Kucukhuseyin, O.; Cakmak, H.A.; Bugra, Z.; Ozturk, O.; Yilmaz-Aydogan, H. The effects of age and gender on the relationship between HMGCR promoter-911 SNP (rs33761740) and serum lipids in patients with coronary heart disease. Gene 2013, 528, 93–98. [Google Scholar] [CrossRef]
- Ambikairajah, A.; Walsh, E.; Cherbuin, N. Lipid profile differences during menopause: A review with meta-analysis. Menopause 2019, 26, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Zhang, Y.; Yan, D.; Liao, X.; Gong, G.; Hu, J.; Fu, Y.; Cai, W. Association of common variants in TOMM40/APOE/APOC1 region with human longevity in a Chinese population. J. Hum. Genet. 2016, 61, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Sheng, R.; Kim, H.; Lee, H.; Xin, Y.; Chen, Y.; Tian, W.; Cui, Y.; Choi, J.C.; Doh, J.; Han, J.K. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat. Commun. 2014, 5, 4393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Fang, B.; Emmett, M.J.; Damle, M.; Sun, J.; Feng, D.; Armour, S.M.; Remsberg, J.R.; Jager, J.; Soccio, R. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 2015, 348, 1488–1492. [Google Scholar] [CrossRef] [Green Version]
- Ruano, E.G.; Canivell, S.; Vieira, E. REV-ERB ALPHA polymorphism is associated with obesity in the Spanish obese male population. PLoS ONE 2014, 9, e104065. [Google Scholar] [CrossRef]
Variables | Total | Metabolic Syndrome | Whole Subjects | Young Adult Group | Perimenopausal Age Group | Older Age Group | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | Control | p | Men | Women | p | Men | Women | p | Men | Women | p | Men | Women | p | ||
N | 50,808 | 8115 | 42,693 | 19,595 | 31,213 | 2749 | 5553 | 7179 | 14,453 | 9667 | 11,207 | |||||
Age (years) | 53.6 ± 8.1 | 55.95 ± 7.87 | 53.14 ± 8.09 | <0.0001 | 55.1 ± 8.4 | 52.7 ± 7.8 | <0.0001 | 41.6 ± 1.5 | 41.6 ± 1.5 | 0.375 | 50.6 ± 3.1 | 50.3 ± 3.0 | <0.0001 | 62.2 ± 4.2 | 61.2 ± 3.9 | <0.0001 |
Clinical Measurements | ||||||||||||||||
Height (cm) | 161.2 ± 8.0 | 162.7 ± 8.6 | 161.0 ± 7.9 | <0.0001 | 168.7 ± 5.7 | 156.5 ± 5.2 | <0.0001 | 171.5 ± 5.6 | 158.8 ± 5.0 | <0.0001 | 169.5 ± 5.5 | 157.0 ± 5.0 | <0.0001 | 167.3 ± 5.5 | 154.9 ± 5.1 | <0.0001 |
Weight (kg) | 62.3 ± 10.0 | 69.8 ± 10.6 | 60.9 ± 9.3 | <0.0001 | 69.6 ± 9.0 | 57.7 ± 7.7 | <0.0001 | 72.2 ± 9.9 | 57.4 ± 8.1 | <0.0001 | 70.7 ± 9.0 | 57.7 ± 7.6 | <0.0001 | 68.1 ± 8.6 | 58.0 ± 7.5 | <0.0001 |
