Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus
Abstract
:1. Introduction
2. Characterization of Plant Mutations
2.1. Spontaneous Mutation
2.2. Induced Mutation
2.3. Genetic Engineering Mutations
3. Identification of Mutations in Prunus Species
3.1. Mutations Related to Winter Dormancy and Flowering Time
3.2. Mutations Related to Flower Self-Compatibility
3.3. Mutations Related to Fruit Quality
4. New Molecular Perspectives in the Postgenomic Era
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic Diversity Is Indispensable for Plant Breeding to Improve Crops. Crop Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Ulukapi, K.; Nasircilar, A.G. Induced Mutation: Creating Genetic Diversity in Plants. In Genetic Diversity in Plant Species-Characterization and Conservation; IntechOpen: London, UK, 2018; ISBN 1838804102. [Google Scholar]
- Sattar, M.N.; Iqbal, Z.; Al-Khayri, J.M.; Jain, S.M. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. Plants 2021, 10, 1347. [Google Scholar] [CrossRef]
- Lamo, K.; Ji Bhat, D.; Kour, K.; Singh Solanki, S.P. Mutation Studies in Fruit Crops: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3620–3633. [Google Scholar] [CrossRef]
- de Vries, H. The Mutation Theory; The Open Court Publishing Co.: Chicago, IL, USA, 1909; Volume 1. [Google Scholar]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A. The Role of Robustness in Phenotypic Adaptation and Innovation. Proc. R. Soc. B Biol. Sci. 2012, 279, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Forster, B.P.; Shu, Q.Y. Plant Mutagenesis in Crop Improvement: Basic Terms and Applications. In Plant Mutation Breeding and Biotechnology; CABI: Wallingford, UK, 2012; pp. 9–20. [Google Scholar]
- Mba, C.; Afza, R.; Bado, S.; Jain, S.M. Induced Mutagenesis in Plants Using Physical and Chemical Agents. Plant Cell Cult. Essent. Methods 2010, 20, 111–130. [Google Scholar]
- Mandeep Rawat, V.P.S. Gamma Ra Di a Tion: A Po Ten Tial Mutagen for Fruit Crops; Singh, S.P., Malik, N., Singh, P.B., Bhati, H.P., Rana, R., Singh, Y.K., Mishra, M., Eds.; Rama Publishing House: Meerut, India, 2021. [Google Scholar]
- Joung, J.K.; Sander, J.D. TALENs: A Widely Applicable Technology for Targeted Genome Editing. Nat. Rev. Mol. cell Biol. 2013, 14, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Savadi, S.; Mangalassery, S.; Sandesh, M.S. Advances in Genomics and Genome Editing for Breeding next Generation of Fruit and Nut Crops. Genomics 2021, 113, 3718–3734. [Google Scholar] [CrossRef]
- Charrier, A.; Vergne, E.; Dousset, N.; Richer, A.; Petiteau, A.; Chevreau, E. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Front. Plant Sci. 2019, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Alston, J. Horticultural Biotechnology Faces Significant Economic and Market Barriers. Calif. Agric. 2004, 58, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Dobres, M.S. Barriers to Genetically Engineered Ornamentals: An Industry Perspective. Floric. Ornam. Plant Biotechnol. 2008, 5, 1–14. [Google Scholar]
- Raina, A.; Ansari, S.B.; Khursheed, S.; Wani, M.R.; Khan, S.; Bhat, T.A. Mutagens Their Types and Mechanism of Action with an Emphasis on Sodium Azide and Gamma Radiations. In Mutagenesis Cytotoxicity and Crop Improvement: Revolutionizing Food Science Bhat T.A., Ed.; Cambridge Scholars Publishing: Cambridg, UK, 2021; pp. 1–37. [Google Scholar]
- Spiegel, R. Economic and Agricultural Impact of Mutation Breeding in Fruit Trees; International Atomic Energy Agency: Viena, Austria, 1990. [Google Scholar]
- Schaart, J.G.; van de mier, C.C.M.; Lotz, L.A.P.; Smulders, M.J.M. Opportunities for Products of New Plant Breeding Techniques. Trends Plant Sci. 1990, 21, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.-S.; Ding, J.; Li, Y. Genome-Editing Technologies and Their Potential Application in Horticultural Crop Breeding. Hortic. Res. 2015, 2, 15019. [Google Scholar] [CrossRef] [Green Version]
- Malzahn, A.; Lowder, L.; Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Lusser, M.; Davies, H.V. Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnol. 2013, 30, 437–445. [Google Scholar] [CrossRef]
- Jarni, K.; Jakše, J.; Brus, R. Vegetative Propagation: Linear Barriers and Somatic Mutation Affect the Genetic Structure of a Prunus Avium L. Stand. Forestry 2014, 88, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Goldy, R.G.; Andersen, R.L.; Dennis, F.G. Phenotypic and Cytologie Analyses of Spontaneous Mutations of the ‘Montmorency’ Cherry (Prunus Cerasus L.). J. Am. Soc. Hortic. Sci. 2022, 107, 779781. [Google Scholar] [CrossRef]
