Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs
Abstract
:1. Introduction
2. Results
2.1. Genomic and Phylogenetic Analysis of Efm LHICA_28.4 and LHICA_40.4
2.2. LHICA_28.4 and LHICA_40.4 Proteomes
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Whole-Genome
4.2. Sequence Analysis
4.3. Phylogenetic Analysis
4.4. Proteomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the Environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of Animal Origin. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Werner, G.; Coque, T.M.; Franz, C.M.P.; Grohmann, E.; Hegstad, K.; Jensen, L.; van Schaik, W.; Weaver, K. Antibiotic Resistant Enterococci-Tales of a Drug Resistance Gene Trafficker. Int. J. Med. Microbiol. 2013, 303, 360–379. [Google Scholar] [CrossRef] [PubMed]
- Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.C.I.C.; Morandi, S.; Alnakip, M.E.M.E.; Caamaño-Antelo, S.; Barros-Velázquez, J.; Calo-Mata, P. Characterization of Different Food-Isolated Enterococcus Strains by MALDI-TOF Mass Fingerprinting. Electrophoresis 2013, 34, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Ben Braïek, O.; Smaoui, S. Enterococci: Between Emerging Pathogens and Potential Probiotics. Biomed Res. Int. 2019, 2019, 5938210. [Google Scholar] [CrossRef] [Green Version]
- Giraffa, G. Enterococci from Foods. FEMS Microbiol. Rev. 2002, 26, 163–171. [Google Scholar] [CrossRef]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.; Stack, H.; Rea, R. Safety, Beneficial and Technological Properties of Enterococci for Use in Functional Food Applications–A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3836–3861. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Santos, A.C.; Novais, C.; Peixe, L.; Freitas, A.R. Enterococcus spp. As a Producer and Target of Bacteriocins: A Double-Edged Sword in the Antimicrobial Resistance Crisis Context. Antibiotics 2021, 10, 1215. [Google Scholar] [CrossRef] [PubMed]
- Van Tyne, D.; Gilmore, M.S. Friend Turned Foe: Evolution of Enterococcal Virulence and Antibiotic Resistance. Annu. Rev. Microbiol. 2014, 68, 337–356. [Google Scholar] [CrossRef] [PubMed]
- Montealegre, M.C.; Singh, K.V.; Murray, B.E. Gastrointestinal Tract Colonization Dynamics by Different Enterococcus faecium Clades. J. Infect. Dis. 2016, 213, 1914–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beukers, A.G.; Zaheer, R.; Goji, N.; Amoako, K.K.; Chaves, A.V.; Ward, M.P.; McAllister, T.A. Comparative Genomics of Enterococcus spp. Isolated from Bovine Feces. BMC Microbiol. 2017, 17, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Kwok, L.Y.; Hou, Q.; Sun, Y.; Li, W.; Zhang, H.; Sun, Z. Comparative Genomic Analysis Revealed Great Plasticity and Environmental Adaptation of the Genomes of Enterococcus faecium. BMC Neurosci. 2019, 20, 602. [Google Scholar] [CrossRef]
- Lebreton, F.; van Schaik, W.; McGuire, A.M.; Godfrey, P.; Griggs, A.; Mazumdar, V.; Corander, J.; Cheng, L.; Saif, S.; Young, S.; et al. Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains. MBio 2013, 4, e00534-13. [Google Scholar] [CrossRef] [Green Version]
