Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Orofacial Pain Diagnosis
- Temporomandibular disorders (TMD) according to the diagnostic criteria for temporomandibular disorders (DC/TMD) [49], which are often associated with pain in the pre-auricular region and/or masticatory muscles, TMJ, and mandibular movement dysfunction.
- Primary headaches (also present in the facial area), including migraine (as well as facial migraine) and tension-type headache (TTH), according to the ICHD-3 [50].
- Burning mouth syndrome (BMS), which is a chronic pain condition characterized by a moderate-to-severe sensation of burning from the oral mucosa, especially from the dorsum of the tongue with no clinical signs [48].
4.3. Collection of Data from Medical Records
4.4. Saliva Collection
4.5. eCB Purification
4.6. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ECS | Endocannabinoid system |
eCB | Endocannabinoid |
AEA | Anandamide, i.e., N-arachidonoylethanolamine |
2-AG | 2-arachidonoylglycerol |
PEA | N-palmitoylethanolamine |
OEA | N-oleoylethanolamine |
AA | Arachidonic acid |
OFP | Orofacial pain |
VPS | Verbal pain scale |
HIS | International Headache Society |
TMD | Temporomandibular disorders (i.e., myofascial or joint pain) |
DC/TMD | Diagnostic Criteria for Temporomandibular Disorders |
NVOP | Neurovascular orofacial pain (orofacial migraine), |
TTH | Tension-type headache |
PTN | Post-traumatic neuropathy |
TN | Trigeminal neuralgia |
PHN | Post-herpetic neuralgia |
PIFP | Persistent idiopathic facial pain |
BMS | Burning mouth syndrome |
HRQoL | Health-related quality of life |
BMI | Body mass index |
References
- Araujo-Filho, H.G.; Pereira, E.W.M.; Campos, A.R.; Quintans-Junior, L.J.; Quintans, J.S.S. Chronic orofacial pain animal models progress and challenges. Expert Opin. Drug Discov. 2018, 13, 949–964. [Google Scholar] [CrossRef]
- Ghurye, S.; McMillan, R. Orofacial pain—An update on diagnosis and management. Br. Dent. J. 2017, 223, 639–647. [Google Scholar] [CrossRef]
- Sessle, B.J. Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences. Int. J. Mol. Sci. 2021, 22, 7112. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.M.; Caylor, J.; Strigo, I.; Lerman, I.; Henry, B.; Lopez, E.; Wallace, M.S.; Ellis, R.J.; Simmons, A.N.; Keltner, J.R. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. Front. Pain Res. 2022, 3, 869215. [Google Scholar] [CrossRef]
- Gunn, J.; Hill, M.M.; Cotten, B.M.; Deer, T.R. An Analysis of Biomarkers in Patients with Chronic Pain. Pain Physician 2020, 23, E41–E49. [Google Scholar] [CrossRef]
- Sessle, B.J. Mechanisms of oral somatosensory and motor functions and their clinical correlates. J. Oral Rehabil. 2006, 33, 243–261. [Google Scholar] [CrossRef]
- Yang, S.; Chang, M.C. Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int. J. Mol. Sci. 2019, 20, 3130. [Google Scholar] [CrossRef] [Green Version]
- Sessle, B.J. Neural mechanisms and pathways in craniofacial pain. Can. J. Neurol. Sciences. Le J. Can. Des Sci. Neurol. 1999, 26, S7–S11. [Google Scholar] [CrossRef] [PubMed]
- Rotpenpian, N.; Yakkaphan, P. Review of Literatures: Physiology of Orofacial Pain in Dentistry. eNeuro 2021, 8, 33. [Google Scholar] [CrossRef]