- Shen, J.-C.; Rideout III, W.M.; Jones, P.A. The Rate of Hydrolytic Deamination of 5-Methylcytosine in Double-Stranded DNA. Nucleic Acids Res. 1994, 22, 972–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullins, E.; Bresson, J.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Firbank, L.G.; Guerche, P.; Hejatko, J.; Moreno, F.J. In Vivo and In Vitro Random Mutagenesis Techniques in Plants. EFSA J. 2021, 19, e06611. [Google Scholar]
- Jiang, S.-Y.; Ramachandran, S. Natural and Artificial Mutants as Valuable Resources for Functional Genomics and Molecular Breeding. Int. J. Biol. Sci. 2010, 6, 228. [Google Scholar] [CrossRef]
- Kumar, A.; Bennetzen, J.L. Plant Retrotransposons. Annu. Rev. Genet. 1999, 33, 479–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnegan, D.J. Transposable Elements. Curr. Opin. Genet. Dev. 1992, 2, 861–867. [Google Scholar] [CrossRef]
- Charlesworth, B.; Sniegowski, P.; Stephan, W. The Evolutionary Dynamics of Repetitive DNA in Eukaryotes. Nature 1994, 371, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Peace, C.P.; Bianco, L.; Troggio, M.; Van de Weg, E.; Howard, N.P.; Cornille, A.; Durel, C.-E.; Myles, S.; Migicovsky, Z.; Schaffer, R.J. Apple Whole Genome Sequences: Recent Advances and New Prospects. Hortic. Res. 2019, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadonou, A.M.; Gittins, J.R.; Hiles, E.R.; James, D.J. Two Apple Repetitive Sequence Elements: Characterisation and Potential Use as Genetic Markers. Euphytica 2003, 131, 177–187. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, Y.-J. Advances in Genomic, Transcriptomic, and Metabolomic Analyses of Fruit Quality in Fruit Crops. Hortic. Plant J. 2020, 6, 361–371. [Google Scholar] [CrossRef]
- Foster, T.M.; Aranzana, M.J. Attention Sports Fans! The Far-Reaching Contributions of Bud Sport Mutants to Horticulture and Plant Biology. Hortic. Res. 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Pathirana, R. Plant Mutation Breeding in Agriculture. Plant Sci. Rev. 2011, 6, 107–126. [Google Scholar] [CrossRef]
- Mba, C.; Afza, R.; Shu, Q.Y. Mutagenic Radiations: X-Rays, Ionizing Particles and Ultraviolet. In Plant Mutation Breeding and Biotechnology; CABI: Wallingford, UK, 2012; pp. 83–90. [Google Scholar]
- Wilde, H.D.; Chen, Y.; Jiang, P.; Bhattacharya, A. Targeted Mutation Breeding of Horticultural Plants. Emirates J. Food Agric. 2012, 24, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, D.; Cerda-Bennasser, P.; Stowe, E.; Ramirez-Torres, F.; Capell, T.; Dhingra, A.; Christou, P. Fruit Crops in the Era of Genome Editing: Closing the Regulatory Gap. Plant Cell Rep. 2021, 40, 915–930. [Google Scholar] [CrossRef]
- Sanada, T.; Amano, E. Induced Mutation in Fruit Trees. In Somaclonal Variation and Induced Mutations in Crop Improvement; Springer: Dordrecht, The Netherlands, 1998; pp. 401–419. [Google Scholar]
- Przybyla, A.; Sanada, T.; Kukimura, H.; Nishimura, S. Treatment of Fruit Tree Shoots with Chemical Mutagens Using a Vacuum Pump Method. Fruit Breed. 1987, 224, 425–428. [Google Scholar] [CrossRef]
- Kumawat, S.; Rana, N.; Bansal, R.; Vishwakarma, G.; Mehetre, S.; Das, B.K.; Kumar, M.; Yadav, S.; Sonah, H.; Sharma, T.R. Expanding Avenue of Fast Neutron MediatedMutagenesis for Crop Improvement. Plants 2019, 8, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharafi, Y. Gamma Irradiation Influences on Some Biological Traits in Two Almond (Prunus Amygdalus, L.) Cultivars. J. Med. Plants Res. 2011, 5, 255–258. [Google Scholar]
- Saamin, S.; Thompson, M.M. Radiation-Induced Mutations from Accessory Buds of Sweet Cherry, Prunus Avium L. Cv “Bing.”. Theor. Appl. Genet. 1998, 96, 912–916. [Google Scholar] [CrossRef]
- Lapins, K.O. Mutation Frequencies in Vegetative Shoots Derived from Two Zones Ofirradiated Buds of Sweet Cherry, Prunus avium L. Radiat. Bot. 1971, 11, 3–8. [Google Scholar] [CrossRef]
- Yang, H.; Schmidt, H. Selection of a Mutant from Adventitious Shoots Formed in X Ray Treated Cherry Leaves and Differentiation of Standard and Mutant with RAPDs. Euphytica 1994, 77, 89–92. [Google Scholar] [CrossRef]
- Ahloowalia, B.S. In-Vitro Techniques and Mutagenesis for the Improvement of Vegetatively Propagated Plants. In Somaclonal Variation and Induced Mutations in Crop Improvement; Springer: Berlin/Heidelberg, Germany, 1998; pp. 293–309. [Google Scholar]
- Rajan, R.P.; Singh, G. A Review on Application of Somaclonal Variation in Important Horticulture Crops. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 161–175. [Google Scholar]
