Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding
Abstract
:1. Introduction
2. Results
2.1. Morphology and Structure Characterization
2.2. Thermal Stability Analysis of PS Composites
2.3. Flame Retardancy Evaluation of PS Composites
2.4. EMI Shielding Performance Estimation of PS Composites
3. Conclusions
4. Materials and Methods
4.1. Raw Materials
4.2. Synthesis of the PS Spheres
4.3. Acidification of MWCNT
4.4. Fabrication of PS/SiAPP/aMWCNT Composites
4.5. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Y.; Long, Z.; Yu, B.; Zhou, K.; Gui, Z.; Yuen, R.K.K.; Hu, Y. Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J. Mater. Chem. A 2015, 3, 17064–17073. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Liu, P.; Bai, S. Flame-retardant mechanism of expandable polystyrene foam with a macromolecular nitrogen-phosphorus intumescent flame retardant. J. Appl. Polym. Sci. 2017, 134, 44356. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, C.; He, M.; Ke, Z.; Yuan, H. Preparation and thermal properties of a novel core-shell structure flame-retardant copolymer. Polym. Adv. Technol. 2017, 29, 541–550. [Google Scholar] [CrossRef]
- Wu, G.; Wang, Y.; Wang, K.; Feng, A. The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv. 2016, 6, 102542–102548. [Google Scholar] [CrossRef]
- Han, W.; Song, W.; Shen, Y.; Ge, C.; Zhang, R.; Zhang, X. Multiwalled carbon nanotubes encapsulated polystyrene: A facile one-step synthesis, electrical and thermal properties. J. Mater. Sci. 2019, 54, 6227–6237. [Google Scholar] [CrossRef]
- Yu, S.; Hing, P.; Xiao, H. Thermal conductivity of polystyrene–aluminum nitride composite. Compos. Part A Appl. Sci. Manuf. 2002, 33, 289–292. [Google Scholar] [CrossRef]
- Lee, S.H.; Yu, S.; Shahzad, F.; Hong, J.P.; Kim, W.N.; Park, C.; Hong, S.M.; Koo, C.M. Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Compos. Sci. Technol. 2017, 144, 57–62. [Google Scholar] [CrossRef]
- Bourbigot, S.; Bras, M.L.; Duquesne, S.; Rochery, M. Recent Advances for Intumescent Polymers. Macromol. Mater. Eng. 2004, 289, 499–511. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Y.Z.; Yang, B.; Liu, Y. A Novel Intumescent Flame-Retardant Polyethylene System. Macromol. Mater. Eng. 2010, 291, 247–253. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Wang, W.; Qian, L. Preparation and characterization of surface-modified ammonium polyphosphate and its effect on the flame retardancy of rigid polyurethane foam. J. Appl. Polym. Sci. 2017, 134, 45369. [Google Scholar] [CrossRef]
- Hamerton, L.I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712. [Google Scholar]
- Yan, Y.W.; Li, C.; Jian, R.K.; Shuang, K.; Wang, Y.Z. Intumescence: An effect way to flame retardance and smoke suppression for polystryene. Polym. Degrad. Stab. 2012, 97, 1423–1431. [Google Scholar] [CrossRef]
- Zheng, Z.; Yan, J.; Sun, H.; Cheng, Z.; Li, W.; Wang, H.; Cui, X. Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polym. Int. 2013, 63, 84–92. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, Y.; Huang, Z.Q.; Duan, L.; Tai, Q.; Hu, Y. Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos. Part A Appl. Sci. Manuf. 2017, 99A, 149–156. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, C.; Fu, L.; Yang, F.; Lv, Y.; Yu, B. Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety. Composites 2019, 179, 107541. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, B.; Duan, L.; Zhu, Y.; Gui, Z.; Yuen, R.; Hu, Y. Processable dispersions of graphitic carbon nitride based nanohybrids and application in polymer nanocomposites. Ind. Eng. Chem. Res. 2016, 55, 7646–7654. [Google Scholar] [CrossRef]
