Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Functional TRPV1 Assay
2.3. Scavenger Activity through the DPPH Assay Using EPR Spectroscopy
2.4. In Vitro Biological Assays
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.1.1. General Procedure for the Synthesis of Lipoic Amides 1–9
- Conditions A. A solution of the opportune free amine (1.5 eq., 4-aminophenol, 4-fluoroaniline, 2,4-difluoroaniline, 3,4-dichlorobenzylamine, 4-methoxybenzylamine, 4-hydroxybenzylamine, 4-fluorobenzylamine) in dry dichloromethane (DCM, 10 mL) was added to a solution of ALA (1.0 eq.) in the same solvent (20 mL) kept at room temperature (rt) and under a positive dry nitrogen atmosphere; subsequently, HOBt (1.2 eq.) and EDCI (1.5 eq.) were added, leaving the reaction under stirring overnight. The reaction mixture was then diluted with DCM. The organic layer was washed twice with a NH4Cl saturated solution and once with brine, dried over sodium sulfate, filtered, and evaporated to dryness. The collected raw material was purified by flash chromatography in the indicated solvent furnishing the final amides (compounds 1–3 and 5–8).
- Conditions B. To a solution of ALA (1.0 eq.) in anhydrous DMF (10 mL), kept under a positive pressure of dry nitrogen, were added in the order HBTU (2.0 eq.), HOBt (1.0 eq.), DIPEA (1.5 eq.) and the amine hydrochloride (1.2 eq., vanillylamine hydrochloride or dopamine hydrochloride) and the reaction was stirred for 40 min at rt; DIPEA (1.5 eq.) was then added again, leaving the reaction to stand overnight. Next, the reaction mixture was diluted with chloroform and the organic phase was washed several times (x4) with a NH4Cl saturated solution, and finally once with brine. After drying and filtration, the solvent was concentrated to give a crude residue which was purified by flash chromatography using a mixture chloroform/methanol (50/2) as eluent (compounds 4 and 9).
4.1.2. 5-(1,2-Dithiolan-3-yl)-N-(4-Hydroxyphenyl)Pentanamide (1)
4.1.3. 5-(1,2-Dithiolan-3-yl)-N-(4-Fluorophenyl)Pentanamide (2)
4.1.4. N-(2,4-Difluorophenyl)-5-(1,2-Dithiolan-3-yl)Pentanamide (3)
4.1.5. 5-(1,2-Dithiolan-3-yl)-N-(4-Hydroxy-3-Methoxybenzyl)Pentanamide (4)
4.1.6. N-(3,4-Dichlorobenzyl)-5-(1,2-Dithiolan-3-yl)Pentanamide (5)
4.1.7. 5-(1,2-Dithiolan-3-yl)-N-(4-Methoxybenzyl)Pentanamide (6)
4.1.8. 5-(1,2-Dithiolan-3-yl)-N-(4-Hydroxybenzyl)Pentanamide (7)
4.1.9. 5-(1,2-Dithiolan-3-yl)-N-(4-Fluorobenzyl)Pentanamide (8)
4.1.10. N-(3,4-Dihydroxyphenethyl)-5-(1,2-Dithiolan-3-yl)Pentanamide (9)
4.2. Radical-Scavenger Activity: DPPH Assay and EPR Analysis
4.3. In Vitro Biological Assays
4.3.1. Cell Cultures and Drug Treatments
4.3.2. Hypoxia-Induced Injury
4.3.3. Cell Viability Assay
4.3.4. Determination of MMP
4.3.5. Determination of Total F2-Isoprostanes
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, S. Dietary Bioactive Compounds and Human Health and Disease. Nutrients 2020, 12, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtman, R.J. Non-nutritional use of nutrients. Eur. J. Pharm. 