- Ranghoo-Sanmukhiya, V.M. Somaclonal Variation and Methods Used for Its Detection. In Propagation and Genetic Manipulation of Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- George, E.F. Plant Propagation by Tissue Culture. Part 1: The technology; CABI: Wallingford, UK, 1993. [Google Scholar]
- Mohan Jain, S. A Review of Induction of Mutations in Fruits of Tropical and Subtropical Regions. Acta Hortic. 2000, 575, 295–302. [Google Scholar] [CrossRef]
- Predieri, S. Mutation Induction and Tissue Culture in Improving Fruits. Plant Cell. Tissue Organ Cult. 2001, 64, 185–210. [Google Scholar] [CrossRef]
- Sharma, D.P. Advances in Breeding of Peach, Plum and Apricot. In Prunus-Recent Advances; IntechOpen: London, UK, 2021; ISBN 183969582X. [Google Scholar]
- Jain, S.M.; Dong, N.; Newton, R.J. Somatic Embryogenesis in Slash Pine (Pinus Elliottii) from Immature Embryos Cultured in Vitro. Plant Sci. 1989, 65, 233–241. [Google Scholar] [CrossRef]
- Afiya, R.S.; Kumar, S.S.; Manivannan, S. Recent Trends with Mutation Breeding in Fruit Crop Improvement. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 393–403. [Google Scholar]
- Song, G.Q.; Prieto, H.; Orbovic, V. Agrobacterium-Mediated Transformation of Tree Fruit Crops: Methods, Progress, and Challenges. Front. Plant Sci. 2019, 10, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbadini, S.; Ricci, A.; Limera, C.; Baldoni, D.; Capriotti, L.; Mezzetti, B. Factors Affecting the Regeneration, via Organogenesis, and the Selection of Transgenic Calli in the Peach Rootstock Hansen 536 (Prunus Persica x Prunus Amygdalus) to Express RNAi Construct against PPV Virus. Plants 2019, 8, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalla Costa, L.; Piazza, S.; Pompili, V.; Salvagnin, U.; Cestaro, A.; Moffa, L.; Vittani, L.; Moser, C.; Malnoy, M. Strategies to Produce T-DNA Free CRISPRed Fruit Trees via Agrobacterium Tumefaciens Stable Gene Transfer. Sci. Rep. 2020, 10, 20155. [Google Scholar] [CrossRef]
- Pérez-Caselles, C.; Faize, L.; Burgos, L.; Alburquerque, N. Improving Adventitious Shoot Regeneration and Transient Agrobacterium-Mediated Transformation of Apricot (Prunus armeniaca L.) Hypocotyl Sections. Agronomy 2021, 11, 1338. [Google Scholar] [CrossRef]
- Petri, C.; Scorza, R.; Srinivasan, C. Highly Efficient Transformation Protocol for Plum (Prunus domestica L.). In Transgenic Plants: Methods and Protocols; Dunwell, J.M., Wetten, A.C., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 191–199. [Google Scholar]
- Wang, K. Agrobacterium Protocols; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1, 335p. [Google Scholar]
- Guseman, J.M.; Webb, K.; Srinivasan, C.; Dardick, C. DRO1 Influences Root System Architecture in Arabidopsis and Prunus Species. Plant J. 2017, 89, 1093–1105. [Google Scholar] [CrossRef]
- Zong, X.; Xu, L.; Tan, Y.; Wei, H. Development of Genetically Modified Sweet Cherry Rootstock ‘ Gisela 6 ’ with Overexpression of PcMPK3—HA Gene by Agrobacterium - Mediated Genetic Transformation. Plant Cell Tissue Organ Cult. 2022, 151, 375–384. [Google Scholar] [CrossRef]
- Alburquerque, N.; Faize, L.; Burgos, L. Silencing of Agrobacterium Tumefaciens Oncogenes Ipt and IaaM Induces Resistance to Crown Gall Disease in Plum but Not in Apricot. Pest Manag. Sci. 2017, 73, 2163–2173. [Google Scholar] [CrossRef]
- Wang, X.; Kohalmi, S.E.; Svircev, A.; Wang, A.; Sanfaçon, H.; Tian, L. Silencing of the Host Factor EIF(Iso)4E Gene Confers Plum Pox Virus Resistance in Plum. PLoS ONE 2013, 8, 0050627. [Google Scholar] [CrossRef] [Green Version]
- Song, G.Q.; Sink, K.C.; Walworth, A.E.; Cook, M.A.; Allison, R.F.; Lang, G.A. Engineering Cherry Rootstocks with Resistance to Prunus Necrotic Ring Spot Virus through RNAi-Mediated Silencing. Plant Biotechnol. J. 2013, 11, 702–708. [Google Scholar] [CrossRef]
- Grasselly, C. Observations on the Use of a Late Flowering Almond Mutant in a Hybridization Program. Ann d´Amélioration des Plantes 1978, 28, 685–695. [Google Scholar]
- Martínez-Gómez, P.; Prudencio, A.S.; Gradziel, T.M.; Dicenta, F. The Delay of Flowering Time in Almond: A Review of the Combined Effect of Adaptation, Mutation and Breeding. Euphytica 2017, 213, 1–10. [Google Scholar] [CrossRef]
- i. Company, R.S.; Kodad, O.; i. Martí, A.F.; Alonso, J.M. Mutations Conferring Self-Compatibility in Prunus Species: From Deletions and Insertions to Epigenetic Alterations. Sci. Hortic. 2015, 192, 125–131. [Google Scholar] [CrossRef]