- Shi, Y.; Xing, W.; Wang, B.; Hong, N.; Zhu, Y.; Wang, C.; Gui, Z.; Yuen, R.K.K.; Hu, Y. Synergistic effect of graphitic carbon nitride and ammonium polyphosphate for enhanced thermal and flame retardant properties of polystyrene. Mater. Chem. Phys. 2016, 177, 283–292. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, B.; Duan, L.; Gui, Z.; Wang, B.; Hu, Y.; Yuen, R.K.K. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 2017, 332, 87–96. [Google Scholar] [CrossRef]
- Lu, C.; Cao, Q.Q.; Hu, X.N.; Liu, C.Y.; Huang, X.H.; Zhang, Y.Q. Influence of morphology and ammonium polyphosphate dispersion on the flame retardancy of polystyrene/nylon-6 blends. Fire Mater. 2014, 38, 765–776. [Google Scholar] [CrossRef]
- Gao, W.; Wang, S.; Meng, F.; Wang, Y.; Ma, H. Microencapsulated ammonium polyphosphate with boron-modified phenolic resin. J. Appl. Polym. Sci. 2016, 133, 43720. [Google Scholar] [CrossRef]
- Lei, Z.; Cao, Y.; Fei, X.; Hui, R. Study on surface modification and flame retardants properties of ammonium polyphosphate for polypropylene. J. Appl. Polym. Sci. 2012, 124, 781–788. [Google Scholar] [CrossRef]
- Lin, H.; Hong, Y.; Bo, L.; Wei, L.; Xu, B. The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites. Polym. Degrad. Stab. 2011, 96, 1382–1388. [Google Scholar] [CrossRef]
- Qin, Z.; Li, D.; Zhang, W.; Yang, R. Surface modification of ammonium polyphosphate with vinyltrimethoxysilane: Preparation, characterization, and its flame retardancy in polypropylene. Polym. Degrad. Stab. 2015, 119, 139–150. [Google Scholar] [CrossRef]
- Sha, L.Z.; Chen, K.F. Surface modification of ammonium polyphosphate-diatomaceous earth composite filler and its application in flame-retardant paper. J. Therm. Anal. Calorim. 2016, 123, 339–347. [Google Scholar] [CrossRef]
- Shao, Z.B.; Cong, D.; Tan, Y.; Chen, M.J.; Wang, Y.Z. An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Appl. Mater. Interfaces 2014, 6, 7363. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.B.; Cong, D.; Yi, T.; Chen, M.J.; Chen, L.; Wang, Y.Z. Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polym. Degrad. Stab. 2014, 106, 88–96. [Google Scholar] [CrossRef]
- Shao, Z.B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M.J.; Chen, L.; Wang, Y.Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A 2014, 2, 13955–13965. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, B.; Shang, S.; Zhang, H.; Yang, X. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos. Part B Eng. 2019, 181, 107588. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Zhang, S.; Li, J. Preparation and characterization of microencapsulated ammonium polyphosphate with UMF and its application in WPCs. Constr. Build. Mater. 2014, 65, 151–158. [Google Scholar] [CrossRef]
- Wu, K.; Song, L.; Wang, Z.; Hu, Y. Preparation and characterization of double shell microencapsulated ammonium polyphosphate and its flame retardance in polypropylene. J. Polym. Res. 2009, 16, 283–294. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Zhang, Z.; Yang, L.; Zhou, J. Effects of microencapsulated APP-II on the microstructure and flame retardancy of PP/APPeII/PER composites. Polym. Degrad. Stab. 2014, 105, 150–159. [Google Scholar]
- Zhen, Y.; Cai, J.; Zhou, C.; Zhou, D.; Chen, B.; Hu, Y.; Cheng, R. Effects of the content of silane coupling agent KH-560 on the properties of LLDPE/magnesium hydroxide composites. J. Appl. Polym. Sci. 2010, 118, 2634–2641. [Google Scholar]
