Effect of Ni Substitution on the Structural, Magnetic, and Electronic Structure Properties of Gd0.4Tb0.6(Co1−xNix)2 Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Magnetic Properties
2.3. Magnetocaloric Properties
2.4. Electrical Resistivity
2.5. X-ray Photoelectron Spectroscopy (XPS)
2.6. Ab Initio Results
3. Methods and Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Gratz, E.; Markosyan, A.S. Physical properties of RCo2 Laves phases. J. Phys. Condens. Matter 2001, 13, R385–R413. [Google Scholar] [CrossRef]
- Baranov, N.; Yermakov, A.A.; Pirogov, A.N.; Proshkin, A.; Gvasaliya, S.N.; Podlesnyak, A.A. Irreversibility of the magnetic state of Tm1−xTbxCo2 revealed by specific heat, electrical resistivity, and neutron diffraction measurements. Phys. Rev. B 2006, 73, 104445. [Google Scholar] [CrossRef] [Green Version]
- Duc, N.H.; Goto, T. Itinerant electron metamagnetism of Co-sublattice in the lanthanide-cobalt intermetallics. In Handbook on the Physics and Chemistry of RareEarths; Gschneidner, K.A., Jr., Eyring, L., Eds.; North-Holland: Amsterdam, The Netherlands, 1999; Volume 26, pp. 177–264. [Google Scholar]
- Goto, T.; Fukamichi, K.; Sakakibara, T.; Komatsu, H. Itinerant electron metamagnetism in YCo2. Solid State Commun. 1989, 72, 945–947. [Google Scholar] [CrossRef]
- Goto, T.; Sakakibara, T.; Murata, K.; Komatsu, H.; Fukamichi, K. Itinerant electron metamagnetism in YCo2 and LuCo2. J. Magn. Magn. Mater. 1990, 90, 700–702. [Google Scholar] [CrossRef]
- Sikora, M.; Bajorek, A.; Chrobak, A.; Deniszczyk, J.; Ziółkowski, G.; Chełkowska, G. Magnetic properties and electronic structure of the Gd0.4Tb0.6Co2 compound. Materials 2020, 13, 5481. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.W.; Zhuang, Y.H.; Li, J.Q.; Deng, J.Q.; Zhu, Q.M. Magnetocaloric effect in (Gd1−xTbx)Co2. Solid State Commun. 2006, 137, 275–277. [Google Scholar] [CrossRef]
- Saville, A.I.; Creuziger, A.; Mitchell, E.B.; Vogel, S.C.; Benzing, J.T.; Klemm-Toole, J.; Clarke, K.D.; Clarke, A.J. MAUD Rietveld Refinement Software for Neutron Diffraction Texture Studies of Single-and Dual-Phase Materials. Integr. Mater. Manuf. Innov. 2021, 10, 461–487. [Google Scholar] [CrossRef]
- Lutterotti, L. MAUD Tutorial—Instrumentation Broadening Determination. Available online: https://www.researchgate.net/publication/228868859 (accessed on 20 September 2022).