- Tao, R.; Watari, A.; Hanada, T.; Habu, T.; Yaegaki, H.; Yamaguchi, M.; Yamane, H. Self-Compatible Peach (Prunus Persica) Has Mutant Versions of the S Haplotypes Found in Self-Incompatible Prunus Species. Plant Mol. Biol. 2007, 63, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Channuntapipat, C.; Sedgley, M.; Batlle, I.; Arús, P.; Collins, G. Sequences of the Genomic DNAs Encoding the S2, S9, S10, and S23 Alleles from Almond, Prunus Dulcis. J. Hortic. Sci. Biotechnol. 2002, 77, 387–392. [Google Scholar] [CrossRef]
- Peng, B.; Yu, M.; Zhang, B.; Xu, J.; Ma, R. Differences in Ppaat1 Activity in High- And Low-Aroma Peach Varieties Affect γ-Decalactone Production1. Plant Physiol. 2020, 182, 2065–2080. [Google Scholar] [CrossRef]
- Peng, B.; Xu, J.; Cai, Z.; Zhang, B.; Yu, M.; Ma, R. Different Roles of the Five Alcohol Acyltransferases in Peach Fruit Aroma Development. J. Am. Soc. Hortic. Sci. 2020, 145, 374–381. [Google Scholar] [CrossRef]
- Bielenberg, D.G.; Wang, Y.; Li, Z.; Zhebentyayeva, T.; Fan, S.; Reighard, G.L.; Scorza, R.; Abbott, A.G. Sequencing and Annotation of the Evergrowing Locus in Peach [Prunus Persica (L.) Batsch] Reveals a Cluster of Six MADS-Box Transcription Factors as Candidate Genes for Regulation of Terminal Bud Formation. Tree Genet. Genomes 2008, 4, 495–507. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Ma, R. Functional Characterization and Mapping of Two MADS Box Genes from Peach (Prunus Persica). Chinese Sci. Bull. 2008, 53, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Y.; Yang, W.; Cheng, T.; Wang, J.; Zhang, Q. Isolation and Functional Characterization of SVP-like Genes in Prunus Mume. Sci. Hortic. 2017, 215, 91–101. [Google Scholar] [CrossRef]
- Chen, Y.; Wilde, H.D. Mutation Scanning of Peach Floral Genes. BMC Plant Biol. 2011, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hensz, R.A. Mutation Breeding and the Development of the ‘Star Ruby’ Grapefruit. In Proceedings of the International Society of Citriculture, Orlando, FL, USA, May 1977; Volume 2, pp. 582–585. [Google Scholar]
- Bai, S.; Tuan, P.A.; Tatsuki, M.; Yaegaki, H.; Ohmiya, A. Knockdown of Carotenoid Cleavage Dioxygenase 4( CCD4 ) via Virus-Induced Gene Silencing Confers Yellow Coloration in Peach Fruit: Evaluation of Gene Function Related to Fruit Traits. Plant Mol. Biol. Rep. 2016, 4, 257–264. [Google Scholar] [CrossRef]
- Hussain, P.R.; Dar, M.A.; Meena, R.S.; Wani, A.M.; Mir, M.A.; Shafi, F. Changes in Quality of Apple (Malus Domestica) Cultivars Due to γ-Irradiation and Storage Conditions. J. Food Sci. Technol. 2008, 45, 44–49. [Google Scholar]
- Tan, Q.; Liu, X.; Gao, H.; Xiao, W.; Chen, X.; Fu, X.; Li, L.; Li, D.; Gao, D. Comparison between Flat and Round Peaches, Genomic Evidences of Heterozygosity Events. Front. Plant Sci. 2019, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- López-Girona, E.; Zhang, Y.; Eduardo, I.; Mora, J.R.H.; Alexiou, K.G.; Arús, P.; Aranzana, M.J. A Deletion Affecting an LRR-RLK Gene Co-Segregates with the Fruit Flat Shape Trait in Peach. Sci. Rep. 2017, 7, 6714. [Google Scholar]
- Tatsuki, M.; Soeno, K.; Shimada, Y.; Sawamura, Y.; Suesada, Y.; Yaegaki, H.; Sato, A.; Kakei, Y.; Nakamura, A.; Bai, S. Insertion of a Transposon-like Sequence in the 5′-flanking Region of the YUCCA Gene Causes the Stony Hard Phenotype. Plant J. 2018, 96, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Vendramin, E.; Pea, G.; Dondini, L.; Pacheco, I.; Dettori, M.T.; Gazza, L.; Scalabrin, S.; Strozzi, F.; Tartarini, S.; Bassi, D. A Unique Mutation in a MYB Gene Cosegregates with the Nectarine Phenotype in Peach. PLoS ONE 2014, 9, e90574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falchi, R.; Vendramin, E.; Zanon, L.; Scalabrin, S.; Cipriani, G.; Verde, I.; Vizzotto, G.; Morgante, M. Three Distinct Mutational Mechanisms Acting on a Single Gene Underpin the Origin of Yellow Flesh in Peach. Plant J. 2013, 76, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.; García-Gómez, B.E.; Egea, J.; Molina, A.; Martínez-Gómez, P.; Campoy, J.A. Phenotypical Characterization and Molecular Fingerprinting of Natural Early-Flowering Mutants in Apricot (Prunus armeniaca L.) and Japanese Plum (P. salicina Lindl.). Sci. Hortic. 2019, 254, 187–192. [Google Scholar] [CrossRef]
- Vilanova, S.; Badenes, M.L.; Burgos, L.; Martínez-Calvo, J.; Llácer, G.; Romero, C. Self-Compatibility of Two Apricot Selections Is Associated with Two Pollen-Part Mutations of Different Nature. Plant Physiol. 2006, 142, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Broertjes, C. Artificially Induced Genetic Variation in Fruit Trees. Acta Hortic. 1977, 75, 19–26. [Google Scholar] [CrossRef]