- Zheng, Z.; Qiang, L.; Yang, T.; Wang, B.; Cui, X.; Wang, H. Preparation of microencapsulated ammonium polyphosphate with carbon source- and blowing agent-containing shell and its flame retardance in polypropylene. J. Polym. Res. 2014, 21, 1–15. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Anjaneyalu, A.M.; Zeraati, A.S.; Sundararaj, U. Enhanced electromagnetic interference shielding effectiveness of hybrid fillers by segregated structure. In Proceedings of the Materials Characterization Using X-rays and Related Techniques, Kelantan, Malaysia, 18–19 August 2018. [Google Scholar]
- Yang, Y.; Gupta, M.C.; Dudley, K.L. Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 2007, 18, 345701. [Google Scholar] [CrossRef]
- Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2011, 71, 1563–1568. [Google Scholar] [CrossRef]
- Han, W.; Bai, Y.; Liu, S.; Ge, C.; Wang, L.; Ma, Z.; Yang, Y.; Zhang, X. Enhanced thermal conductivity of commercial polystyrene filled with core-shell structured BN@PS. Compos. Part A Appl. Sci. Manuf. 2017, 102, 218–227. [Google Scholar] [CrossRef]
- Patole, A.S.; Patole, S.P.; Jung, S.Y.; Yoo, J.B.; An, J.H.; Kim, T.H. Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur. Polym. J. 2012, 48, 252–259. [Google Scholar] [CrossRef]
- Dasari, A.; Yu, Z.Z.; Cai, G.P.; Mai, Y.W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357–1387. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, K.; Gui, Z. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos. Part A Appl. Sci. Manuf. 2016, 80, 217–227. [Google Scholar]
- Xing, W.; Yang, W.; Yang, W.; Hu, Q.; Si, J.; Lu, H.; Yang, B.; Song, L.; Hu, Y.; Yuen, R. Functionalized Carbon Nanotubes with Phosphorus- and Nitrogen-Containing Agents: Effective Reinforcer for Thermal, Mechanical, and Flame-Retardant Properties of Polystyrene Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 26266–26274. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, W.; Shi, Y.; Yang, F.; Feng, Y. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos. Part B Eng. 2020, 203, 108486. [Google Scholar] [CrossRef]
- Zhou, W.; Wei, G.; Zhao, G.L. Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites. Appl. Phys. Lett. 2013, 103, 56. [Google Scholar]
- Cao, B.; Yu, T.; Sun, J.; Gu, X.; Liu, X.; Li, H.; Fei, B.; Zhang, S. Improving the fire performance and smoke suppression of expandable polystyrene foams by coating with multi-dimensional carbon nanoparticles. J. Appl. Polym. Sci. 2020, 137, 49227. [Google Scholar] [CrossRef]
- Huang, G.; Wang, S.; Song, P.A.; Wu, C.; Chen, S.; Wang, X. Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos. Part A 2014, 59, 18–25. [Google Scholar] [CrossRef]
- Huang, M.H.; Dai, X.C.; Li, T.; Li, Y.B.; He, Y.H.; Xiao, G.; Xiao, F.X. Stimulating Charge Transfer Over Quantum Dots via Ligand-Triggered Layer-by-Layer Assembly Toward Multifarious Photoredox Organic Transformation. J. Phys. Chem. C 2019, 123, 9721–9734. [Google Scholar] [CrossRef]
- Li, Q.; Li, B.; Zhang, S.; Lin, M. Investigation on effects of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6. J. Appl. Polym. Sci. 2012, 125, 1782–1789. [Google Scholar] [CrossRef]
- Nguyen, C.; Lee, M.; Kim, J. Relationship between structures of phosphorus compounds and flame retardancies of the mixtures with acrylonitrile–butadiene–styrene and ethylene–vinyl acetate copolymer. Polym. Adv. Technol. 2011, 22, 512–519. [Google Scholar] [CrossRef]
- Braun, U.; Schartel, B. Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene. Macromol. Chem. Phys. 2004, 205, 2185–2196. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Tai, Q.; Lu, H.; Song, L.; Yuen, R.K.K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos. Part A-Appl. Sci. Manuf. 2011, 42, 794–800. [Google Scholar] [CrossRef]
