Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics
Abstract
:1. Introduction
- ①
- Two closed-shell neutral atoms, e.g., He-He, or a van der Waals bond;
- ②
- Two open-shell neutral atoms, e.g., H-H, or a covalent bond in which two atoms share electron pair(s);
- ③
- One closed-shell positive ion and one closed-shell negative ion, e.g., Na+−Cl−, or an ionic bond of an electrostatic interaction;
- ④
- One closed-shell atom or molecule with lone pair(s) of electrons and one or more open-shell atoms (including partially positively charged hydrogen(s) when bonded to an electronegative element) or molecules, e.g., a N−H·O hydrogen bond between oxygen and hydrogen, and a dative B−N bond or a special kind of covalent bonds in which one atom donates two electrons;
- ⑤
- One open-shell ion (usually a positive ion) and one or several closed-shell ions or molecules, e.g., Mn+(X−)m, or a coordination bond;
- ⑥
- Many metal atoms aggregate together in which outer shell electrons break away from the core and move around all metal solids, e.g., a metallic bond.
2. Results and Discussion
2.1. Computational Results of 572 Methods and 20 Basis Sets
2.2. Computational Results of 54 Methods and 60 Other Basis Sets
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.L. Reaction Engineering; Chemical Industry Press: Beijing, China, 2020; p. 281. [Google Scholar]
- Bartlett, N. Xenon Hexafluoroplatinate(v) Xe+[PtF6]-. Proc. Chem. Soc. 1962, 218, 197–236. [Google Scholar] [CrossRef]
- Müller-Dethlefs, K.; Hobza, P. Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev. 2000, 100, 143–167. [Google Scholar] [CrossRef]
- Mahadevi, A.S.; Sastry, G.N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116, 2775–2825. [Google Scholar] [CrossRef] [PubMed]
- Hobza, P.; Zahradník, R.; Müller-Dethlefs, K. The World of Non-Covalent Interactions: 2006. Collect. Czech. Chem. Commun. 2006, 71, 443–531. [Google Scholar] [CrossRef] [Green Version]
- Stöhr, M.; Voorhis, T.V.; Tkatchenko, A. Theory and practice of modeling van der Waals interactions in electronic-structure calculations. Chem. Soc. Rev. 2019, 48, 4118–4154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüttner, W. (Ed.) Landolt-Börnstein, New Series, Vol. II/24A; Springer: Berlin, Germany, 1998. [Google Scholar]
- Cheng, J.P. Bond Dissociation Energies. In CRC Handbook of Chemistry and Physics, 101st ed.; Rumble, J.R., Jr., Ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2020; pp. 9–77. [Google Scholar]
- Dubecký, M.; Mitas, L.; Jurečka, P. Noncovalent Interactions by Quantum Monte Carlo. Chem. Rev. 2016, 116, 5188–5215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Wang, F.L.; Ren, A.M. Reliability of computed molecular structures. J. Comput. Chem. 2022, 43, 465–476. [Google Scholar] [CrossRef]
- Kannemann, F.O.; Becke, A.D. Van der Waals Interactions in Density-Functional Theory: Rare-Gas Diatomics. J. Chem. Theory Comput. 2009, 5, 719–727. [Google Scholar] [CrossRef]
- Kristyán, S.; Pulay, P. Can (semi)local density functional theory account for the London dispersion forces? Chem. Phys. Lett. 1994, 229, 175–180. [Google Scholar] [CrossRef]
- Tang, K.T.; Toennies, J.P. The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 2003, 118, 4976–4983. [Google Scholar] [CrossRef]
- Austin, A.; Petersson, G.A.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A Density Functional with Spherical Atom Dispersion Terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theoret. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Goerigk, L.; Grimme, S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals─Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 291–309. [Google Scholar] [CrossRef]
- Handy, N.C.; Pople, J.A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G.W. Size-consistent Brueckner theory limited to double substitutions. Chem. Phys. Lett. 1989, 164, 185–192. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, A.E. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, USA, 1996; p. 118. [Google Scholar]
- Kozuch, S.; Martin, J.M.L. DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys. 2011, 13, 20104–20107. [Google Scholar] [CrossRef]