- Halász, J.; Kodad, O.; Hegedüs, A. Identification of a Recently Active Prunus-Specific Non-Autonomous Mutator Element with Considerable Genome Shaping Force. Plant J. 2014, 79, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Cao, H.; Pan, L.; Niu, L.; Wei, B.; Cui, G.C.; Wang, L.; Yao, J.L.; Zeng, W.; Wang, Z. Two Loss-of-Function Alleles of the Glutathione S-Transferase (GST) Gene Cause Anthocyanin Deficiency in Flower and Fruit Skin of Peach (Prunus persica). Plant J. 2021, 107, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Ni, Z.; Ouma, K.O.; Gao, Z. Mutations in PmUFGT3 Contribute to Color Variation of Fruit Skin in Japanese Apricot (Prunus mume Sieb. et Zucc.). BMC Plant Biol. 2022, 22, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fukamatsu, Y.; Tamura, T.; Hihara, S.; Oda, K. Mutations in the CCD4 Carotenoid Cleavage Dioxygenase Gene of Yellow-Flesh Peaches. Biosci. Biotechnol. Biochem. 2013, 77, 2514–2516. [Google Scholar] [CrossRef]
- Kim, H.-Y. Characterization of a Bud Sport Mutant in Plum Fruit: From the Bench to System Analysis. University of California: Davis, CA, USA, 2015; ISBN 1339065061. [Google Scholar]
- Calle, A.; Grimplet, J.; Le Dantec, L.; Wünsch, A. Identification and Characterization of DAMs Mutations Associated With Early Blooming in Sweet Cherry, and Validation of DNA-Based Markers for Selection. Front. Plant Sci. 2021, 12, 1018. [Google Scholar] [CrossRef]
- Sonneveld, T.; Tobutt, K.R.; Vaughan, S.P.; Robbins, T.P. Loss of Pollen-S Function in Two Self-Compatible Selections of Prunus avium Is Associated with Deletion/Mutation of an S Haplotype-Specific F-Box Gene. Plant Cell 2005, 17, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.; Bošković, R.I.; Caruso, T.; Raimondo, A.; Cutuli, M.; Tobutt, K.R. A New Self-Compatibility Haplotype in the Sweet Cherry “Kronio”, S 5′, Attributable to a Pollen-Part Mutation in the SFB Gene. J. Exp. Bot. 2007, 58, 4347–4356. [Google Scholar] [CrossRef] [Green Version]
- Ushijima, K.; Yamane, H.; Watari, A.; Kakehi, E.; Ikeda, K.; Hauck, N.R.; Iezzoni, A.F.; Tao, R. The S Haplotype-Specific F-Box Protein Gene, SFB, Is Defective in Self-Compatible Haplotypes of Prunus avium and P. mume. Plant J. 2004, 39, 573–586. [Google Scholar] [CrossRef]
- Yamane, H.; Ikeda, K.; Hauck, N.R.; Iezzoni, A.F.; Tao, R. Self-Incompatibility (S) Locus Region of the Mutated S6- Haplotype of Sour Cherry (Prunus Cerasus) Contains a Functional Pollen S Allele and a Non-Functional Pistil S Allele. J. Exp. Bot. 2003, 54, 2431–2437. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, T.; Hauck, N.R.; Tao, R.; Jiang, N.; Iezzoni, A.F. Molecular Characterization of Three Non-Functional S-Haplotypes in Sour Cherry (Prunus Cerasus). Plant Mol. Biol. 2006, 62, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Chen, X.; Meng, Q.; Zheng, Y.; Shen, X.; Chen, X. Three Nonfunctional S-Haplotypes in Self-Compatible Tetraploid Chinese Cherry (Prunus pseudocerasus L. Cv. Taixiaohongying). Euphytica 2010, 174, 143–151. [Google Scholar] [CrossRef]
- Ballester, J.; Socias, I.; Company, R.; Arus, P.; De Vicente, M.C. Genetic Mapping of a Major Gene Delaying Blooming Time in Almond. Plant Breed. 2001, 120, 268–270. [Google Scholar] [CrossRef]
- Sánchez-Pérez, R.; Dicenta, F.; Martínez-Gómez, P. Inheritance of Chilling and Heat Requirements for Flowering in Almond and QTL Analysis. Tree Genet. Genomes 2012, 8, 379–389. [Google Scholar] [CrossRef]
- Fan, S.; Bielenberg, D.G.; Zhebentyayeva, T.N.; Reighard, G.L.; Okie, W.R.; Holland, D.; Abbott, A.G. Mapping Quantitative Trait Loci Associated with Chilling Requirement, Heat Requirement and Bloom Date in Peach (Prunus Persica). New Phytol. 2010, 185, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Castède, S.; Campoy, J.A.; Le Dantec, L.; Quero-García, J.; Barreneche, T.; Wenden, B.; Dirlewanger, E. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus Avium). PLoS ONE 2015, 10, e0143250. [Google Scholar] [CrossRef]
- Rodriguez, A.J.; Sherman, W.B.; Scorza, R.; Wisniewski, M.; Okie, W.R. “Evergreen” Peach, Its Inheritance and Dormant Behavior. J. Am. Soc. Hortic. Sci. 1994, 119, 789–792. [Google Scholar] [CrossRef]
- McClure, B.; Cruz-García, F.; Romero, C. Compatibility and Incompatibility in S-RNase-Based Systems. Ann. Bot. 2011, 108, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Gómez, E.M.; Prudencio, A.S.; Dicenta, F.; Ortega, E. Characterization of Sf-RNase and SFBf Adjacent Regions in the S-Locus of Almond. In Proceedings of the II International Workshop on Floral Biology and S-Incompatibility in Fruit Species. Acta Hortic. 2016, 1231, 105–108. [Google Scholar]
- Muñoz-Sanz, J.V.; Zuriaga, E.; Badenes, M.L.; Romero, C. A Disulfide Bond A-like Oxidoreductase Is a Strong Candidate Gene for Self-Incompatibility in Apricot (Prunus armeniaca) Pollen. J. Exp. Bot. 2017, 68, 5069–5078. [Google Scholar] [CrossRef]