2011, 668, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Persival, S.S. Immunomodulatory Effects of Glutathione, Garlic Derivatives, and Hydrogen Sulfide. Nutrients 2019, 11, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochette, L.; Ghibu, S.; Richard, C.; Zeller, M.; Cottin, Y.; Vergely, C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol. Nutr. Food Res. 2013, 57, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Tibullo, D.; Li Volti, G.; Giallongo, C.; Grasso, S.; Tomassoni, D.; Anfuso, C.D.; Lupo, G.; Amenta, F.; Avola, R.; Bramanti, V. Biochemical and clinical relevance of alpha lipoic acid: Antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm. Res. 2017, 66, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Tóth, F.; Cseh, E.K.; Vécsei, L. Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int. J. Mol. Sci. 2021, 22, 403. [Google Scholar] [CrossRef] [PubMed]
- Goraca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska, B. Lipoic acid–biological activity and therapeutic potential. Pharmacol. Rep. 2011, 63, 849–858. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Tziona, P.; Rekka, E.A. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol. Biol. Rep. 2021, 48, 6539–6550. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Chen, C.; Lan, Y.; Xiao, Y.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.-T. Capsaicin–the major bioactive ingredient of chili peppers: Bio-efficacy and delivery systems. Food Funct. 2020, 11, 2848. [Google Scholar] [CrossRef] [PubMed]
- Carullo, G.; Ahmed, A.; Trezza, A.; Spiga, O.; Brizzi, A.; Saponara, S.; Fusi, F.; Aiello, F. Design, synthesis and pharmacological evaluation of ester-based quercetin derivatives as selective vascular KCa1.1 channel stimulators. Bioorg. Chem. 2020, 105, 104404. [Google Scholar] [CrossRef] [PubMed]
- Basith, S.; Cui, M.; Hong, S.; Choi, S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules 2016, 21, 966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello, F.; Badolato, M.; Pessina, F.; Sticozzi, C.; Maestrini, V.; Aldinucci, C.; Luongo, L.; Guida, F.; Ligresti, A.; Artese, A.; et al. Design and Synthesis of New Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channel Modulators: Identification, Molecular Modeling Analysis, and Pharmacological Characterization of the N-(4-Hydroxy-3-methoxybenzyl)-4-(thiophen-2-yl)butanamide, a Small Molecule Endowed with Agonist TRPV1 Activity and Protective Effects against Oxidative Stress. ACS Chem. Neurosci. 2016, 7, 737–748. [Google Scholar] [PubMed]
- Zang, H.; Zhang, L.; Xu, Q.; Geng, X.; Li, L.; Xia, G.; Zhu, J. Lipoic acid derivative and preparation method and application thereof. Patent CN110294738 A, 1 March 2019. [Google Scholar]
- Dong, H.; Zhou, Q.; Zhang, L.; Tian, Y. Rational Design of Specific Recognition Molecules for Simultaneously Monitoring of Endogenous Polysulfide and Hydrogen Sulfide in the Mouse Brain. Angew. Chem. Int. Ed. 2019, 58, 13948–13953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-J.; Ge, Q.-F.; Guo, D.-W.; Hu, W.-X.; Liu, H.-Z. Synthesis and anticancer evaluation of α-lipoic acid derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 3078–3083. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, A.; Sozio, P.; Cocco, A.; Iannitelli, A.; Santucci, E.; Costa, M.; Pecci, L.; Nasuti, C.; Cantalamessa, F.; Pinnen, F. L-Dopa- and Dopamine-(R)-α-Lipoic Acid Conjugates as Multifunctional Codrugs with Antioxidant Properties. J. Med. Chem. 2006, 49, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Brizzi, A.; Aiello, F.; Marini, P.; Cascio, M.G.; Corelli, F.; Brizzi, V.; De Petrocellis, L.; Ligresti, A.; Luongo, L.; Lamponi, S.; et al. Structure-affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist. Bioorg. Med. Chem. 2014, 22, 4770–4783. