Adsorption Characteristics of Hair Dyes Removal from Aqueous Solution onto Oak Cupules Powder Coated with ZnO
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Adsorbent Material
2.2. Batch Adsorption
2.2.1. Adsorbent Dosage
2.2.2. Contact Time
2.2.3. Adsorbate Concentration
2.2.4. pH
2.2.5. Adsorption Kinetic Studies
2.2.6. Adsorption Isotherms
2.2.7. Thermodynamics
2.3. Re-Generation of Adsorbent
3. Material and Methods
3.1. Chemicals and Instruments
3.2. Adsorbent Preparation and Characterization
3.3. Bach Adsorption Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2009, 343, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 193–194, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Juang, R.-S.; Shiau, R.-C. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Membr. Sci. 2000, 165, 159–167. [Google Scholar] [CrossRef]
- Manoj Kumar Reddy, P.; Mahammadunnisa, S.; Ramaraju, B.; Sreedhar, B.; Subrahmanyam, C. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution. Environ. Sci. Pollut. Res. 2012, 20, 4111–4124. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Wang, X.; Wang, D.; Han, F. Three-Dimensional Hierarchical Structures of ZnO Nanorods as a Structure Adsorbent for Water Treatment. J. Mater. Sci. Technol. 2017, 33, 864–868. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Sun, R.-J.; Xiao, A.-Y.; Wang, S.-Q.; Zhou, D.-M. Phosphate affects the adsorption of tetracycline on two soils with different characteristics. Geoderma 2010, 156, 237–242. [Google Scholar] [CrossRef]
- Zafar, M.N.; Dar, Q.; Nawaz, F.; Zafar, M.N.; Iqbal, M.; Nazar, M.F. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 2019, 8, 713–725. [Google Scholar] [CrossRef]
- Mostafa, M.H.; Elsawy, M.A.; Darwish, M.S.; Hussein, L.I.; Abdaleem, A.H. Microwave-Assisted preparation of Chitosan/ZnO nanocomposite and its application in dye removal. Mater. Chem. Phys. 2020, 248, 122914. [Google Scholar] [CrossRef]
- Xin, F.Z.; Chen, F.; Wu, Y. High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 474–483. [Google Scholar]
- Kumar, H.; Rani, R. Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route. Int. Lett. Chem. Phys. Astron. 2013, 19, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D.; Siuda, J.; Wieruszewski, M. The Application of Oak Bark Powder as a Filler for Melamine-Urea-Formaldehyde Adhesive in Plywood Manufacturing. Forests 2020, 11, 1249. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Kermani, M.; Gholami, M.; Farzadkia, M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: Comparative study. J. Environ. Health Sci. Eng. 2013, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelwahab, O.; Amin, N. Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies. Egypt. J. Aquat. Res. 2013, 39, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, H.; Li, G.; Gao, B.; Yue, Q.; Li, X. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour. Technol. 2016, 217, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 2009, 171, 767–773. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour.-Effic. Technol. 2017, 3, 71–77. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Balarak, D.; Mahvi, A.H.; Shahbaksh, S.; Wahab, A.; Abdala, A. Adsorptive Removal of Azithromycin Antibiotic from Aqueous Solution by Azolla Filiculoides-Based Activated Porous Carbon. Nanomaterials 2021, 11, 3281. [Google Scholar] [CrossRef]
- Nilgün, B.; Hasan, C. Zinc adsorption kinetics by phosphogypsum—A preliminary study. J. Sci. Ind. Res. 2008, 67, 254–256. [Google Scholar]
- Lafi, R.; Montasser, I.; Hafiane, A. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorpt. Sci. Technol. 2019, 37, 160–181. [Google Scholar] [CrossRef] [Green Version]
- Neupane, S.; Ramesh, S.; Gandhimathi, R.; Nidheesh, P. Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. DESALINATION Water Treat. 2014, 54, 2041–2054. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Gandhimathi, R.; Ramesh, S.T.; Anantha Singh, T.S. Adsorption and desorption characteristics of crystal violet in bottom ash column. J. Urban Environ. Eng. 2012, 6, 18–29. [Google Scholar] [CrossRef]