- Hearne, C.J. Development of Seedless Orange and Grapefruit Cultivars through Seed Irradiation. J. Amer. Soc. Hort. Sci 1984, 109, 270–273. [Google Scholar] [CrossRef]
- Hearn, C.J. Development of Seedless Grapefruit Cultivars through Budwood Irradiation. J. Am. Soc. Hortic. Sci. 1986, 111, 304–306. [Google Scholar] [CrossRef]
- Minas, I.S.; Font, C.; Dangl, G.S.; Gradziel, T.M. Discovery of Non-Climacteric and Suppressed Climacteric Bud Sport Mutations Originating from a Climacteric Japanese Plum Cultivar ( Prunus salicina Lindl.). Front. Plant Sci. 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pérez, R.; Pavan, S.; Mazzeo, R.; Moldovan, C.; Aiese Cigliano, R.; Del Cueto, J.; Ricciardi, F.; Lotti, C.; Ricciardi, L.; Dicenta, F.; et al. Mutation of a BHLH Transcription Factor Allowed Almond Domestication. Science 2019, 364, 1095–1098. [Google Scholar] [CrossRef]
- Alioto, T.; Alexiou, K.G.; Bardil, A.; Barteri, F.; Castanera, R.; Cruz, F.; Dhingra, A.; Duval, H.; Fernández i Martí, Á.; Frias, L. Transposons Played a Major Role in the Diversification between the Closely Related Almond and Peach Genomes: Results from the Almond Genome Sequence. Plant J. 2020, 101, 455–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thodberg, S.; Del Cueto, J.; Mazzeo, R.; Pavan, S.; Lotti, C.; Dicenta, F.; Jakobsen Neilson, E.H.; Møller, B.L.; Sánchez-Pérez, R. Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (Prunus Dulcis). Plant Physiol. 2018, 178, 1096–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Lee, T.; Cheng, C.-H.; Buble, K.; Zheng, P.; Yu, J.; Humann, J.; Ficklin, S.P.; Gasic, K.; Scott, K. 15 Years of GDR: New Data and Functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 2019, 47, D1137–D1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.Q.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F. The High-Quality Draft Genome of Peach (Prunus Persica) Identifies Unique Patterns of Genetic Diversity, Domestication and Genome Evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L. The Peach v2. 0 Release: High-Resolution Linkage Mapping and Deep Resequencing Improve Chromosome-Scale Assembly and Contiguity. BMC Genom. 2017, 18, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Zhou, H.; Jiang, X.; Han, Y.; Zhang, X. The Draft Genome of a Flat Peach (Prunus Persica L. Cv.‘124 Pan’) Provides Insights into Its Good Fruit Flavor Traits. Plants 2021, 10, 538. [Google Scholar] [CrossRef]
- Lian, X.; Zhang, H.; Jiang, C.; Gao, F.; Yan, L.; Zheng, X.; Cheng, J.; Wang, W.; Wang, X.; Ye, X. De Novo Chromosome-level Genome of a Semi-dwarf Cultivar of Prunus Persica Identifies the Aquaporin PpTIP2 as Responsible for Temperature-sensitive Semi-dwarf Trait and PpB3-1 for Flower Type and Size. Plant Biotechnol. J. 2022, 20, 886–902. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Yang, X.; Li, Y.; Zhu, G.; Fang, W.; Chen, C.; Wang, X.; Wu, J.; Wang, L. New High-quality Peach (Prunus Persica L. Batsch) Genome Assembly to Analyze the Molecular Evolutionary Mechanism of Volatile Compounds in Peach Fruits. Plant J. 2021, 108, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Peng, Z.; Zhao, X.; Li, Y.; Liu, K.; Arus, P.; Fang, W.; Chen, C.; Wang, X.; Wu, J. Chromosome-Level Genome Assemblies of Four Wild Peach Species Provide Insights into Genome Evolution and Genetic Basis of Stress Resistance. BMC Biol. 2022, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhang, J.; Wang, S.; Yang, L.; Luo, Y.; Gao, S.; Zhang, M.; Wu, S.; Hu, S.; Sun, H. The Apricot (Prunus Armeniaca L.) Genome Elucidates Rosaceae Evolution and Beta-Carotenoid Synthesis. Hortic. Res. 2019, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Groppi, A.; Liu, S.; Cornille, A.; Decroocq, S.; Bui, Q.T.; Tricon, D.; Cruaud, C.; Arribat, S.; Belser, C.; Marande, W. Population Genomics of Apricots Unravels Domestication History and Adaptive Events. Nat. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Liu, C.; Feng, C.; Peng, W.; Hao, J.; Wang, J.; Pan, J.; He, Y. Chromosome-Level Draft Genome of a Diploid Plum (Prunus Salicina). Gigascience 2020, 9, giaa130. [Google Scholar] [CrossRef]
- Callahan, A.M.; Zhebentyayeva, T.N.; Humann, J.L.; Saski, C.A.; Galimba, K.D.; Georgi, L.L.; Scorza, R.; Main, D.; Dardick, C.D. Defining the ‘HoneySweet’Insertion Event Utilizing NextGen Sequencing and a de Novo Genome Assembly of Plum (Prunus Domestica). Hortic. Res. 2021, 8, 8. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, F.; Chen, Y.; Cao, K.; Wang, L. Chromosome-scale Genome Assembly and Population Genomics Provide Insights into the Adaptation, Domestication, and Flavonoid Metabolism of Chinese Plum. Plant J. 2021, 108, 1174–1192. [Google Scholar] [CrossRef]