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, F.; Cervellati, C.; Romani, A.; Cremonini, E.; Sticozzi, C.; Belmonte, G.; Pessina, F.; Valacchi, G. Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radic. Res. 2014, 48, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, S.; Governa, P.; Borgonetti, V.; Marcolongo, P.; Nanni, C.; Gamberucci, A.; Manetti, F.; Pessina, F.; Carullo, G.; Brizzi, A.; et al. Pinocembrin and its linolenoyl ester derivative induce wound healing activity in HaCaT cell line potentially involving a GPR120/FFA4 mediated pathway. Bioorg. Chem. 2021, 108, 104657. [Google Scholar] [CrossRef] [PubMed]
- Signorini, C.; De Felice, C.; Durand, T.; Galano, J.M.; Oger, C.; Leoncini, S.; Ciccoli, L.; Carone, M.; Ulivelli, M.; Manna, C.; et al. Relevance of 4-F4t-neuroprostane and 10-F4t-neuroprostane to neurological diseases. Free Radic. Biol. Med. 2018, 1, 278–287. [Google Scholar] [CrossRef] [PubMed]
General Structure of Lipoic Amides 1–9 | Compd. | n | R | R 1 | TRPV1 Efficacy (%) 2 | Potency EC50 (µM) | Antagonism/ Desensitization IC50 (µM) 3 |
---|---|---|---|---|---|---|---|
1 | 0 | - | 4′-OH | 71.6 ± 2.7 | 5.3 ± 0.5 | 5.5 ± 0.6 | |
2 | 0 | - | 4′-F | 65.9 ± 0.9 | 1.87 ± 0.07 | 3.50 ± 0.0 | |
3 | 0 | 2′-F | 4′-F | <10 | n.a. 4 | >100 | |
4 | 1 | 3′-OMe | 4′-OH | 71.1 ± 1.3 | 0.13 ± 0.01 | 0.13 ± 0.003 | |
5 | 1 | 3′-Cl | 4′-Cl | 63.7 ± 0.8 | 1.7 ± 0.1 | 2.5 ± 0.2 | |
6 | 1 | - | 4′-OMe | 52.8 ± 0.8 | 20.5 ± 0.9 | 35.28 ± 0.38 | |
7 | 1 | - | 4′-OH | 56.4 ± 1.9 | 2.58 ± 0.26 | 5.90 ± 0.30 | |
8 | 1 | - | 4′-F | 70.2 ± 0.9 | 6.35 ± 0.20 | 9.23 ± 0.40 | |
9 | 2 | 3′-OH | 4′-OH | 25.1 ± 1.3 | 7.1 ± 0.9 | 17.1 ± 0.5 | |
Capsaicin | - | - | - | - | 78.6 ± 0.6 | 0.0053 ± 0.0004 | 0.0080 ± 0.0003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brizzi, A.; Maramai, S.; Aiello, F.; Baratto, M.C.; Corelli, F.; Mugnaini, C.; Paolino, M.; Scorzelli, F.; Aldinucci, C.; De Petrocellis, L.; et al. Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress. Int. J. Mol. Sci. 2022, 23, 13580. https://doi.org/10.3390/ijms232113580
Brizzi A, Maramai S, Aiello F, Baratto MC, Corelli F, Mugnaini C, Paolino M, Scorzelli F, Aldinucci C, De Petrocellis L, et al. Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress. International Journal of Molecular Sciences. 2022; 23(21):13580. https://doi.org/10.3390/ijms232113580
Chicago/Turabian StyleBrizzi, Antonella, Samuele Maramai, Francesca Aiello, Maria Camilla Baratto, Federico Corelli, Claudia Mugnaini, Marco Paolino, Francesco Scorzelli, Carlo Aldinucci, Luciano De Petrocellis, and et al. 2022. "Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress" International Journal of Molecular Sciences 23, no. 21: 13580. https://doi.org/10.3390/ijms232113580
APA StyleBrizzi, A., Maramai, S., Aiello, F., Baratto, M. C., Corelli, F., Mugnaini, C., Paolino, M., Scorzelli, F., Aldinucci, C., De Petrocellis, L., Signorini, C., & Pessina, F. (2022). Lipoic/Capsaicin-Related Amides: Synthesis and Biological Characterization of New TRPV1 Agonists Endowed with Protective Properties against Oxidative Stress. International Journal of Molecular Sciences, 23(21), 13580. https://doi.org/10.3390/ijms232113580