- Arredondo-Alonso, S.; Top, J.; McNally, A.; Puranen, S.; Pesonen, M.; Pensar, J.; Marttinen, P.; Braat, J.; Rogers, M.R.; van Willem, S.; et al. Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium. MBio 2020, 11, e03284-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, K.L.; Gilmore, M.S. Multidrug-Resistant Enterococci Lack CRISPR-Cas. MBio 2010, 1, e00227-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Schaik, W.; Willems, R.J.L. Genome-Based Insights into the Evolution of Enterococci. Clin. Microbiol. Infect. 2010, 16, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Carriço, J.A.; Sabat, A.J.; Friedrich, A.W.; Ramirez, M. Bioinformatics in Bacterial Molecular Epidemiology and Public Health: Databases, Tools and the next-Generation Sequencing Revolution. Euro Surveill. 2013, 18, 20382. [Google Scholar] [CrossRef] [Green Version]
- EFSA. EFSA Statement on the Requirements for Whole Genome Sequence Analysis of Microorganisms Intentionally Used in the Food Chain. EFSA 2021, 19, 6506. [Google Scholar] [CrossRef]
- Meier, F.; Brunner, A.D.; Frank, M.; Ha, A.; Bludau, I.; Voytik, E.; Kaspar-Schoenefeld, S.; Lubeck, M.; Raether, O.; Bache, N.; et al. DiaPASEF: Parallel Accumulation–Serial Fragmentation Combined with Data-Independent Acquisition. Nat. Methods 2020, 17, 1229–1236. [Google Scholar] [CrossRef]
- Hosseini, S.V.; Arlindo, S.; Böhme, K.; Fernández-No, C.; Calo-Mata, P.; Barros-Velázquez, J. Molecular and Probiotic Characterization of Bacteriocin-Producing Enterococcus Faecium Strains Isolated from Nonfermented Animal Foods. J. Appl. Microbiol. 2009, 107, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.K.; Mayr, G.A.; Sturgill Samayoa, T.L.; Dodd, K.A.; Barrette, R.W. Rapid Sequence-Based Characterization of African Swine Fever Virus by Use of the Oxford Nanopore MiniOn Sequence Sensing Device and a Companion Analysis Software Tool. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azinheiro, S.; Roumani, F.; Carvalho, J.; Prado, M.; Garrido-Maestu, A. Suitability of the MinION Long Read Sequencer for Semi-Targeted Detection of Foodborne Pathogens. Anal. Chim. Acta 2021, 1184, 339051. [Google Scholar] [CrossRef] [PubMed]
- Barretto, C.; Rincón, C.; Portmann, A.-C.; Ngom-Bru, C. Whole Genome Sequencing Applied to Pathogen Source Tracking in Food Industry: Key Considerations for Robust Bioinformatics Data Analysis and Reliable Results Interpretation. Genes 2021, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, J.; Suárez, N.; Hormigo, R.; Fadda, S.; Lechner, M.; Saavedra, L. A Genomic View of Food-Related and Probiotic Enterococcus Strains. DNA Res. 2017, 24, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.B.; Marco, M.L. Nonclinical and Clinical Enterococcus faecium Strains, but Not Enterococcus faecalis Strains, Have Distinct Structural and Functional Genomic Features. Appl. Environ. Microbiol. 2014, 80, 154–165. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Whole Genome Sequencing and Metagenomics for Outbreak Investigation, Source Attribution and Risk Assessment of Food-Borne Microorganisms N. EFSA J. 2019, 17, e05898. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Guidance on the Safety Assessment of Enterococcus faecium in Animal Nutrition. EFSA J. 2012, 10, 2682. [Google Scholar] [CrossRef]
- Freitas, A.R.; Tedim, A.P.; Novais, C.; Coque, T.M.; Peixe, L. Distribution of Putative Virulence Markers in Enterococcus faecium: Towards a Safety Profile Review. J. Antimicrob. Chemother. 2018, 73, 306–319. [Google Scholar] [CrossRef]
- Abril, A.G.; Quintela-baluja, M.; Villa, G.; Calo-mata, P.; Barros-velá, J. Proteomic Characterization of Virulence Factors and Related Proteins in Enterococcus Strains from Dairy and Fermented Food Products. Int. J. Mol. Sci. 2022, 23, 10971. [Google Scholar] [CrossRef]