- Zheng, T.; Li, P.; Zhuo, X.; Liu, W.; Qiu, L.; Li, L.; Yuan, C.; Sun, L.; Zhang, Z.; Wang, J. The Chromosome-level Genome Provides Insight into the Molecular Mechanism Underlying the Tortuous-branch Phenotype of Prunus Mume. New Phytol. 2022, 235, 141–156. [Google Scholar] [CrossRef]
- Fang, Z.; Lin-Wang, K.; Dai, H.; Zhou, D.; Jiang, C.; Espley, R.V.; Deng, C.; Lin, Y.; Pan, S.; Ye, X. The Genome of Low-chill Chinese Plum “Sanyueli”(Prunus Salicina Lindl.) Provides Insights into the Regulation of the Chilling Requirement of Flower Buds. Mol. Ecol. Resour. 2022, 22, 1919–1938. [Google Scholar] [CrossRef]
- Shirasawa, K.; Isuzugawa, K.; Ikenaga, M.; Saito, Y.; Yamamoto, T.; Hirakawa, H.; Isobe, S. The Genome Sequence of Sweet Cherry (Prunus Avium) for Use in Genomics-Assisted Breeding. DNA Res. 2017, 24, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, W.; Zhu, D.; Zhou, X.; Hong, P.; Zhao, H.; Tan, Y.; Chen, X.; Zong, X.; Xu, L. A de Novo Assembly of the Sweet Cherry (Prunus Avium Cv. Tieton) Genome Using Linked-Read Sequencing Technology. PeerJ 2020, 8, e9114. [Google Scholar] [CrossRef]
- D’Amico, K.M.; Ouma, W.Z.; Meulia, T.; Sideli, G.M.; Gradziel, T.M.; Fresnedo-Ramírez, J. Whole-Genome Sequence and Methylome Profiling of the Almond [Prunus Dulcis (Mill.) DA Webb] Cultivar ‘Nonpareil’. G3 2022, 12, jkac065. [Google Scholar] [CrossRef]
- Baek, S.; Choi, K.; Kim, G.-B.; Yu, H.-J.; Cho, A.; Jang, H.; Kim, C.; Kim, H.-J.; Chang, K.S.; Kim, J.-H. Draft Genome Sequence of Wild Prunus Yedoensis Reveals Massive Inter-Specific Hybridization between Sympatric Flowering Cherries. Genome Biol. 2018, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, J.; Zhang, H.; Li, W.; Wang, Z.; Li, H.; Tong, Q.; Qiao, G.; Liu, Y.; Tian, Y. The Genome of Prunus Humilis Provides New Insights to Drought Adaption and Population Diversity. DNA Res. 2022, 29, dsac021. [Google Scholar] [CrossRef]
- Mohan, C.; Satish, L.; Muthubharathi, B.C.; Selvarajan, D.; Easterling, M.; Yau, Y.-Y. CRISPR-Cas Technology: A Genome-Editing Powerhouse for Molecular Plant Breeding. In Biotechnological Innovations forEnvironmental Bioremediation; Arora, S., Kumar, A., Ogita, S., Yau, Y.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 803–879. [Google Scholar]
- Wenzhi, J.; Huanbin, Z.; Honghao, B.; Michael, F.; Bing, Y.; Weeks Donald, P. Demonstration of CRISPR/Cas9/SgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar]
- Zhang, M.-M.; Wang, Z.-Q.; Xu, X.; Huang, S.; Yin, W.-X.; Luo, C. MfOfd1 Is Crucial for Stress Responses and Virulence in the Peach Brown Rot Fungus Monilinia fructicola. Mol. Plant Pathol. 2020, 21, 820–833. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shen, W.; Zhang, D.; Shen, X.; Wang, F.; Hsiang, T.; Liu, J.; Li, G. The BZIP Transcription Factor LtAP1 Modulates Oxidative Stress Tolerance and Virulence in the Peach Gummosis Fungus Lasiodiplodia Theobromae. Front. Microbiol. 2021, 12, 741842. [Google Scholar] [CrossRef]
- Fiol, A.; Jurado-Ruiz, F.; López-Girona, E.; Aranzana, M.J. An Efficient CRISPR-Cas9 Enrichment Sequencing Strategy for Characterizing Complex and Highly Duplicated Genomic Regions. A Case Study in the Prunus salicina LG3-MYB10 Genes Cluster. Plant Methods 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Luo, M.; Li, H.; Chakraborty, S.; Morbitzer, R.; Rinaldo, A.; Upadhyaya, N.; Bhatt, D.; Louis, S.; Richardson, T.; Lahaye, T. Efficient TALEN-mediated Gene Editing in Wheat. Plant Biotechnol. J. 2019, 17, 2026. [Google Scholar] [CrossRef] [Green Version]
- Ilardi, V.; Tavazza, M. Biotecnological startegies and tools for Plum pox virus resistance: Trans-, intra-, cis-genesis, and beyond. Frontiers Plant Sci. 2015, 6, 379. [Google Scholar] [CrossRef]
- Nishitani, C.; Osakabe, K.; Osakabe, Y. Genome Editing in Apple. In The Apple Genome; Korban, S.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 213–225. [Google Scholar]
- Flaishman, M.A.; Peer, R.; Raz, A.; Cohen, O.; Izhaki, K.; Bocobza, S.; Lama, K.; Pliner, M.; Levy, A. Advanced molecular tools for breeding in Mediterranean fruit trees: Genome editing approach of Ficus carica L. Acta Hort. 2020, 1280, 1–10. [Google Scholar] [CrossRef]
- Jones, H.D. Gene Silencing or Gene Editing: The Pros and Cons. In RNAi for Plant Improvement and Protection; Mezzeti, B., Sweet, J., Burgos, L., Eds.; CABI: Wallingford, UK, 2021; pp. 47–53. [Google Scholar]