- Zubrzycki, M.; Stasiolek, M.; Zubrzycka, M. Opioid and endocannabinoid system in orofacial pain. Physiol. Res. 2019, 68, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Burston, J.J.; Woodhams, S.G. Endocannabinoid system and pain: An introduction. Proc. Nutr. Soc. 2014, 73, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.; O’Halloran, K.D.; McKenna, J.P.; McCreary, C.; Harhen, B.; Kerr, D.M.; Finn, D.P.; Downer, E.J. Plasma N-acylethanolamine and endocannabinoid levels in burning mouth syndrome: Potential role in disease pathogenesis. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2018, 47, 440–442. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Ando, H.; Unno, S.; Kitagawa, J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int. J. Mol. Sci. 2020, 21, 1423. [Google Scholar] [CrossRef] [Green Version]
- Lo Castro, F.; Baraldi, C.; Pellesi, L.; Guerzoni, S. Clinical Evidence of Cannabinoids in Migraine: A Narrative Review. J. Clin. Med. 2022, 11, 1479. [Google Scholar] [CrossRef]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Haviv, Y.; Georgiev, O.; Gaver-Bracha, T.; Hamad, S.; Nemirovski, A.; Hadar, R.; Sharav, Y.; Aframian, D.J.; Brotman, Y.; Tam, J. Reduced Endocannabinoid Tone in Saliva of Chronic Orofacial Pain Patients. Molecules 2022, 27, 4662. [Google Scholar] [CrossRef]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia Int. J. Headache 2018, 38, 1–211. [CrossRef]
- Sharav, Y. Benoliel R. Orofacial Pain and Headache, 2nd ed.; Quintessence: Chicago, IL, USA, 2015. [Google Scholar]
- Papetti, L.; Sforza, G.; Tullo, G.; Alaimo di Loro, P.; Moavero, R.; Ursitti, F.; Ferilli, M.A.N.; Tarantino, S.; Vigevano, F.; Valeriani, M. Tolerability of Palmitoylethanolamide in a Pediatric Population Suffering from Migraine: A Pilot Study. Pain Res. Manag. 2020, 2020, 3938640. [Google Scholar] [CrossRef] [Green Version]
- Petrosino, S.; Schiano Moriello, A.; Verde, R.; Allara, M.; Imperatore, R.; Ligresti, A.; Mahmoud, A.M.; Peritore, A.F.; Iannotti, F.A.; Di Marzo, V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J. Neuroinflammation 2019, 16, 274. [Google Scholar] [CrossRef] [Green Version]
- Sarchielli, P.; Pini, L.A.; Coppola, F.; Rossi, C.; Baldi, A.; Mancini, M.L.; Calabresi, P. Endocannabinoids in chronic migraine: CSF findings suggest a system failure. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2007, 32, 1384–1390. [Google Scholar] [CrossRef]
- Rankin, L.; Fowler, C.J. The Basal Pharmacology of Palmitoylethanolamide. Int. J. Mol. Sci. 2020, 21, 7942. [Google Scholar] [CrossRef]
- Okeson, J. Bell’s Oral and Facial Pain, 7th ed.; Quintessence: Chicago, IL, USA, 2014. [Google Scholar]
- Olesen, J. Clinical and pathophysiological observations in migraine and tension-type headache explained by integration of vascular, supraspinal and myofascial inputs. Pain 1991, 46, 125–132. [Google Scholar] [CrossRef]
- Hillard, C.J. Stress regulates endocannabinoid-CB1 receptor signaling. Semin. Immunol. 2014, 26, 380–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devor, M.; Amir, R.; Rappaport, Z.H. Pathophysiology of trigeminal neuralgia: The ignition hypothesis. Clin. J. Pain 2002, 18, 4–13. [Google Scholar] [CrossRef]
- Xu, J.Y.; Chen, C. Endocannabinoids in synaptic plasticity and neuroprotection. Neurosci. A Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2015, 21, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.R.; Tello Velasquez, J.; Duggan, S.; Ivanisevic, B.; McKenna, J.P.; McCreary, C.; Downer, E.J. Recent advances in the understanding of the aetiology and therapeutic strategies in burning mouth syndrome: Focus on the actions of cannabinoids. Eur. J. Neurosci. 2022, 55, 1032–1050. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Majorana, A.; Cocchi, M.A.; Conti, G.; Bonadeo, S.; Padovani, A.; Lauria, G.; Bardellini, E.; Rezzani, R.; Rodella, L.F. Epithelial expression of vanilloid and cannabinoid receptors: A potential role in burning mouth syndrome pathogenesis. Histol. Histopathol. 2014, 29, 523–533. [Google Scholar] [CrossRef]