- Abril, A.G.; Carrera, M.; Böhme, K.; Barros-Velázquez, J.; Calo-Mata, P.; Sánchez-Pérez, A.; Villa, T.G. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int. J. Mol. Sci. 2021, 22, 8141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Quintela-Baluja, M.; Jobling, K.; Graham, D.W.; Alnakip, M.; Böhme, K.; Barros-Velázquez, J.; Calo-Mata, P. Draft Genome Sequences of Two Bacteriocin-Producing Enterococcus faecium Strains Isolated from Nonfermented Animal Foods in Spain. Microbiol. Resour. Announc. 2022, e00866-22. [Google Scholar] [CrossRef]
- Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Genome Analysis Bandage: Interactive Visualization of de Novo Genome Assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [Green Version]
- Berkeley, M.R.; Seppey, M.; Sim, F.A. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, M. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli Katrine. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An Open Online Resource for Identification of Antimicrobial Resistance Genes in next-Generation Sequencing Data and Prediction of Phenotypes from Genotypes. Microb. Genomics 2022, 8, 748. [Google Scholar] [CrossRef] [PubMed]
- Russel, J.; Pinilla-Redondo, R.; Mayo-Munoz, D.; Shah, S.A.; Sørensen, S.J. CRISPRCasTyper: Automated Identification, Annotation and Classification of CRISPR-Cas Loci. Cris. J. 2020, 3, 462–469. [Google Scholar] [CrossRef]
- Zhou, Z.; Charlesworth, J.; Achtman, M. Accurate Reconstruction of Bacterial Pan- And Core Genomes with PEPPAN. Genome Res. 2020, 30, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Heyer, R.; Schallert, K.; Büdel, A.; Zoun, R.; Dorl, S.; Behne, A.; Kohrs, F.; Püttker, S.; Siewert, C.; Muth, T.; et al. A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics within 24 h Using Phenol Extraction, Fasp Digest, and the Metaproteomeanalyzer. Front. Microbiol. 2019, 10, 1883. [Google Scholar] [CrossRef] [Green Version]
- Heyer, R.; Schallert, K.; Siewert, C.; Kohrs, F.; Greve, J.; Maus, I.; Klang, J.; Klocke, M.; Heiermann, M. Metaproteome Analysis Reveals That Syntrophy, Competition, and Phage-Host Interaction Shape Microbial Communities in Biogas Plants. Microbiome 2019, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Geer, L.Y.; Markey, S.P.; Kowalak, J.A.; Wagner, L.; Xu, M.; Maynard, D.M.; Yang, X.; Shi, W.; Bryant, S.H. Open Mass Spectrometry Search Algorithm. J. Proteome Res. 2004, 3, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Craig, R.; Beavis, R.C. TANDEM: Matching Proteins with Tandem Mass Spectra. Bioinformatics 2004, 20, 1466–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muth, T.; Behne, A.; Heyer, R.; Kohrs, F.; Benndorf, D.; Hoffmann, M.; Lehtevä, M.; Reichl, U.; Martens, L.; Rapp, E. The MetaProteomeAnalyzer: A Powerful Open-Source Software Suite for Metaproteomics Data Analysis and Interpretation. J. Proteome Res. 2015, 14, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Käll, L.; Storey, J.D.; Noble, W.S. Qvality: Non-Parametric Estimation of q-Values and Posterior Error Probabilities. Bioinformatics 2009, 25, 964–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, J.E.; Haas, W.; Faherty, B.K.; Gygi, S.P. Comparative Evaluation of Mass Spectrometry Platforms Used in Large-Scale Proteomics Investigations. Nat. Methods 2005, 2, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Carbon, S.; Douglass, E.; Good, B.M.; Unni, D.R.; Harris, N.L.; Mungall, C.J.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; Hartline, E.; et al. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG Resource for Deciphering the Genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, S.; Yadav, A.K. False Discovery Rate Estimation in Proteomics. In Statistical Analysis in Proteomics; Jung, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1362, pp. 119–128. ISBN 9781493931064. [Google Scholar]
