Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe3O4 Composite Foam: Structure Analysis and Absorption Mechanism
Abstract
:1. Introduction
2. Results
2.1. Structure Characterization and Analysis
2.2. Electromagnetic Parameters and Microwave Absorption Properties
2.3. Electromagnetic Mechanism
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Magnetic Fe3O4 Nanoparticles
4.3. Preparation of Magnetic Bio-Based Polyurethane Foam (mBPUF) Composite
4.4. Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Advances in Microwave Synthesis of Nanoporous Materials. Adv. Mater. 2021, 33, 2103477. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv. Mater. 2018, 31, 1802922. [Google Scholar] [CrossRef]
- Zhu, X.; Dong, Y.; Xiang, Z.; Cai, L.; Pan, F.; Zhang, X.; Shi, Z.; Lu, W. Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon 2021, 182, 254–264. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.; Fu, Y.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109. [Google Scholar] [CrossRef]
- Zheng, W.; Ye, W.; Yang, P.; Wang, D.; Xiong, Y.; Liu, Z.; Qi, J.; Zhang, Y. Recent progress in iron-based microwave absorbing composites: A review and prospective. Molecules 2022, 27, 4117. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; He, X.; Zheng, J.; Li, Y.; Li, M.; Hu, Z.; Wang, S.; Tong, G.; Li, X. Highly stretchable and self-foaming polyurethane composite skeleton with thermally tunable microwave absorption properties. Nanotechnology 2021, 32, 225703. [Google Scholar] [CrossRef]
- Oraby, H.; Naeem, I.; Darwish, M.; Senna, M.H.; Tantawy, H.R. Effective electromagnetic interference shielding using foamy polyurethane composites. Polym. Compos. 2021, 42, 3077–3088. [Google Scholar] [CrossRef]
- Reghunadhan, A.; Thomas, S. Chapter 1–Polyurethanes: Structure, properties, synthesis, characterization, and applications. In Polyurethane Polymers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–16. [Google Scholar]
- Li, Y.; Li, X.; Li, Q.; Zhao, Y.; Wang, J. Low-energy-consumption fabrication of porous TPU/graphene composites for high-performance microwave absorption and the influence of Fe3O4 incorporation. J. Alloys Compd. 2022, 909, 164627. [Google Scholar] [CrossRef]
- Zheng, J.; Wei, X.; Li, Y.; Dong, W.; Li, X.; E, S.; Wu, Z.; Wen, J. Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy 2021, 89, 106397. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.; Li, J.; Guo, S. Adjustment of dielectric permittivity and loss of graphene/thermoplastic polyurethane flexible foam: Towards high microwave absorbing performance. Compos. Part A Appl. Sci. Manuf. 2019, 117, 65–75. [Google Scholar] [CrossRef]
- Pang, H.; Duan, Y.; Huang, L.; Song, L.; Liu, J.; Zhang, T.; Yang, X.; Liu, J.; Ma, X.; Di, J.; et al. Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 2021, 224, 109173. [Google Scholar] [CrossRef]
- Karak, N. Vegetable oil-based polyurethanes. In Vegetable Oil-Based Polymers: Properties, Processing and Applications; Woodhead Publishing: Cambridge, UK, 2012; pp. 146–179. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.; Zheng, J.; Jiang, S.; Dong, W.; Li, X.; Li, Y.; E, S. Temperature-Dependent Electromagnetic Microwave Absorbing Characteristics of Stretchable Polyurethane Composite Foams with Ultrawide Bandwidth. Adv. Eng. Mater. 2021, 24, 2101489. [Google Scholar] [CrossRef]
- Leszczyńska, M.; Ryszkowska, J.; Szczepkowski, L.; Kurańska, M.; Prociak, A.; Leszczyński, M.K.; Gloc, M.; Antos-Bielska, M.; Mizera, K. Cooperative effect of rapeseed oil-based polyol and egg shells on the structure and properties of rigid polyurethane foams. Polym. Test. 2020, 90, 106696. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Yadav, M.; Ahmad, S. Oleo-polyurethane-carbon nanocomposites: Effects of in-situ polymerization and sustainable precursor on structure, mechanical, thermal, and antimicrobial surface-activity. Compos. Part B Eng. 2019, 164, 683–692. [Google Scholar] [CrossRef]