- Lowin, T.; Straub, R.H. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res. Ther. 2015, 17, 226. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.A. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol. 2003, 140, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, K.; Uyama, T.; Okamoto, Y.; Ueda, N. Endocannabinoids and related N-acylethanolamines: Biological activities and metabolism. Inflamm. Regen. 2018, 38, 28. [Google Scholar] [CrossRef]
- Gonsiorek, W.; Lunn, C.; Fan, X.; Narula, S.; Lundell, D.; Hipkin, R.W. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: Antagonism by anandamide. Mol. Pharmacol. 2000, 57, 1045–1050. [Google Scholar] [PubMed]
- Baggelaar, M.P.; Maccarrone, M.; van der Stelt, M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog. Lipid Res. 2018, 71, 1–17. [Google Scholar] [CrossRef]
- Prestifilippo, J.P.; Fernandez-Solari, J.; de la Cal, C.; Iribarne, M.; Suburo, A.M.; Rettori, V.; McCann, S.M.; Elverdin, J.C. Inhibition of salivary secretion by activation of cannabinoid receptors. Exp. Biol. Med. 2006, 231, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Kopach, O.; Vats, J.; Netsyk, O.; Voitenko, N.; Irving, A.; Fedirko, N. Cannabinoid receptors in submandibular acinar cells: Functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling. J. Cell Sci. 2012, 125, 1884–1895. [Google Scholar] [CrossRef] [Green Version]
- Cupini, L.M.; Costa, C.; Sarchielli, P.; Bari, M.; Battista, N.; Eusebi, P.; Calabresi, P.; Maccarrone, M. Degradation of endocannabinoids in chronic migraine and medication overuse headache. Neurobiol. Dis. 2008, 30, 186–189. [Google Scholar] [CrossRef]
- Levine, A.; Liktor-Busa, E.; Lipinski, A.A.; Couture, S.; Balasubramanian, S.; Aicher, S.A.; Langlais, P.R.; Vanderah, T.W.; Largent-Milnes, T.M. Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol. Sex Differ. 2021, 12, 60. [Google Scholar] [CrossRef]
- Blanton, H.L.; Barnes, R.C.; McHann, M.C.; Bilbrey, J.A.; Wilkerson, J.L.; Guindon, J. Sex differences and the endocannabinoid system in pain. Pharmacol. Biochem. Behav. 2021, 202, 173107. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; D’Agostino, G.; Pacini, A.; Russo, R.; Zanardelli, M.; Ghelardini, C.; Calignano, A. Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy: Pain relief and neuroprotection share a PPAR-alpha-mediated mechanism. Mediat. Inflamm. 2013, 2013, 328797. [Google Scholar] [CrossRef] [Green Version]
- Luongo, L.; Guida, F.; Boccella, S.; Bellini, G.; Gatta, L.; Rossi, F.; de Novellis, V.; Maione, S. Palmitoylethanolamide reduces formalin-induced neuropathic-like behaviour through spinal glial/microglial phenotypical changes in mice. CNS Neurol. Disord. Drug Targets 2013, 12, 45–54. [Google Scholar] [CrossRef]
- Flokstra-de Blok, B.M.; Oude Elberink, J.N.; Vlieg-Boerstra, B.J.; Duiverman, E.J.; Dubois, A.E. Measuring health-related quality of life: Fundamental methodological issues. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2009, 39, 1774–1775. [Google Scholar] [CrossRef]