- Reisinger, F.; Del-Toro, N.; Ternent, T.; Hermjakob, H.; Vizcaíno, J.A. Introducing the PRIDE Archive RESTful Web Services. Nucleic Acids Res. 2015, 43, W599–W604. [Google Scholar] [CrossRef] [PubMed]
RefSeq | LHICA 28.4 | LHICA 40.4 | Description | Role | SC | emPAI |
---|---|---|---|---|---|---|
WP_002299665.1 | X | X | Multidrug efflux ABC transporter subunit EfrB | Multidrug resistance | 1 | 7 | 0.05 | 0.2 |
WP_002289118.1 | X | X | MBL fold metallo-hydrolase | Resistance to Beta-lactams | 44 | 42 | 3.1 | 3.1 |
WP_002299607.1 | X | X | MBL fold metallo-hydrolase | Resistance to Beta-lactams | 16 | 22 | 1 | 1.6 |
WP_002319556.1 | X | multidrug efflux MFS transporter | Multidrug resistance | 1 | 0.1 | |
WP_002293127.1 | X | DNA gyrase subunit A | Resistance to fluoroquinolones | 4 | 0.1 | |
WP_002289238.1(*) | X | Collagen-binding MSCRAMM adhesin Acm | Virulence | 36 | 24 | 1.6 | 1.1 | |
WP_002316514.1(*) | X | Adhesin E. faecium | Virulence | 9 | 16 | 0.8 | 2.16 | |
WP_002287086.1 | Multidrug efflux SMR transporter | Multidrug resistance | ||||
WP_131774679.1 | ABC-F type ribosomal protection protein Msr(C) | Resistance to macrolides | ||||
WP_002286461.1 | YihY/virulence factor BrkB family protein | Virulence | ||||
WP_073461064.1 | X | ATP-dependent Clp protease ATP-binding subunit | Heat resistance | 1279 | 8.3 | |
WP_002318484.1 | X | Toxic anion resistance protein | Resistance to tellurite | 77 | 3.5 | |
WP_002294560.1 | X | Copper homeostasis protein CutC | Resistance to copper | 13 | 1.7 | |
WP_010724442.1 | X | FAD-containing oxidoreductase | Resistance to mercury | 90 | 2.3 | |
WP_114634998.1 | X | DNA topoisomerase (ATP-hydrolyzing) subunit B | Resistance to fluoroquinolones | 37 | 0.9 | |
WP_002291207.1 | Multidrug efflux MFS transporter EfmA | Multidrug resistance | ||||
WP_002325116.1 | Multidrug efflux MFS transporter | Multidrug resistance | ||||
WP_002297435.1 | Tetracycline resistance MFS efflux pump | Resistance to tetracycline | ||||
WP_114635000.1 | Tetronasin resistance protein | Resistance to tetronasin | ||||
WP_002291784.1 | CopY/TcrY family copper transport repressor | Resistance to copper | ||||
WP_002299705.1 | Cation diffusion facilitator family transporter | Resistance to cobalt-zinc-cadmium | ||||
WP_002300950.1 | Metalloregulator ArsR/SmtB family transcription factor | Resistance to cadmium | ||||
WP_010723919.1 | FosX/FosE/FosI family fosfomycin resistance hydrolase | Resistance to fosfomycin | ||||
WP_258430621.1 | CadD family cadmium resistance transporter | Resistance to cadmium | ||||
WP_258430364.1 | Virulence-associated E family protein | Virulence | ||||
WP_002299664.1 | X | Multidrug efflux ABC transporter subunit EfrA | Multidrug resistance | 8 | 0.3 | |
WP_002290958.1 | X | Multidrug efflux MFS transporter | Multidrug resistance | 1 | 0.1 | |
WP_002293989.1 | X | Aminoglycoside N-acetyltransferase AAC(6′)-Ii | Resistance to aminoglycoside | 1 | 0.2 | |
WP_002318652.1 | X | Serine hydrolase | Resistance to Beta-lactams | 6 | 0.4 | |
WP_038809504.1 | X | Multidrug efflux MFS transporter | Multidrug resistance | 1 | 0.1 | |