- Chen, K.X.; Feng, Y.Z.; Shi, Y.Q.; Wang, H.R.; Fu, L.B.; Liu, M.; Lv, Y.C.; Yang, F.Q.; Yu, B.; Liu, M.H.; et al. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos. Part A-Appl. Sci. Manuf. 2022, 160, 107070. [Google Scholar] [CrossRef]
- Yang, Y.; Guptal, M.C.; Dudley, K.L.; Lawrence, R.W. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. J. Nanosci. Nanotechnol. 2007, 7, 549. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ma, Z.W.; Zhu, M.H.; Liu, L.N.; Dai, J.F.; Shi, Y.Q.; Gao, J.F.; Dinh, T.; Nguyen, T.; Tang, L.C.; et al. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J. Mater. Sci. Technol. 2023, 132, 59–68. [Google Scholar] [CrossRef]
- Gao, C.; Shi, Y.; Chen, Y.; Zhu, S.; Feng, Y.; Lv, Y.; Yang, F.; Liu, M.; Shui, W. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. J. Colloid Interface Sci. 2022, 606, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.T.; Wang, S.C.; Jiang, Y.; Xu, Z.G.; Chen, Y.; Peng, T.S.; Khan, F.; Feng, J.B.; Song, P.G.; Zhao, Y. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 66–75. [Google Scholar] [CrossRef]
- Gao, C.Q.; Shi, Y.Q.; Huang, R.Z.; Feng, Y.Z.; Chen, Y.J.; Zhu, S.C.; Lv, Y.C.; Shui, W.; Chen, Z.X. Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Compos. Part B-Eng. 2022, 242, 110068. [Google Scholar] [CrossRef]
- Lin, B.; Yuen, A.C.Y.; Li, A.; Zhang, Y. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 2020, 381, 120952. [Google Scholar] [CrossRef]
Sample No. | T-10 (°C) | T-max (°C) | Residue at 750 °C (wt.%) |
---|---|---|---|
PS | 394.2 | 448.1 | 2.3 |
PA | 394.2 | 468.2 | 15.3 |
PAC1 | 394.2 | 463.3 | 10.2 |
PAC2 | 399.1 | 468.5 | 9.3 |
PAC4 | 404.1 | 468.9 | 15.8 |
PAC7 | 404.3 | 468.3 | 15.3 |
PAC10 | 409.2 | 473.2 | 10.4 |
Sample No. | PHRR (KW/m2) | THR (MJ/m2) | PCOPR (g/s) | COTY (kg/kg) | PCO2PR (g/s) | PSPR (m2/S) | TSR (m2/m2) | Weight Loss (wt.%) |
---|---|---|---|---|---|---|---|---|
PS | 994 | 40.0 | 0.0143 | 0.6607 | 0.4552 | 0.66 | 4354 | 0.24 |
PA | 882 | 25.0 | 0.0137 | 0.4517 | 0.4012 | 0.67 | 2919 | 15.18 |
PAC1 | 603 | 26.1 | 0.0098 | 0.5674 | 0.2850 | 0.46 | 3446 | 16.18 |
PAC2 | 700 | 29.9 | 0.0109 | 0.6491 | 0.0301 | 0.47 | 3798 | 13.51 |
PAC4 | 647 | 25.6 | 0.0098 | 0.5330 | 0.3172 | 0.51 | 4050 | 10.87 |
PAC7 | 530 | 39.2 | 0.0082 | 0.6915 | 0.2430 | 0.34 | 4106 | 9.19 |
PAC10 | 460 | 33.7 | 0.0083 | 0.5694 | 0.2190 | 0.36 | 3868 | 10.36 |
Sample No. | PS (g) | SiAPP (g) | aMWCNT (g) |
---|---|---|---|
PS | 40.00 | 0.00 | 0.00 |
PA | 32.00 | 8.00 | 0.00 |
PAC1 | 32.00 | 7.60 | 0.40 |
PAC2 | 32.00 | 7.20 | 0.80 |
PAC4 | 32.00 | 6.40 | 1.60 |
PAC7 | 32.00 | 5.20 | 2.80 |
PAC10 | 32.00 | 4.00 | 4.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Gao, C.; Shi, Y.; Fu, L.; Feng, Y.; Shui, W. Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding. Int. J. Mol. Sci. 2022, 23, 13434. https://doi.org/10.3390/ijms232113434
Huang R, Gao C, Shi Y, Fu L, Feng Y, Shui W. Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding. International Journal of Molecular Sciences. 2022; 23(21):13434. https://doi.org/10.3390/ijms232113434
Chicago/Turabian StyleHuang, Ruizhe, Caiqin Gao, Yongqian Shi, Libi Fu, Yuezhan Feng, and Wei Shui. 2022. "Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding" International Journal of Molecular Sciences 23, no. 21: 13434. https://doi.org/10.3390/ijms232113434
APA StyleHuang, R., Gao, C., Shi, Y., Fu, L., Feng, Y., & Shui, W. (2022). Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding. International Journal of Molecular Sciences, 23(21), 13434. https://doi.org/10.3390/ijms232113434