- Hillard, C.J. Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2018, 43, 155–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koethe, D.; Schreiber, D.; Giuffrida, A.; Mauss, C.; Faulhaber, J.; Heydenreich, B.; Hellmich, M.; Graf, R.; Klosterkotter, J.; Piomelli, D.; et al. Sleep deprivation increases oleoylethanolamide in human cerebrospinal fluid. J. Neural Transm. 2009, 116, 301–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughn, L.K.; Denning, G.; Stuhr, K.L.; de Wit, H.; Hill, M.N.; Hillard, C.J. Endocannabinoid signalling: Has it got rhythm? Br. J. Pharmacol. 2010, 160, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Murillo-Rodriguez, E.; Blanco-Centurion, C.; Sanchez, C.; Piomelli, D.; Shiromani, P.J. Anandamide enhances extracellular levels of adenosine and induces sleep: An in vivo microdialysis study. Sleep 2003, 26, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.; Ebelt, P.; Mallard, A.; Briskey, D. Palmitoylethanolamide for sleep disturbance. A double-blind, randomised, placebo-controlled interventional study. Sleep Sci. Pract. 2021, 5, 12. [Google Scholar] [CrossRef]
- Orofacial Pain Classification Committee. International Classification of Orofacial Pain, 1st ed. (ICOP). Cephalalgia Int. J. Headache 2020, 40, 129–221. [Google Scholar] [CrossRef] [Green Version]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Groupdagger. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef]
- Shtok, V.N. [Comments on a revised International Classification of Headache Disorders, 3rd ed. (beta version, 2013)]. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova 2014, 114, 87–92. [Google Scholar]
- Haviv, Y.; Khan, J.; Zini, A.; Almoznino, G.; Sharav, Y.; Benoliel, R. Trigeminal neuralgia (part I): Revisiting the clinical phenotype. Cephalalgia Int. J. Headache 2016, 36, 730–746. [Google Scholar] [CrossRef]
- Haviv, Y.; Zadik, Y.; Sharav, Y.; Benoliel, R. Painful traumatic trigeminal neuropathy: An open study on the pharmacotherapeutic response to stepped treatment. J. Oral Facial Pain Headache 2014, 28, 52–60. [Google Scholar] [CrossRef]
- Haviv, Y.; Rettman, A.; Aframian, D.; Sharav, Y.; Benoliel, R. Myofascial pain: An open study on the pharmacotherapeutic response to stepped treatment with tricyclic antidepressants and gabapentin. J. Oral Facial Pain Headache 2015, 29, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Benoliel, R.; Eliav, E.; Sharav, Y. Self-reports of pain-related awakenings in persistent orofacial pain patients. J. Orofac. Pain 2009, 23, 330–338. [Google Scholar]
- Benoliel, R.; Zadik, Y.; Eliav, E.; Sharav, Y. Peripheral painful traumatic trigeminal neuropathy: Clinical features in 91 cases and proposal of novel diagnostic criteria. J. Orofac. Pain 2012, 26, 49–58. [Google Scholar] [PubMed]
- Haviv, Y.; Zini, A.; Etzioni, Y.; Klitinich, V.; Dobriyan, A.; Sharav, Y.; Benoliel, R.; Almoznino, G. The impact of chronic orofacial pain on daily life: The vulnerable patient and disruptive pain. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, 58–66. [Google Scholar] [CrossRef]