BMI (kg/m2) | 23.9 ± 2.9 | 26.3 ± 2.9 | 23.4 ± 2.6 | <0.0001 | 24.4 ± 2.7 | 23.6 ± 2.9 | <0.0001 | 24.5 ± 2.9 | 22.8 ± 3.0 | <0.0001 | 24.6 ± 2.7 | 23.4 ± 2.8 | <0.0001 | 24.3 ± 2.6 | 24.2 ± 2.9 | <0.001 |
Waist (cm) | 81.0 ± 8.7 | 89.0 ± 7.63 | 79.5 ± 8.0 | <0.0001 | 85.7 ± 7.4 | 78.0 ± 8.1 | <0.0001 | 84.6 ± 8.6 | 75.2 ± 8.2 | <0.0001 | 85.5 ± 8.2 | 77.1 ± 7.9 | <0.0001 | 86.0 ± 7.9 | 80.5 ± 8.2 | <0.0001 |
SBP (mmHg) | 122.5 ± 14.8 | 133.7 ± 14.3 | 120.4 ± 13.9 | <0.0001 | 125.7 ± 14.0 | 120.6 ± 14.9 | <0.0001 | 124.0 ± 13.4 | 114.1 ± 13.4 | <0.0001 | 124.4 ± 14.3 | 119.5 ± 14.8 | <0.0001 | 126.9 ± 14.4 | 125.0 ± 14.9 | <0.0001 |
DBP (mmHg) | 75.9 ± 9.8 | 82.0 ± 9.6 | 74.7 ± 9.4 | <0.0001 | 78.3 ± 9.5 | 74.3 ± 9.6 | <0.0001 | 78.1 ± 10.0 | 70.9 ± 9.3 | <0.0001 | 78.5 ± 10.1 | 74.0 ± 9.8 | <0.0001 | 78.2 ± 9.4 | 76.2 ± 9.3 | <0.0001 |
FPG (mg/dl) | 95.3 ± 19.9 | 110.0 ± 29.4 | 92.4 ± 16.0 | <0.0001 | 99.3 ± 22.5 | 92.7 ± 17.6 | <0.0001 | 92.2 ± 24.0 | 87.2 ± 20.1 | <0.0001 | 96.2 ± 28.6 | 89.2 ± 22.6 | <0.0001 | 97.7 ± 29.2 | 93.5 ± 24.8 | <0.0001 |
Total cholesterol (mg/dl) | 197.0 ± 35.6 | 200.42 ± 37.79 | 196.4.0 ± 35.2 | <0.0001 | 192.4 ± 34.8 | 199.9 ± 35.8 | <0.0001 | 195.5 ± 34.3 | 186.0 ± 31.3 | <0.0001 | 195.6 ± 34.2 | 200.5 ± 35.2 | <0.0001 | 189.3 ± 35.0 | 205.9 ± 36.9 | <0.0001 |
Triglyceride (mg/dl) | 126.0 ± 86.7 | 215.6 ± 123.4 | 108.9 ± 65.0 | <0.0001 | 148.0 ± 102.4 | 112.1 ± 71.7 | <0.0001 | 159.7 ± 114.8 | 93.6 ± 65.8 | <0.0001 | 156.1 ± 110.2 | 108.3 ± 69.3 | <0.0001 | 138.5 ± 91.2 | 125.4 ± 75.3 | <0.0001 |
HDL cholesterol (mg/dl) | 53.5 ± 13.1 | 43.3 ± 9.4 | 55.5 ± 12.9 | <0.0001 | 49.2 ± 11.9 | 56.3 ± 13.2 | <0.0001 | 49.1 ± 11.1 | 58.2 ± 13.2 | <0.0001 | 49.0 ± 11.7 | 57.3 ± 13.4 | <0.0001 | 49.3 ± 12.2 | 54.1 ± 12.5 | <0.0001 |
Metabolic phenotypes | ||||||||||||||||
General obesity | 16,429 (32.3%) | 5389 (66.4%) | 11,040 (1.3%) | <0.0001 | 7813 (39.9%) | 8616 (27.6%) | <0.0001 | 1120 (40.7%) | 1141 (20.5%) | <0.0001 | 3000 (41.8%) | 3575 (24.7%) | <0.0001 | 3693 (38.2%) | 3900 (34.8%) | <0.0001 |
Abdominal obesity | 8115 (16.0%) | 5108 (62.9%) | 5446 (0.6%) | <0.0001 | 4083 (20.8%) | 4032 (12.9%) | <0.0001 | 489 (17.8%) | 328 (5.9%) | <0.0001 | 1497 (20.9%) | 1426 (9.9%) | <0.0001 | 2097 (21.7%) | 2278 (20.3%) | 0.045 |
Hypertension | 13,413 (26.4%) | 4349 (53.6%) | 9064 (1.1%) | <0.0001 | 6565 (33.5%) | 6848 (21.9%) | <0.0001 | 466 (17.0%) | 327 (5.9%) | <0.0001 | 1971 (27.5%) | 2458 (17.0%) | <0.0001 | 4128 (42.7%) | 4063 (36.3%) | <0.0001 |
