Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells
Abstract
:1. Introduction
2. Results
2.1. Characterization of Cytotoxicity Induced by α-AMA in Human Hepatoma Cells
2.2. Time-Dependent Quantitative Protein Phosphorylation Analysis by α-AMA Treatment
2.3. Characterization of RAS/RAF/ERK Signal Cascade Related to α-AMA-Induced Hepatotoxicity
2.4. Investigation of RAS/RAF/ERK Signal Pathway Role for α-AMA-Induced Hepatotoxicity
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Cytotoxicity Check through CCK-8 Assay
4.3. Preparation of Proteins from Hepatocytes and Trypsin Digestion
4.4. Sample Preparation for Comparative Phosphoproteomics Analysis
4.5. Instruments
4.6. Phosphoproteome Data Analysis and Bioinformatics Analysis
4.7. Phosphoprotein Screening by Immunoblotting
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheung, P. The nutritional and health benefits of mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- Pilz, D.; Molina, R. Commercial harvests of edible mushrooms from the forests of the Pacific Northwest United States: Issues, management, and monitoring for sustainability. For. Ecol. Manag. 2002, 155, 3–16. [Google Scholar] [CrossRef]
- Eren, S.H.; Demirel, Y.; Ugurlu, S.; Korkmaz, I.; Aktas, C.; Guven, F.M. Mushroom poisoning: Retrospective analysis of 294 cases. Clinics 2010, 65, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Karlson-Stiber, C.; Persson, H. Cytotoxic fungi—An overview. Toxicon 2003, 42, 339–349. [Google Scholar] [CrossRef]
- Alves, A.; Ferreira, M.G.; Paulo, J.; França, A.; Carvalho, A. Mushroom poisoning with Amanita phalloides—A report of four cases. Eur. J. Intern. Med. 2001, 12, 64–66. [Google Scholar] [CrossRef]
- Bonnet, M.S.; Basson, P.W. The toxicology of Amanita phalloides. Homeopathy 2002, 91, 249–254. [Google Scholar] [CrossRef]
- Diaz, J.H. Syndromic diagnosis and management of confirmed mushroom poisonings. Crit. Care Med. 2005, 33, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J. Toxins of Amanita phalloides. Toxicon 1998, 36, 13–24. [Google Scholar] [CrossRef]
- Enjalbert, F.; Rapior, S.; Nouguier-Soule, J.; Guillon, S.; Amouroux, N.; Cabot, C. Treatment of amatoxin poisoning: 20-year retrospective analysis. J. Toxicol. Clin. Toxicol. 2002, 40, 715–757. [Google Scholar] [CrossRef]
- Escudié, L.; Francoz, C.; Vinel, J.-P.; Moucari, R.; Cournot, M.; Paradis, V.; Sauvanet, A.; Belghiti, J.; Valla, D.; Bernuau, J. Amanita phalloides poisoning: Reassessment of prognostic factors and indications for emergency liver transplantation. J. Hepatol. 2007, 46, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Ganzert, M.; Felgenhauer, N.; Zilker, T. Indication of liver transplantation following amatoxin intoxication. J. Hepatol. 2005, 42, 202–209. [Google Scholar] [CrossRef]
- Mydlik, M.; Derzsiova, K. Liver and kidney damage in acute poisonings. Bantao J. 2006, 4, 30–32. [Google Scholar]
- Becker, C.E.; Tong, T.G.; Boerner, U.; Roe, R.L.; Scott, R.A.T.; Macquarrie, M.B.; Bartter, F. Diagnosis and Treatment of Amanita Phalloides-Type Mushroom Poisoning—Use of Thioctic Acid. West. J. Med. 1976, 125, 100–109. [Google Scholar]
- Barceloux, D.G. Medical Toxicology of Natural Substances: Foods, Fungi, Medicinal Herbs, Plants, and Venomous Animals; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wieland, T. The toxic peptides from Amanita mushrooms. Int. J. Pept. Protein Res. 1983, 22, 257–276. [Google Scholar] [CrossRef]
- Cochet-Meilhac, M.; Chambon, P. Animal DNA-dependent RNA polymerases. 11. Mechanism of the inhibition of RNA polymerases B by amatoxins. Biochim. Biophys. Acta 1974, 353, 160–184. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Giannoni, F.; Dubois, M.-F.; Seo, S.-J.; Vigneron, M.; Kédinger, C.; Bensaude, O. In vivo degradation of RNA polymerase II largest subunit triggered by α-amanitin. Nucleic Acids Res. 1996, 24, 2924–2929. [Google Scholar] [CrossRef]
- Vyse, S.; Desmond, H.; Huang, P.H. Advances in mass spectrometry based strategies to study receptor tyrosine kinases. IUCrJ 2017, 4, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakada, M.; Kita, D.; Teng, L.; Pyko, I.V.; Watanabe, T.; Hayashi, Y.; Hamada, J.I. Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. Adv. Exp. Med. Biol. 2020, 1202, 151–178. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Poggi, M.C.; Chambard, J.C.; Boulukos, K.E.; Pognonec, P. Low dose cadmium poisoning results in sustained ERK phosphorylation and caspase activation. Biochem. Biophys. Res. Commun. 2006, 350, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Pognonec, P. ERK and cell death: Cadmium toxicity, sustained ERK activation and cell death. FEBS J. 2010, 277, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.C.; Yang, C.R.; Cheng, C.L.; Raung, S.L.; Hung, Y.Y.; Chen, C.J. Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT. Eur. J. Pharm. 2007, 563, 49–60. [Google Scholar] [CrossRef]
- Yoon, C.-H.; Kim, M.-J.; Park, M.-T.; Byun, J.-Y.; Choi, Y.-H.; Yoo, H.-S.; Lee, Y.-M.; Hyun, J.-W.; Lee, S.-J. Activation of p38 mitogen-activated protein kinase is required for death receptor–independent caspase-8 activation and cell death in response to sphingosine. Mol. Cancer Res. 2009, 7, 361–370. [Google Scholar] [CrossRef]