- Lingwei, L.; Nishimura, K.; Tamei, D.; Mori, K. Structure, transport properties and magnetocaloric effect in Gd(Co1−xNix)2 pseudobinary compounds. Solid State Commun. 2008, 145, 427–431. [Google Scholar]
- Kaneko, T.; Marumo, K.; Miura, S.; Kido, G.; Abe, S.; Yoshida, H.; Kamigaki, K.; Nakagawa, Y. High-field susceptibility of pseudobinary compounds Gd(Co1−xNix)2. Phys. B 1988, 149, 334–339. [Google Scholar] [CrossRef]
- Miiller, W.; Causeret, L.; Ling, C.D. Frustrated magnetism and local structural disorder in pyrochlore-type Bi1.89Fe1.16Nb0.95O6.95. J. Phys. Condens. Matter 2010, 22, 486004. [Google Scholar] [CrossRef]
- Dubowik, J.; Gościańska, I.; Kudryavtsev, Y.V.; Oksenenko, V.A. Structure and magnetism of Co2CrAl Heusler alloy films. Mater. Sci. 2007, 25, 1281–1287. [Google Scholar]
- Duc, N.H.; Hien, T.D.; Mai, P.P.; Ngan, N.H.K.; Sinh, N.H.; Brommer, P.E.; Franse, J.J.M. The magnetic phase transitions in (Tb,Ho)Co2, and (Tb, Y)Co2, compounds. Phys. B Condens. Matter 1989, 160, 199–203. [Google Scholar] [CrossRef]
- Ćwik, J. Magnetism and magnetocaloric effect in multicomponent Laves phase compounds: Study and comparative analysis. J. Solid State Chem. 2014, 209, 13–22. [Google Scholar] [CrossRef]
- Tishin, A.M. Magnetocaloric effect: Current situation and future trends. J. Magn. Magn. Mater. 2007, 316, 351–357. [Google Scholar] [CrossRef]
- Wang, J.L.; Tang, C.C.; Wu, G.H.; Liu, Q.L.; Tang, N.; Wang, W.Q.; Wang, W.H.; Yang, F.M.; Liang, J.K.; de Boer, F.R.; et al. Structure and magneto-history behavior of DyNi2Mn. Solid State Commun. 2002, 121, 615–618. [Google Scholar] [CrossRef]
- Singh, J.K.; Sureh, K.G.; Rana, D.S.; Nigam, A.K.; Malik, S. Role of Fe substitution on the anomalous magnetocaloric and magnetoresistance behaviour in Tb(Ni1−xFex)2 compounds. J. Phys. Condens. Matter 2006, 18, 10775–10786. [Google Scholar] [CrossRef] [Green Version]
- Balli, M.; Fruchart, D.; Gignoux, D. Effect of Ni substitution on the magnetic and magnetocaloric properties of the Dy(Co1−xNix)2 Laves phase. J. Phys. D Appl. Phys. 2007, 40, 7601–7605. [Google Scholar] [CrossRef]
- Ouyang, Z.W.; Rao, G.H.; Yang, H.F.; Liu, W.F.; Liu, G.Y.; Feng, X.M.; Liang, J.K. Structure and magnetic phase transition in R (Co1−xGax)2 (R = Nd, Gd, Tb, Dy) compounds. Phys. B 2004, 344, 436–442. [Google Scholar] [CrossRef]
- Mizumaki, M.; Yano, K.; Umehara, I.; Ishikawa, F.; Sato, K.; Koizumi, A.; Sakai, N.; Muro, T. Verification of Ni magnetic moment in GdNi2 Laves phase by magnetic circular dichroism measurement. Phys. Rev. B 2003, 67, 132404. [Google Scholar] [CrossRef]
- Fullerton, E.E.; Jiang, J.S.; Bader, S.D. Hard/soft magnetic heterostructures: Model exchange-spring magnets. J. Magn. Magn. Mater. 1999, 200, 392–404. [Google Scholar] [CrossRef]
- Kneller, E.F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3560–3588. [Google Scholar] [CrossRef]