- Haviv, Y.; Zini, A.; Keshet, N.; Almoznino, G.; Benoliel, R.; Sharav, Y. Features of Neurovascular Orofacial Pain Compared to Painful Posttraumatic Trigeminal Neuropathy. J. Oral Facial Pain Headache 2020, 34, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Haviv, Y.; Zini, A.; Sharav, Y.; Almoznino, G.; Benoliel, R. Nortriptyline Compared to Amitriptyline for the Treatment of Persistent Masticatory Myofascial Pain. J. Oral Facial Pain Headache 2019, 33, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Krief, G.; Haviv, Y.; Deutsch, O.; Keshet, N.; Almoznino, G.; Zacks, B.; Palmon, A.; Aframian, D.J. Proteomic profiling of whole-saliva reveals correlation between Burning Mouth Syndrome and the neurotrophin signaling pathway. Sci. Rep. 2019, 9, 4794. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Azar, S.; Nemirovski, A.; Webb, M.; Halpern, Z.; Shibolet, O.; Tam, J. Serum levels of endocannabinoids are independently associated with nonalcoholic fatty liver disease. Obesity 2017, 25, 94–101. [Google Scholar] [CrossRef]
Group * | eCBs | Pain | Control | p-Value |
---|---|---|---|---|
Primary headache group (migraine and TTH) | AEA | 0.09 ± 0.09 | 0.17 ± 0.18 | 0.02 |
OEA | 35.65 ± 40.31 | 67.7 ± 77.09 | 0.04 | |
AA | 1354.3 ± 1386.9 | 2327.15 ± 2539.3 | 0.06 | |
Neuropathic group (PTN, TN, and BMS) | 2-AG | 35.97 ± 42.56 | 54.71 ± 36.47 | 0.05 |
Diagnosis | eCBs | Pain | Control | p-Value |
---|---|---|---|---|
Migraine | PEA | 10.77 ± 11.76 | 12.92 ± 11.75 | 0.05 |
TTH | 2-AG | 16.85 ± 6.56 | 54.71 ± 36.47 | 0.02 |
TN | 2AG | 12.71 ± 14.07 | 54.71 ± 36.47 | <0.001 |
BMS | AEA | 0.56 ± 0.87 | 0.17 ± 0.18 | 0.01 |
Post-Traumatic Neuropathy (PTN) | |||||
---|---|---|---|---|---|
eCBs | N | Mean ± SD (fmol/mg) | p-Value | ||
Gender | AA | M | 5 | 2547.9 ± 1662 | 0.017 |
W | 6 | 613.2 ± 449 | |||
HRQoL (0→10) | AA | 6 | ** 0.926 | 0.008 | |
Trigeminal Neuralgia (TN) | |||||
Waken | AEA | No | 7 | 0.08 ± 0.13 | 0.033 |
Yes | 3 | 0.43 ± 0.23 | |||
OEA | No | 7 | 16.55 ± 12.54 | 0.017 | |
Yes | 3 | 200.06 ± 125.08 | |||
PEA | No | 7 | 4.8 ± 4.08 | 0.017 | |
Yes | 3 | 38.42 ± 21.51 | |||
Pain onset (months) | AA | 10 | 0.726 * | 0.017 | |
Migraine | |||||
Gender | OEA | M | 4 | 93.4 ± 73 | 0.006 |
W | 15 | 25.9 ± 15 | |||
PEA | M | 4 | 25.31 ± 20 | 0.004 | |
W | 15 | 6.9 ± 4 | |||
BMI | 2-AG | >30 | 6 | 52.8 ± 53 | 0.046 |
<30 | 13 | 34.3 ± 50 | |||
VPS (0→10) | OEA | 19 | −0.582 ** | 0.009 | |
PEA | 19 | −0.470 * | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiliczer, S.; Wilensky, A.; Gaver, T.; Georgiev, O.; Hamad, S.; Nemirovski, A.; Hadar, R.; Sharav, Y.; Aframian, D.J.; Tam, J.; et al. Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management. Int. J. Mol. Sci. 2022, 23, 13017. https://doi.org/10.3390/ijms232113017
Heiliczer S, Wilensky A, Gaver T, Georgiev O, Hamad S, Nemirovski A, Hadar R, Sharav Y, Aframian DJ, Tam J, et al. Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management. International Journal of Molecular Sciences. 2022; 23(21):13017. https://doi.org/10.3390/ijms232113017
Chicago/Turabian StyleHeiliczer, Shimrit, Asaf Wilensky, Tal Gaver, Olga Georgiev, Sharleen Hamad, Alina Nemirovski, Rivka Hadar, Yair Sharav, Doron J. Aframian, Joseph Tam, and et al. 2022. "Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management" International Journal of Molecular Sciences 23, no. 21: 13017. https://doi.org/10.3390/ijms232113017
APA StyleHeiliczer, S., Wilensky, A., Gaver, T., Georgiev, O., Hamad, S., Nemirovski, A., Hadar, R., Sharav, Y., Aframian, D. J., Tam, J., & Haviv, Y. (2022). Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management. International Journal of Molecular Sciences, 23(21), 13017. https://doi.org/10.3390/ijms232113017