- Brozovic, A.; Osmak, M. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett. 2007, 251, 1–16. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Guo, Z.; Yang, C.; Qi, J.; Fu, Y.; Chen, Z.; Chen, P.; Wang, Y. Changes in the mitochondrial proteome in human hepatocytes in response to alpha-amanitin hepatotoxicity. Toxicon 2018, 156, 34–40. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Na, A.Y.; Sohn, C.H.; Lee, S.; Lee, H.S. Identification of Decrease in TRiC Proteins as Novel Targets of Alpha-Amanitin-Derived Hepatotoxicity by Comparative Proteomic Analysis In Vitro. Toxins 2021, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, J.; Gu, C.; Yang, Y. Alternative splicing and cancer: A systematic review. Signal Transduct. Target. Ther. 2021, 6, 78. [Google Scholar] [CrossRef]
- Naro, C.; Sette, C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int. J. Cell Biol. 2013, 2013, 151839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Ye, M.; Liu, Z.; Cheng, H.; Jiang, X.; Han, G.; Songyang, Z.; Tan, Y.; Wang, H.; Ren, J.; et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol. Cell Proteom. 2012, 11, 1070–1083. [Google Scholar] [CrossRef] [Green Version]
- Degirmenci, U.; Wang, M.; Hu, J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020, 9, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Pei, J.; Wang, A.; Shuai, W.; Feng, L.; Bu, F.; Zhu, Y.; Zhang, L.; Wang, G.; Ouyang, L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm. Sin. B 2022, 12, 2171–2192. [Google Scholar] [CrossRef] [PubMed]
- Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 2005, 6, 827–837. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Li, H.; Zhou, S.; Chen, D.; Zhang, Y.; Yao, Q.; Sun, C. A Simple and High-Throughput Analysis of Amatoxins and Phallotoxins in Human Plasma, Serum and Urine Using UPLC-MS/MS Combined with PRiME HLB muElution Platform. Toxins 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, A.; Jehl, F.; Flesch, F.; Sauder, P.; Kopferschmitt, J. Kinetics of amatoxins in human poisoning: Therapeutic implications. J. Toxicol. Clin. Toxicol. 1993, 31, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 2015, 35, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Renu, K.; Chakraborty, R.; Myakala, H.; Koti, R.; Famurewa, A.C.; Madhyastha, H.; Vellingiri, B.; George, A.; Valsala Gopalakrishnan, A. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)-induced hepatotoxicity—A review. Chemosphere 2021, 271, 129735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Y.; Liang, N.; Liang, Y.; Lu, C.; Xiao, F. Blockage of ROS-ERK-DLP1 signaling and mitochondrial fission alleviates Cr(VI)-induced mitochondrial dysfunction in L02 hepatocytes. Ecotoxicol. Environ. Saf. 2019, 186, 109749. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; de Cassia da Silveira, E.S.R.; Zhong, C. Mitochondrial Biogenesis in Response to Chromium (VI) Toxicity in Human Liver Cells. Int. J. Mol. Sci. 2017, 18, 1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijomone, O.M.; Iroegbu, J.D.; Aschner, M.; Bornhorst, J. Impact of environmental toxicants on p38- and ERK-MAPK signaling pathways in the central nervous system. Neurotoxicology 2021, 86, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Ki, Y.W.; Park, J.H.; Lee, J.E.; Shin, I.C.; Koh, H.C. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 2013, 218, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Qian, W.; Wang, Y.; Gao, R.; Wang, J.; Xiao, H. Involvement of mitogen-activated protein kinase and NF-kappaB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells. J. Appl. Toxicol. 2015, 35, 1539–1549. [Google Scholar] [CrossRef]
- Matter, N.; Herrlich, P.; Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 2002, 420, 691–695. [Google Scholar] [CrossRef]
- Tisserant, A.; Konig, H. Signal-regulated Pre-mRNA occupancy by the general splicing factor U2AF. PLoS ONE 2008, 3, e1418. [Google Scholar] [CrossRef]
- Al-Ayoubi, A.M.; Zheng, H.; Liu, Y.; Bai, T.; Eblen, S.T. Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion. Mol. Cell Biol. 2012, 32, 2880–2893. [Google Scholar] [CrossRef] [Green Version]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 10, W216–W221. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lee, M.S.; Sung, E.; Lee, S.; Lee, H.S. Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. Int. J. Mol. Sci. 2022, 23, 12294. https://doi.org/10.3390/ijms232012294
Kim D, Lee MS, Sung E, Lee S, Lee HS. Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. International Journal of Molecular Sciences. 2022; 23(20):12294. https://doi.org/10.3390/ijms232012294
Chicago/Turabian StyleKim, Doeun, Min Seo Lee, Eunji Sung, Sangkyu Lee, and Hye Suk Lee. 2022. "Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells" International Journal of Molecular Sciences 23, no. 20: 12294. https://doi.org/10.3390/ijms232012294
APA StyleKim, D., Lee, M. S., Sung, E., Lee, S., & Lee, H. S. (2022). Characterization of the RAS/RAF/ERK Signal Cascade as a Novel Regulating Factor in Alpha-Amanitin-Induced Cytotoxicity in Huh-7 Cells. International Journal of Molecular Sciences, 23(20), 12294. https://doi.org/10.3390/ijms232012294