- Lu, W.; Shen, Y.; Xie, A.; Zhang, W. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 2010, 322, 1828–1833. [Google Scholar] [CrossRef]
- Guo, L.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Cui, L. Inherent N-Doped Honeycomb-like Carbon/Fe3O4 Composites with Versatility for Efficient Microwave Absorption and Wastewater Treatment. ACS Sustain. Chem. Eng. 2019, 7, 9237–9248. [Google Scholar] [CrossRef]
- Jiang, S.; Qian, K.; Yu, K.; Zhou, H.; Weng, Y.; Zhang, Z. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption. Chem. Phys. Lett. 2021, 779, 138873. [Google Scholar] [CrossRef]
- Dai, M.; Zhai, Y.; Wu, L.; Zhang, Y. Magnetic aligned Fe3O4-reduced graphene oxide/waterborne polyurethane composites with controllable structure for high microwave absorption capacity. Carbon 2019, 152, 661–670. [Google Scholar] [CrossRef]
- Akay, G. Flow induced polymer-filler interactions: Bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing. Polym. Eng. Sci. 1990, 30, 1361–1372. [Google Scholar] [CrossRef]
- Qu, B.; Zhu, C.; Li, C.; Zhang, X.; Chen, Y. Coupling hollow Fe3O4-fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Inter. 2016, 8, 3730–3735. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Z.; Li, M.; Yang, L.; Xue, T.; Xu, G. Controllable synthesis of Fe3O4-based magneto-dielectric ternary nanocomposites and their enhanced microwave absorption properties. Nanotechnology 2020, 32, 015707. [Google Scholar] [CrossRef]
- Xu, X.; Bo, G.; He, X.; Tian, X.; Yan, Y. Structural effects of dimensional nano-fillers on the properties of Sapiumse biferum oil-based polyurethane matrix: Experiments and molecular dynamics simulation. Polymer 2020, 202, 122709. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Yan, J.; Huang, Y.; Li, T.; Liu, P. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly(3,4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite. Carbon 2021, 178, 273–284. [Google Scholar] [CrossRef]
- Hou, X.; Wang, X.; Mi, W. Progress in Fe3O4-based multiferroic heterostructures. J. Alloys Compd. 2018, 765, 1127–1138. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; Electronic Industry Press: Beijing, China, 2006. [Google Scholar]
- Ji, J.Z.; Huang, P.L.; Ma, Y.P.; Zhang, J.S. Stealthy Theory; Beijing University of Aeronautics and Astronautics Press: Beijing, China, 2018. [Google Scholar]
- Yang, X.; Duan, Y.; Li, S.; Huang, L.; Pang, H.; Ma, B.; Wang, T. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 2022, 188, 376–384. [Google Scholar] [CrossRef]
- Kasgoz, A.; Korkmaz, M.; Durmus, A. Compositional and structural design of thermoplastic polyurethane/carbon based single and multi-layer composite sheets for high-performance X-band microwave absorbing applications. Polymer 2019, 180, 121672. [Google Scholar] [CrossRef]
- Yan, F.; Kang, J.; Zhang, S.; Li, C.; Zhu, C.; Zhang, X.; Chen, Y. Enhanced electromagnetic wave absorption induced by void spaces in hollow nanoparticles. Nanoscale 2018, 10, 18742–18748. [Google Scholar] [CrossRef]
- Datt, G.; Kotabage, C.; Datar, S.; Abhyankar, A.C. Correlation between the magnetic-microstructure and microwave mitigation ability of MxCo(1−x)Fe2O4 based ferrite–carbon black/PVA composites. Phys. Chem. Chem. Phys. 2018, 20, 26431–26442. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, Z.; Feng, A.; Zhou, Z.; Chen, L.; Zhang, C.; Liu, X.; Wu, G. In Situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B Eng. 2020, 199, 108261. [Google Scholar] [CrossRef]
- Liang, L.; Gu, W.; Wu, Y.; Zhang, B.; Wang, G.; Yang, Y.; Ji, G. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Wang, S. A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos. Part B Eng. 2019, 160, 348–361. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, L.; Zhan, C.; Shao, Q.; Guo, Z.; Zhang, L. Overview of polymer nanocomposites: Computer simulation understanding of physical properties. Polymer 2017, 133, 272–287. [Google Scholar] [CrossRef]