- Zhang, F.; Lan, J.; Yang, Y.; Wei, T.; Tan, R.; Song, W. Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. J. Nanopart. Res. 2013, 15, 2034. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | |||||
---|---|---|---|---|---|
O | COZ | COZR | COZY | COZE | |
O–H stretching vibration | 3332.57 | 3354.74 | 3307.87 | 3560.62 | 3332.60 |
aliphatic C–H group stretching vibrations of the −CH3 and −CH2 groups | 2925.52 | 2944.77 | 2967.64 | 2923.73 | 2878.23 |
stretching vibration of C=O of carboxylic groups | 1738.09 | 1740.43 | 1594.97 | 1730.56 | 1723.53 |
carboxylic/aromatic hydroxyl (−OH) stretching of phenol group | 1435.4 and 1221.38 | 1418.70 1116.59 | 1417.06 1260.86 | 1363.93 1113.43 | 1458.67 1108.81 |
C=C, the C–H bond, and O–H in the plane deformation | 902.42 | 1064.24 | 1024.78 | 1020.21 | 1029.60 |
C–H deformation vibration and CH2 rocking vibration −C–N– and −C–C– stretching | (525.89–902.42) | (516.48–1064.24) | (600.88–1024.78) | (600.78–1020.21) | (672.06–1029.60) |
Bond to Metal oxide (ZnO) | 459.25 | 410.13 | 412.86 | 450.60 | 519.92 |
First Order Kinetics | Second Order Kinetics | |||
---|---|---|---|---|
R2 | K1 (min−1) | R2 | K1 (g·mg−1min−1) | |
R hair dye | 0.7344 | −5.508 × 10−3 | 0.9992 | 1.88 × 10−2 |
Y hair dye | 0.4312 | −8.40 × 10−3 | 0.9373 | −6.7 × 10−3 |
E hair dye | 0.9964 | +1.7764 | 0.4077 | 0.0269 |
Langmuir | Freundlich | D-R | Temkin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hair Dye | RL | KL | qm mg/g | KF mg/g | n | R2 | BD mol2/KJ2 | E KJ/mol | R2 | B | A | ||
Red | 0.9239 | 0.1823 | 0.3310 | 55.2 | 0.9905 | 13.72 | 3.15 | 0.8614 | 3 × 10−5 | 0.13 | 0.9697 | 11.5 | 1.3 |
Yellow | 0.9748 | 0.5250 | 0.01673 | 52.6 | 0.9942 | 1.70 | 1.53 | 0.8885 | 2 × 10−4 | 0.05 | 0.9315 | 13.5 | 0.12 |
Ebony | 0.9827 | 0.3989 | 0.03345 | 135.1 | 0.9494 | 11.97 | 2.57 | 0.9498 | 2 × 10−5 | 0.16 | 0.9483 | 24.7 | 0.42 |
Hair Dye | T (K) | qm (mg·g−1) | Thermodynamic Parameters | ||
---|---|---|---|---|---|
∆G° (KJ mol−1) | ∆H° (KJ mol−1) | ∆S° (KJ K−1mol−1) | |||
Red | 298 | 35.10 | −3.61 | 4.89 | 19.89 |
Yellow | 308 | 43.39 | −3.78 | ||
Ebony | 318 | 52.47 | −4.65 | ||
Red | 298 | 24.00 | −0.24 | 5.06 | 17.01 |
Yellow | 308 | 32.21 | −0.73 | ||
Ebony | 318 | 50.60 | −1.31 | ||
Red | 298 | 39.66 | −1.32 | 5.92 | 21.25 |
Yellow | 308 | 42.43 | −2.17 | ||
Ebony | 318 | 51.68 | −2.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ma’abreh, A.M.; Abuassaf, R.A.; Hmedat, D.A.; Alkhabbas, M.; Edris, G.; Hussein-Al-Ali, S.H.; Alawaideh, S. Adsorption Characteristics of Hair Dyes Removal from Aqueous Solution onto Oak Cupules Powder Coated with ZnO. Int. J. Mol. Sci. 2022, 23, 11959. https://doi.org/10.3390/ijms231911959
Al-Ma’abreh AM, Abuassaf RA, Hmedat DA, Alkhabbas M, Edris G, Hussein-Al-Ali SH, Alawaideh S. Adsorption Characteristics of Hair Dyes Removal from Aqueous Solution onto Oak Cupules Powder Coated with ZnO. International Journal of Molecular Sciences. 2022; 23(19):11959. https://doi.org/10.3390/ijms231911959
Chicago/Turabian StyleAl-Ma’abreh, Alaa M., Razan Ataallah Abuassaf, Dareen A. Hmedat, Manal Alkhabbas, Gada Edris, Samer Hasan Hussein-Al-Ali, and Samer Alawaideh. 2022. "Adsorption Characteristics of Hair Dyes Removal from Aqueous Solution onto Oak Cupules Powder Coated with ZnO" International Journal of Molecular Sciences 23, no. 19: 11959. https://doi.org/10.3390/ijms231911959
APA StyleAl-Ma’abreh, A. M., Abuassaf, R. A., Hmedat, D. A., Alkhabbas, M., Edris, G., Hussein-Al-Ali, S. H., & Alawaideh, S. (2022). Adsorption Characteristics of Hair Dyes Removal from Aqueous Solution onto Oak Cupules Powder Coated with ZnO. International Journal of Molecular Sciences, 23(19), 11959. https://doi.org/10.3390/ijms231911959