Type 2 diabetes mellitus | 4364 (8.6%) | 1919 (23.6%) | 2445 (0.3%) | <0.0001 | 2434 (12.4%) | 1930 (6.2%) | <0.0001 | 121 (4.4%) | 113 (2.0%) | <0.0001 | 761 (10.6%) | 634 (4.4%) | <0.0001 | 1552 (16.1%) | 1183 (10.6%) | <0.0001 |
Hypercholesterolemia | 5686 (11.2%) | 1148 (14.1%) | 4538 (0.5%) | <0.0001 | 1652 (8.4%) | 4034 (12.9%) | <0.0001 | 267 (9.7%) | 292 (5.3%) | <0.0001 | 667 (9.3%) | 1823 (12.6%) | <0.0001 | 718 (7.4%) | 1919 (17.1%) | <0.0001 |
Hypertriglyceridemia | 6446 (12.7%) | 3530 (43.5%) | 2916 (0.3%) | <0.0001 | 3757 (19.2%) | 2689 (8.6%) | <0.0001 | 640 (23.3%) | 272 (4.9%) | <0.0001 | 1595 (22.2%) | 1111 (7.7%) | <0.0001 | 1522 (15.7%) | 1306 (11.7%) | <0.0001 |
Hypo-HDL cholesterolemia | 14,320 (28.2%) | 5490 (67.7%) | 8830 (1%) | <0.0001 | 4036 (20.6%) | 10,284 (32.9%) | <0.0001 | 503 (18.3%) | 1502 (27.0%) | <0.0001 | 1508 (21.0%) | 4372 (30.2%) | <0.0001 | 2025 (20.9%) | 4410 (39.4%) | <0.0001 |
Metabolic syndrome | 10,554 (20.8%) | - | - | - | 5025 (25.6%) | 5529 (17.7%) | <0.0001 | 618 (22.5%) | 614 (11.1%) | <0.0001 | 1788 (24.9%) | 2016 (13.9%) | <0.0001 | 2619 (27.1%) | 2899 (25.9%) | 0.016 |
Lifestyle habit | ||||||||||||||||
Smoker | 14,976 (29.5%) | 8108 (99.9%) | 42,664 (5.1%) | <0.0001 | 14,001 (71.5%) | 975 (3.1%) | 0.094 | 2023 (73.6%) | 252 (4.5%) | 0.201 | 5241 (73.0%) | 483 (3.3%) | 0.079 | 6737 (69.7%) | 240 (2.1%) | 0.127 |
Alcohol consumer | 25,729 (50.6%) | 4308 (53.1%) | 21,421 (2.5%) | 0.569 | 15,533 (79.3%) | 10,196 (32.7%) | <0.0001 | 2323 (84.5%) | 2663 (48.0%) | <0.0001 | 5861 (81.6%) | 5206 (36.0%) | <0.0001 | 7349 (76.0%) | 2327 (20.8%) | <0.0001 |
Routine exercise | 27,672 (54.5%) | 4178 (51.5%) | 23,494 (2.8%) | <0.0001 | 11,570 (59.0%) | 16,102 (51.6%) | <0.0001 | 1385 (50.4%) | 2363 (42.6%) | <0.0001 | 4208 (58.6%) | 7837 (54.2%) | <0.0001 | 5977 (61.8%) | 5902 (52.7%) | <0.0001 |
Total (Male + Female) | Total Male | Total Female | |
---|---|---|---|
General obesity | SEC16B, ADCY3, ITIH4, GNPDA2, BDNF, OLFM4, FTO, MC4R, GIPR | SEC16B, FTO, MC4R | |
Abdominal obesity | SEC16B, HMGA1, XKR3 | ||
Hypertension | KCNK3, EML6, GRB14, FIGN, FGF5, HOTTIP, CYP11B1, NT5C2, ARHGAP42, ATP2B1, ALDH2, RNF213, LRRC30, C20orf187 | FGF5, ALDH2 | EML6, GRB14, FIGN, FGF5, HLAB, CYP11B1, NT5C2, LSP1, ATP2B1, RNF213, LRRC30 |
Type 2 diabetes | CDKAL1, PAX4, SLC30A8, CDKN2B-AS1, HHEX, KCNQ1, HECTD4 | CDKAL1, PAX4, CDKN2B-AS1, KCNQ1, HECTD4 | CDKAL1, PAX4, SLC30A8, CDKN2B-AS1 |