- Norouzi, A.M.; Kojabad, M.E.; Chapalaghi, M.; Hosseinkhani, A.; Nareh, A.A.; Lay, E.N. Polyester-based polyurethane mixed-matrix membranes incorporating carbon nanotube-titanium oxide coupled nanohybrid for carbon dioxide capture enhancement: Molecular simulation and experimental study. J. Mol. Liq. 2022, 360, 119540. [Google Scholar] [CrossRef]
- Hu, C.X. Stealth Coating Technology; Chemical Industry Press: Beijing, China, 2004. [Google Scholar]
- Wei, B.; Wang, M.; Yao, Z.; Chen, Z.; Chen, P.; Tao, X.; Liu, Y.; Zhou, J. Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers. Carbon 2022, 191, 486–501. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, X.; He, X.; Su, Y.; Wang, J.; Yang, J.; Chen, S.; Zheng, Z. Achieving full effective microwave absorption in X band by double-layered design of glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs. Polym. Test. 2020, 86, 106448. [Google Scholar] [CrossRef]
- Wang, X.; Cao, W.; Cao, M.; Yuan, J. Assembling Nano–Microarchitecture for Electromagnetic Absorbers and Smart Devices. Adv. Mater. 2020, 32, 2002112. [Google Scholar] [CrossRef]
- Akay, G. Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention. Catalysts 2020, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Zou, Q.; Qian, G.; Sun, C.; Jiang, W.; Li, F. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater. 2013, 61, 5829–5834. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Cui, X.; Zeng, M.; Yu, R.; Wang, G. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197–12204. [Google Scholar] [CrossRef]
- Tang, Y.; Li, D.; Ao, D.; Li, S.; Zu, X. Ultralight, highly flexible and conductive carbon foams for high performance electromagnetic shielding application. J. Mater. Sci. Mater. Electron. 2018, 29, 13643–13652. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Polyurethanes from seed oil-based polyols: A review of synthesis, mechanical and thermal properties. Ind. Crops Prod. 2019, 142, 111841. [Google Scholar] [CrossRef]
- Adebayo, L.L.; Soleimani, H.; Yahya, N.; Abbas, Z.; Wahaab, F.; Ayinla, R.T.; Ali, H. Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram. Int. 2020, 46, 1249–1268. [Google Scholar] [CrossRef]
Absorber | Matrix | Filling Ratio (wt%) | Optimal RL (dB) | Bandwidth (RL ≤ −10 dB) | Thickness (mm) | Ref. |
---|---|---|---|---|---|---|
CNTs@Fe3O4 | PU | 15 | −68.5 | 4.37 | 2.55 | [10] |
Fe3O4 nanoparticles | MDCF | 30 | −26.45 | 4.28 | 5.0 | [19] |
Hollow Fe3O4-Fe/G | paraffin | 18 | −30.5 | 6.2 | 2.0 | [22] |
Porous Fe3O4/G | epoxy | 30 | −20.0 | 4.5 | 2.0 | [43] |
Fe3O4/SiO2 | PVDF | 40 | −28.6 | 1.8 | 2.5 | [44] |
Fe3O4/MWCNTs | PU | 80 | −25 | 2.01 | 16.0 | [45] |
mBPUF | paraffin | 30 | −24.0 | 4.62 | 1.789 | [This work] |
mBPUF | BPU | 30 | −19.96 | 4.72 | 2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Tian, X.; Bo, G.; Su, X.; Yan, J.; Yan, Y. Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe3O4 Composite Foam: Structure Analysis and Absorption Mechanism. Int. J. Mol. Sci. 2022, 23, 12301. https://doi.org/10.3390/ijms232012301
Xu X, Tian X, Bo G, Su X, Yan J, Yan Y. Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe3O4 Composite Foam: Structure Analysis and Absorption Mechanism. International Journal of Molecular Sciences. 2022; 23(20):12301. https://doi.org/10.3390/ijms232012301
Chicago/Turabian StyleXu, Xiaoling, Xiaoke Tian, Guangxu Bo, Xingjian Su, Jinyong Yan, and Yunjun Yan. 2022. "Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe3O4 Composite Foam: Structure Analysis and Absorption Mechanism" International Journal of Molecular Sciences 23, no. 20: 12301. https://doi.org/10.3390/ijms232012301
APA StyleXu, X., Tian, X., Bo, G., Su, X., Yan, J., & Yan, Y. (2022). Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe3O4 Composite Foam: Structure Analysis and Absorption Mechanism. International Journal of Molecular Sciences, 23(20), 12301. https://doi.org/10.3390/ijms232012301