- Schenkel, W.; Gathman, A. Regulatory Aspects of RNAi in Plant Production. In RNAi for Plant Improvement and Protection; Mezzeti, B., Sweet, J., Burgos, L., Eds.; CABI: Wallingford, UK, 2021; pp. 154–158. [Google Scholar]
Species | Winter Dormancy and Flowering | Flower Self-Compatibility | Fruit Quality |
---|---|---|---|
Subgenus Amygdalus | |||
Section Euamygdalus (almond and peach group) | |||
Almond (P. dulcis) | [65,66] | [67,68,69] | [70,71] |
Peach (P. persica) | [72,73,74,75] | [76,77,78,79,80,81,82,83] | |
Subgenus Prunus | |||
Section Armeniaca (apricot group) | |||
Apricot (P. armeniaca) | [84] | [17,85,86,87] | |
Mei (P. mume) | [73,74] | [88,89,90] | |
Section Prunus (plum group) | |||
Plum (P. salicina) | [68] | [82,91] | |
Subgenus Cerasus | |||
Section Microcerasus (cherry group) | |||
Sweet Cherry (P. avium) | [92] | [93,94,95] | [72] |
Sour Cherry (P. cerasus) | [95,96,97,98] |
Species Group | Genome | Reference |
---|---|---|
Peach | Prunus persica cv. Lovell. Genome v1.0 | Verde et al., 2013 [114] |
Prunus persica cv. Lovell. Genome v2.0.a1 | Verde et al., 2017 [115] | |
Prunus persica cv. 124. Pan. Genome v1.0 | Zhang et al., 2021 [116] | |
Prunus persica cv. Zhongyoutao 14. Genome v1.0 | Lian et al., 2021 [117] | |
Prunus persica cv. Chinese Cling. Genome v1.0 | Cao et al., 2021 [118] | |
Prunus kansuensis. Genome v1.0 | Submitted for publication | |
Prunus kansuensis. Genome v2.0 | Cao et al., 2021 [118] | |
Prunus davidiana. Genomne v1.0 | Submitted for publication | |
Prunus davidiana. Genomne v2.0 | Cao et al., 2022 [119] | |
Prunus ferganensis. Genome v1.0 | Submitted for publication | |
Prunus ferganensis. Genome v2.0 | Cao et al., 2022 [119] | |
Prunus mira. Genome v1.0 | Submitted for publication | |
Prunus mira. Genome v2.0 | Cao et al., 2022 [119] | |
Apricot | Prunus armeniaca cv. Chuanzhihong and Dabaixing. v1.0 | Jiang et al., 2019 [120] |
Prunus armeniaca cv. Marouch n14. Whole Genome v1.0 | Groppi et al., 2021 [121] | |
Prunus armeniaca cv. Stella. Whole Genome v1.0 | Groppi et al., 2021 [121] | |
Prunus armeniaca cv. Sungold. Whole Genome v1.0 | Submitted for publication | |
Prunus armeniaca cv. Longwangmao. Whole Genome v1.0 | Submitted for publication | |
Prunus mandshurica cv. CH264_4. Whole Genome v1.0 | Groppi et al., 2021 [121] | |
Prunus sibirica cv. CH320_5. Whole Genome v1.0 | Groppi et al., 2021 [121] | |
Prunus sibirica cv. F106. Whole Genome v1.0 | Submitted for publication | |
Plum | Prunus salicina cv. Sanyueli Genome v2.0 | Liu et al., 2020 [122] |
Prunus domestica. Draft Genome v1.0.a1 | Callahan et al., 2021 [123] | |
Prunus salicina cv. Zhongli No. 6 Genome v1.0 | Huang et al., 2021 [124] | |
Prunus mume cv. Tortuosa. Genome v1.0 | Zheng et al., 2022 [125] | |
Prunus salicina cv. Sanyueli. Genome v1.0 | Fang et al., 2022 [126] | |
Cherry | Prunus avium cv. Satonishiki. Genome v1.0.a1 | Shirasawa et al., 2017 [127] |
Prunus avium cv. Tieton. Genome v1.0.a1 | Wang et al., 2020 [128] | |
Prunus avium cv. Tieton. Genome v2.0 | Wang et al., 2020 [128] | |
Almond | Prunus dulcis cv. Lauranne. Genome v1.0 | Sánchez-Pérez et al., 2019 [110] |
Prunus dulcis cv. Texas. Genome v2.0 | Alioto et al., 2020 [111] | |
Prunus dulcis cv. Nonpareil. Genome v2.0 | D’Amico et al., 2022 [129] | |
Other | Prunus yedoensis cv. P. pendula f × P. jamasakura. Genome v1.0 | Baek et al., 2018 [130] |
Prunus humilus. Genome v1.0.a1 | Wang et al., 2022 [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudencio, A.S.; Devin, S.R.; Mahdavi, S.M.E.; Martínez-García, P.J.; Salazar, J.A.; Martínez-Gómez, P. Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus. Int. J. Mol. Sci. 2022, 23, 13273. https://doi.org/10.3390/ijms232113273
Prudencio AS, Devin SR, Mahdavi SME, Martínez-García PJ, Salazar JA, Martínez-Gómez P. Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus. International Journal of Molecular Sciences. 2022; 23(21):13273. https://doi.org/10.3390/ijms232113273
Chicago/Turabian StylePrudencio, Angel S., Sama Rahimi Devin, Sayyed Mohammad Ehsan Mahdavi, Pedro J. Martínez-García, Juan A. Salazar, and Pedro Martínez-Gómez. 2022. "Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus" International Journal of Molecular Sciences 23, no. 21: 13273. https://doi.org/10.3390/ijms232113273
APA StylePrudencio, A. S., Devin, S. R., Mahdavi, S. M. E., Martínez-García, P. J., Salazar, J. A., & Martínez-Gómez, P. (2022). Spontaneous, Artificial, and Genome Editing-Mediated Mutations in Prunus. International Journal of Molecular Sciences, 23(21), 13273. https://doi.org/10.3390/ijms232113273