Hypercholesterolemia | PCSK9, CELSR2, APOB, GCKR, HMGCR, TIMD4, CYP7A1, TRIB1,ABCA1ABO, TECTB, APOA5, LIPC, CETP, HPR, LIPG, LDLR, TOMM40 | APOB, CETP, LIPG, LDLR, TOMM40 | PCSK9, CELSR2, APOB, GCKR, HMGCR, TIMD4, TRIB1,ABCA1ABO, APOA5, LIPC, CETP, HPR, LDLR, TOMM40, |
Hypertriglyceridemia | DOCK7, GCKR, HSD17B11,VARS, BCL7B, LPL, TRIB1, FADS2, APOA5, FSD2, TM6SF2, APOC1, PNPLA3 | DOCK7, GCKR, VARS, BCL7B, LPL, TRIB1, APOA5,ALDH2, APOC1 | GCKR, HSD17B11, LPL, APOA5, APOC1 |
Hypo-HDL cholesterolemia | PABPC4, APOB, TSBP1, CD36, LPL, TRPS1, ABCA1,TECTB, APOA5, SCARB1, AKT1, LIPC, CETP, LIPG, PEPD, APOE, UBE2L3 | LPL, ABCA1, APOA5, LIPC, CETP, LIPG, APOE | APOB, CD36, KLF14, LPL, ABCA1, JMJD1C, APOA5, SCARB1, AKT1, LIPC, CETP, LIPG, APOE, UBE2L3 |
Metabolic syndrome | LPL, APOA5, ALDH2, CETP, APOC1 | HTR5A, LPL, APOA5, ALDH2, CETP, APOC1 | APOA5 |
Young Adult Group | Peri-Menopause (Corresponding) | Older Adult Group | |
---|---|---|---|
Men | |||
GenOb | |||
AbdOb | |||
HT | |||
T2D | CDKAL1 | ||
TC | TFAP2A | APOB | |
TG | APOA5 | GCKR, LPL, APOA5, APOC1 | GCKR, TRIB1, APOA5, APOC1 |
HDL | APOA5 | LPL, intergenic (9q21.31), APOA5, LIPC, CETP, APOE | LPL, APOA5, LIPC, CETP, APOE |
MetS | COA1 | APOA5 | FRMD4B, APOA5 |
Women | |||
GenOb | SEC16B | SEC16B, MC4R | |
AbdOb | ONECUT1 | ||
HT | |||
T2D | intergenic (3p13), intergenic (7p12) | CDKAL1 | CDKAL1 |
TC | APOB | APOB, HMGCR, LIPC, TOMM40 | CELSR2, APOB, HMGCR, LIPC, LDLR, TOMM40 |
TG | APOA5 | GCKR, APOA5 | GCKR, APOA5 |
HDL | LPL, APOA5, LIPC, CETP | LPL, ABCA1, APOA5, LIPC, CETP, LIPG, APOE | CD36, LPL, ABCA1, APOA5, LIPC, CETP, LIPG |
MetS | APOA5 | APOA5 |
Group.Locus | Chr.BP a | SNP b | Gene | M c | m d | MAF | Total | Significant Group | |||
---|---|---|---|---|---|---|---|---|---|---|---|
OR | p | Subgroup | OR | p | |||||||
General obesity | |||||||||||
go-L3 | 3:52866289 | rs3755804 | ITIH4 | C | T | 0.22 | 1.1 | 2.7 × 10−8 | |||
Abdominal obesity | |||||||||||
ab-L4 | 22:17308870 | rs187426985 | XKR3 | A | G | 0.02 | 1.4 | 4.5 × 10−8 | |||
Hypertension | |||||||||||
htn-L6 | 6:31322144 | rs3819305 | HLAB | C | G | 0.42 | 0.9 | 1.8 × 10−6 | Total Female | 0.9 | 2.8 × 10−8 |
htn-L18 | 19:11526765 | rs167479 | LRRC30 | G | T | 0.48 | 0.9 | Total Female | 0.9 | 2.2 × 10−8 | |
Type 2 diabetes mellitus | |||||||||||
dm-L1 | 3:73842084 | rs188048049 | intergenic (3p13) | G | A | 0.01 | 1.0 | 9.8 × 10−1 | Young adult-female | 5.9 | 1.2 × 10−8 |