- Chrobak, A.; Bajorek, A.; Chełkowska, G. Effect of Tb/Gd Substitution on Crystal Structure and Exchange Interactions of Gd1−xTbxNi3 Intermetallic Compounds. Acta Phys. Pol. A 2012, 121, 1132–1135. [Google Scholar] [CrossRef]
- Duc, N.H. An evaluation of the R–T spin coupling parameter in the rare earth–transition metal intermetallics. Phys. Stat. Sol. 1991, 164, 545–552. [Google Scholar] [CrossRef]
- Duc, N.H.; Hien, T.D.; Givord, D.; Franse, J.J.M.; de Boer, F.R. Exchange interaction in rare earth- transition metal compounds. J. Magn. Magn. Matter 1993, 124, 305–311. [Google Scholar] [CrossRef]
- Gratz, E.; Goremychkin, E.; Latroche, M.; Hilscher, G.; Rotter, M.; Müller, H.; Lindbaum, A.; Michor, H.; Paul-Boncour, V.; Fernandez-Diaz, T. New magnetic phenomena in TbNi2. J. Phys. Condens. Matter 1999, 11, 7893–7905. [Google Scholar] [CrossRef]
- Meaden, G.T. Electrical Resistance of Metals; Springer: New York, NY, USA, 1965. [Google Scholar] [CrossRef]
- Steiner, W.; Gratz, E.; Ortbauer, H.; Camen, H.W. Magnetic properties, electrical resistivity and thermal expansion of (Ho,Y)Co2. J. Phys. F Metal Phys. 1978, 8, 1525–1537. [Google Scholar] [CrossRef]
- Fisk, Z.; Webb, G.W. Electrical Resistivity of Metals. In Electronic Structure and Properties; Fradin, F.Y., Ed.; Academic Press, Inc.: New York, NY, USA, 1981; pp. 297–349. [Google Scholar]
- Hall, G.L. Nordheim’s Theory of the Resistivity of Alloys. Phys. Rev. 1959, 116, 604–605. [Google Scholar] [CrossRef]
- Lang, J.K.; Baer, Y.; Cox, P.A. Study of 4f state and valence band density of state in rare earth metals: II. Experiment and results. J. Phys. F. Met. Phys. 1981, 11, 121–138. [Google Scholar] [CrossRef]
- Hüfner, S. Core levels and final states. In Photoelectron Spectroscopy, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Shabanova, I.N.; Keller, N.V. X-ray photoelectron studies of spine-state changes in 3d metal systems. Surf. Interface Anal. 2001, 32, 114–116. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism of localized electrons on the atom. In Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Multipack Software, Version 9.8.0.19; Ulvac phi, Incorporated: Chigasaki, Japan, 2017.
- Singh, D.J.; Nordstrom, L. Plane Waves, Pseudopotentials, and the LAPW Method, 2nd ed.; Springer Science: New York, NY, USA, 2006; ISBN 978-0-387-28780-5. [Google Scholar]
- Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; Tran, F.; Marks, L.D. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties; Schwarz, K., Ed.; Techn. Universität Wien: Vienna, Austria, 2018; ISBN 3-9501031-1-2. [Google Scholar]
x | 0.00 | 0.05 | 0.10 | 0.125 | 0.15 | 0.25 | 0.375 | 0.50 | 0.80 | 1.00 | |
---|---|---|---|---|---|---|---|---|---|---|---|
TC [K] | 300.6 | 265.4 | 235.6 | - | 215.6 | - | - | 144.5 | 73.3 | 51.3 | |