WP_002286766.1 | X | Toxic anion resistance protein | Resistance to tellurite | 75 | 3.5 | |
WP_002288364.1 | X | DNA topoisomerase (ATP-hydrolyzing) subunit B | Resistance to fluoroquinolones | 33 | 0.8 | |
WP_002300907.1 | X | Heavy metal translocating P-type ATPase | Resistance to cobalt-zinc-cadmium | 1 | 0.1 | |
WP_002327434.1 | X | FAD-containing oxidoreductase | Resistance to mercury | 158 | 3.1 | |
WP_002375871.1 | X | Copper homeostasis protein CutC | Resistance to copper | 11 | 1.3 | |
WP_038809426.1 | X | ATP-dependent Clp protease ATP-binding subunit | Heat resistance | 1233 | 7.9 | |
WP_002290060.1 | X | Virulence factor B family protein | Virulence | 5 | 0.2 | |
WP_002311296.1 | Multidrug MFS transporter | Multidrug resistance | ||||
WP_038809639.1 | Tetronasin resistance protein | Resistance to tetronasin | ||||
WP_038809649.1 | Tetracycline resistance MFS efflux pump | Resistance to tetracycline | ||||
WP_002294855.1 | CopY/TcrY family copper transport repressor | Resistance to copper | ||||
WP_038809479.1 | Cation diffusion facilitator family transporter | Resistance to cobalt-zinc-cadmium |
RefSeq | LHICA 28.8 | LHICA 40.4 | Description | SC | emPAI | MW (KDa) |
---|---|---|---|---|---|---|
WP_002298900.1 | Enterocin P precursor | 5.80 | ||||
WP_002318501.1 | Bacteriocin secretion accessory protein | 25.6 | ||||
WP_002293180.1 | X | Mundticin KS immunity protein | 14 | 0.8 | 11 | |
WP_002295295.1 | Bacteriocin carnobacteriocin-A precursor | 7.5 | ||||
WP_002295575.1 | Class IIb bacteriocin, lactobin A/cerein 7B family | 6.2 | ||||
WP_002307138.1 | Blp family class II bacteriocin | 6.9 | ||||
WP_002323785.1 | X | Lactococcin 972 family bacteriocin | 1 | 0.2 | 16.6 | |
WP_002338810.1 | Enterocin P precursor | 8 | ||||
WP_002339189.1 | Class II bacteriocin | 6.9 | ||||
WP_061343994.1 | Bacteriocin immunity protein | 13.7 | ||||
WP_231369454.1 | LsbB family leaderless bacteriocin | 6.6 | ||||
WP_038809770.1 | Bacteriocin immunity protein | 13.7 | ||||
WP_072538874.1 | Class II bacteriocin | 6.4 | ||||
WP_229210206.1 | Enterocin B precursor | 7.2 | ||||
WP_229505516.1 | LsbB family leaderless bacteriocin | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintela-Baluja, M.; Jobling, K.; Graham, D.W.; Tabraiz, S.; Shamurad, B.; Alnakip, M.; Böhme, K.; Barros-Velázquez, J.; Carrera, M.; Calo-Mata, P. Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs. Int. J. Mol. Sci. 2022, 23, 13830. https://doi.org/10.3390/ijms232213830
Quintela-Baluja M, Jobling K, Graham DW, Tabraiz S, Shamurad B, Alnakip M, Böhme K, Barros-Velázquez J, Carrera M, Calo-Mata P. Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs. International Journal of Molecular Sciences. 2022; 23(22):13830. https://doi.org/10.3390/ijms232213830
Chicago/Turabian StyleQuintela-Baluja, Marcos, Kelly Jobling, David W. Graham, Shamas Tabraiz, Burhan Shamurad, Mohamed Alnakip, Karola Böhme, Jorge Barros-Velázquez, Mónica Carrera, and Pilar Calo-Mata. 2022. "Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs" International Journal of Molecular Sciences 23, no. 22: 13830. https://doi.org/10.3390/ijms232213830
APA StyleQuintela-Baluja, M., Jobling, K., Graham, D. W., Tabraiz, S., Shamurad, B., Alnakip, M., Böhme, K., Barros-Velázquez, J., Carrera, M., & Calo-Mata, P. (2022). Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs. International Journal of Molecular Sciences, 23(22), 13830. https://doi.org/10.3390/ijms232213830