dm-L9 | 17:13082141 | rs57014960 | intergenic (7p12) | T | A | 0.10 | 1.1 | 5.3 × 10−2 | Young adult-female | 3.8 | 1.0 × 10−8 |
Hypertriglyceridemia | |||||||||||
tg-L3 | 4:88284096 | rs6531981 | HSD17B11 | T | A | 0.32 | 1.1 | Total Female | 1.2 | 1.2 × 10−8 | |
tg-L4 | 6:31746548 | rs909267 | VARS | T | C | 0.05 | 1.3 | Total Male | 1.3 | 3.8 × 10−12 | |
tg-L11 | 15:83434410 | rs8033573 | FSD2 | G | A | 0.50 | 0.9 | 8.6 × 10−9 | |||
Hypo-HDL cholesterolemia | |||||||||||
hdl-L3 | 6:32278521 | rs140639155 | TSBP1 | CA | C | 0.15 | 0.9 | 9.2 × 10−9 | |||
hdl-L7 | 8:116471025 | rs1180648 | TRPS1 | G | T | 0.16 | 1.1 | ||||
hdl-L8 | 9:81970758 | rs78000468 | intergenic (9q21.31) | T | C | 0.01 | 1.1 | 3.3 × 10−3 | Peri-menopausal-male | 1.7 | 2.2 × 10−8 |
Metabolic syndrome | |||||||||||
mets-L1 | 3:69417665 | rs60969945 | FRMD4B | C | A | 0.10 | 1.0 | 1.9 × 10−1 | Older adult-male | 1.4 | 4.3 × 10−8 |
mets-L2 | 7:43701891 | rs181395950 | COA1 | C | T | 0.01 | 1.0 | 6.2 × 10−1 | Young adult-male | 3.2 | 2.4 × 10−8 |
mets-L3 | 7:154876342 | rs980442 | HTR5A | G | T | 0.16 | 0.9 | 9.5 × 10−5 | Total Male | 0.8 | 2.1 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Park, Y.C.; Choi, J.-E.; Park, J.-M.; Han, K.; Kim, K.; Kim, B.-T.; Hong, K.-W. Lifestage Sex-Specific Genetic Effects on Metabolic Disorders in an Adult Population in Korea: The Korean Genome and Epidemiology Study. Int. J. Mol. Sci. 2022, 23, 11889. https://doi.org/10.3390/ijms231911889
Kim Y-S, Park YC, Choi J-E, Park J-M, Han K, Kim K, Kim B-T, Hong K-W. Lifestage Sex-Specific Genetic Effects on Metabolic Disorders in an Adult Population in Korea: The Korean Genome and Epidemiology Study. International Journal of Molecular Sciences. 2022; 23(19):11889. https://doi.org/10.3390/ijms231911889
Chicago/Turabian StyleKim, Young-Sang, Yon Chul Park, Ja-Eun Choi, Jae-Min Park, Kunhee Han, Kwangyoon Kim, Bom-Taeck Kim, and Kyung-Won Hong. 2022. "Lifestage Sex-Specific Genetic Effects on Metabolic Disorders in an Adult Population in Korea: The Korean Genome and Epidemiology Study" International Journal of Molecular Sciences 23, no. 19: 11889. https://doi.org/10.3390/ijms231911889
APA StyleKim, Y. -S., Park, Y. C., Choi, J. -E., Park, J. -M., Han, K., Kim, K., Kim, B. -T., & Hong, K. -W. (2022). Lifestage Sex-Specific Genetic Effects on Metabolic Disorders in an Adult Population in Korea: The Korean Genome and Epidemiology Study. International Journal of Molecular Sciences, 23(19), 11889. https://doi.org/10.3390/ijms231911889