MS [μB/fu] | exp. calc. fit | 5.86 5.91 5.94 | 5.94 6.05 | 6.57 6.15 | - 6.17 6.21 | 6.60 6.26 | - 6.51 6.47 | - 6.78 6.73 | 7.20 7.02 7.2 | 8.10 7.62 | 7.83 8.07 8.05 |
2 μ3d [μB/fu] | exp. calc. | 2.34 2.57 | 2.26 - | 1.63 - | - 2.26 | 1.60 - | - 1.93 | - 1.64 | 1.00 1.39 | 0.10 - | 0.37 0.24 |
Gd0.4Tb0.6(Co1−xNix)2 | JRR [10−23J] | −JRT [10−23J] | JTT [10−22J] | 2 μ3d-MFT [μB/fu] |
---|---|---|---|---|
x = 0.00 | 1.90 | 11.7 | 3.59 | 2.44 |
x = 0.05 | 1.90 | 9.34 | 2.55 | 2.88 |
x = 0.10 | 1.90 | 9.87 | 2.78 | 2.20 |
x = 0.15 | 1.90 | 9.35 | 2.65 | 2.09 |
x = 0.50 | 1.90 | 7.29 | 2.38 | 1.36 |
x = 0.80 | 1.46 | 2.26 | 1.25 | 1.18 |
x = 1.00 | 0.96 | 2.02 | 0.24 | 1.20 |
Gd0.4Tb0.6(Co1−xNix)2 | |ΔSM|max [J/kgK] | RC [J/kg] | RCP [J/kg] | δTFWHM [K] |
---|---|---|---|---|
x = 0.00 | 4.13 | 167.23 | 210.52 | 50.03 |
x = 0.05 | 4.26 | 190.79 | 230.06 | 54.06 |
x = 0.10 | 4.60 | 301.24 | 381.29 | 82.89 |
x = 0.15 | 5.00 | 372.01 | 535.62 | 114.03 |
x = 0.50 | 6.47 | 406.65 | 559.69 | 86.45 |
x = 0.80 | 10.07 | 467.81 | 623.84 | 61.96 |
x = 1.00 | 11.99 | 455.58 | 570.39 | 47.56 |
Gd0.4Tb0.6(Co1−xNix)2 | TCR [K] | ρ0 [μΩcm] | α | β | ω |
---|---|---|---|---|---|
x = 0.00 | 294.4 | 6.38 | 3.70∙10−11 | 9.38∙10−6 | 2.67∙10−3 |
x = 0.05 | 260.6 | 53.00 | 9.41∙10−11 | 1.84∙10−5 | 5.23∙10−3 |
x = 0.10 | 240.1 | 84.75 | 2.26∙10−10 | 3.12∙10−5 | 8.2∙10−3 |
x = 0.15 | 208.2 | 63.74 | 1.45∙10−10 | 1.72∙10−5 | 4.74∙10−3 |
x = 0.50 | 141.0 | 118.47 | 1.81∙10−10 | 3.07∙10−5 | 7.86∙10−3 |
x = 0.80 | 66.0 | 50.41 | 6.20∙10−9 | 1.24∙10−4 | 1.25∙10−2 |
x = 1.00 | 54.2 | 34.62 | 1.40∙10−9 | 1.09∙10−4 | 1.07∙10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, M.; Bajorek, A.; Chrobak, A.; Deniszczyk, J.; Ziółkowski, G.; Chełkowska, G. Effect of Ni Substitution on the Structural, Magnetic, and Electronic Structure Properties of Gd0.4Tb0.6(Co1−xNix)2 Compounds. Int. J. Mol. Sci. 2022, 23, 13182. https://doi.org/10.3390/ijms232113182
Sikora M, Bajorek A, Chrobak A, Deniszczyk J, Ziółkowski G, Chełkowska G. Effect of Ni Substitution on the Structural, Magnetic, and Electronic Structure Properties of Gd0.4Tb0.6(Co1−xNix)2 Compounds. International Journal of Molecular Sciences. 2022; 23(21):13182. https://doi.org/10.3390/ijms232113182
Chicago/Turabian StyleSikora, Marcin, Anna Bajorek, Artur Chrobak, Józef Deniszczyk, Grzegorz Ziółkowski, and Grażyna Chełkowska. 2022. "Effect of Ni Substitution on the Structural, Magnetic, and Electronic Structure Properties of Gd0.4Tb0.6(Co1−xNix)2 Compounds" International Journal of Molecular Sciences 23, no. 21: 13182. https://doi.org/10.3390/ijms232113182
APA StyleSikora, M., Bajorek, A., Chrobak, A., Deniszczyk, J., Ziółkowski, G., & Chełkowska, G. (2022). Effect of Ni Substitution on the Structural, Magnetic, and Electronic Structure Properties of Gd0.4Tb0.6(Co1−xNix)2 Compounds. International Journal of Molecular Sciences, 23(21), 13182. https://doi.org/10.3390/ijms232113182