- Kozuch, S.; Martin, J.M.L. Spin-Component-Scaled Double Hybrids: An Extensive Search for the Best Fifth-Rung Functionals Blending DFT and Perturbation Theory. J. Comput. Chem. 2013, 34, 2327–2344. [Google Scholar] [CrossRef]
- Santra, G.; Sylvetsky, N.; Martin, J.M.L. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. J. Phys. Chem. A 2019, 123, 5129–5143. [Google Scholar] [CrossRef] [PubMed]
- Raghavachari, K.; Pople, J.A. Approximate 4th-order perturbation-theory of electron correlation energy. Int. J. Quantum Chem. 1978, 14, 91–100. [Google Scholar] [CrossRef]
- Raghavachari, K.; Frisch, M.J.; Pople, J.A. Contribution of triple substitutions to the electron correlation energy in fourth-order perturbation theory. J. Chem. Phys. 1980, 72, 4244–4245. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, G. Vibrational frequencies and determination of stability of aromatic molecules. Chin. J. Org. Chem. 2014, 34, 178–189. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Company: New York, NY, USA, 1979. [Google Scholar]
- Levine, I.N. Quantum Chemistry, 6th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2009; p. 700. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
D2TP | D2QPP | ++dp | ++3d | ++df | ++3df | aug-T | aug-Q | cc-5 | aug-5 | Ave | |
---|---|---|---|---|---|---|---|---|---|---|---|
HF | 0.791 | 1.309 | 0.914 | 0.726 | 0.913 | 0.726 | 1.105 | 1.259 | 1.308 | 1.308 | 1.036 |
MP2 | 0.219 | 0.198 | 0.273 | 0.091 | 0.241 | 0.076 | 0.057 | 0.061 | 0.153 | 0.063 | 0.143 |
B2PLYPD3 | 0.038 | 0.053 | 0.183 | 0.099 | 0.155 | 0.095 | 0.014 | 0.008 | 0.024 | 0.008 | 0.068 |
B2PLYPD3(Full) | 0.037 | 0.038 | 0.179 | 0.085 | 0.154 | 0.083 | 0.020 | 0.007 | 0.012 | 0.010 | 0.063 |
DSDPBEP86 | 0.018 | 0.035 | 0.052 | 0.058 | 0.048 | 0.060 | 0.028 | 0.026 | 0.013 | 0.029 | 0.037 |
DSDPBEP86(Full) | 0.018 | 0.025 | 0.050 | 0.061 | 0.040 | 0.066 | 0.072 | 0.041 | 0.014 | 0.056 | 0.044 |
revDSDPBEP86 | 0.032 | 0.078 | 0.067 | 0.055 | 0.058 | 0.055 | 0.015 | 0.010 | 0.034 | 0.017 | 0.042 |
revDSDPBEP86(Full) | 0.023 | 0.059 | 0.064 | 0.060 | 0.054 | 0.060 | 0.049 | 0.019 | 0.022 | 0.033 | 0.044 |
CCSD(Full) | 0.245 | 0.225 | 0.274 | 0.092 | 0.254 | 0.078 | 0.038 | 0.025 | 0.142 | 0.033 | 0.140 |
BD | 0.249 | 0.215 | 0.280 | 0.090 | 0.241 | 0.071 | 0.030 | 0.019 | 0.097 | 0.022 | 0.131 |
BD(Full) | 0.249 | 0.212 | 0.280 | 0.090 | 0.241 | 0.071 | 0.030 | 0.019 | 0.097 | 0.022 | 0.131 |
MP4 | 0.244 | 0.203 | 0.262 | 0.098 | 0.225 | 0.071 | 0.031 | 0.016 | 0.115 | 0.027 | 0.129 |
CCSD(T) | 0.250 | 0.167 | 0.260 | 0.098 | 0.226 | 0.072 | 0.030 | 0.023 | 0.107 | 0.026 | 0.126 |
CCSD(T)(Full) | 0.201 | 0.166 | 0.244 | 0.056 | 0.204 | 0.049 | 0.060 | 0.025 | 0.083 | 0.060 | 0.115 |
BD(T) | 0.207 | 0.150 | 0.224 | 0.048 | 0.187 | 0.038 | 0.008 | 0.013 | 0.098 | 0.016 | 0.099 |
BD(T)(Full) | 0.180 | 0.178 | 0.235 | 0.066 | 0.271 | 0.043 | 0.038 | 0.012 | 0.074 | 0.027 | 0.112 |
APFD | 0.094 | 0.012 | 0.005 | 0.054 | 0.006 | 0.056 | 0.023 | 0.012 | 0.012 | 0.013 | 0.029 |
wB97X | 0.102 | 0.065 | 0.082 | 0.076 | 0.083 | 0.077 | 0.070 | 0.051 | 0.067 | 0.078 | 0.075 |
B3LYP | 0.982 | 1.910 | 1.416 | 1.069 | 1.380 | 1.074 | 1.772 | 1.910 | 1.828 | 1.990 | 1.533 |
PBE1PBE | 0.148 | 0.155 | 0.148 | 0.122 | 0.142 | 0.121 | 0.147 | 0.154 | 0.153 | 0.153 | 0.144 |
M06 | 0.065 | 0.141 | 0.072 | 0.070 | 0.072 | 0.070 | 0.068 | 0.170 | 0.140 | 0.152 | 0.102 |
M06L | 0.121 | 0.140 | 0.127 | 0.074 | 0.127 | 0.073 | 0.066 | 0.099 | 0.110 | 0.076 | 0.101 |
MN15 | 0.094 | 0.081 | 0.075 | 0.066 | 0.075 | 0.066 | 0.066 | 0.072 | 0.082 | 0.088 | 0.076 |
MN15L | 0.072 | 0.086 | 0.076 | 0.070 | 0.076 | 0.062 | 0.061 | 0.081 | 0.086 | 0.089 | 0.076 |
PW6B95D3 | 0.081 | 0.089 | 0.082 | 0.069 | 0.082 | 0.069 | 0.084 | 0.088 | 0.089 | 0.090 | 0.082 |
PBEB95 | 0.119 | 0.109 | 0.057 | 0.065 | 0.057 | 0.065 | 0.084 | 0.092 | 0.109 | 0.097 | 0.086 |
LC-PBEB95 | 0.060 | 0.099 | 0.086 | 0.084 | 0.086 | 0.084 | 0.086 | 0.096 | 0.099 | 0.100 | 0.088 |
B3LYP-D2 | 0.170 | 0.097 | 0.093 | 0.110 | 0.094 | 0.111 | 0.091 | 0.100 | 0.100 | 0.097 | 0.106 |
B3LYP-D3 | 0.106 | 0.064 | 0.068 | 0.087 | 0.069 | 0.087 | 0.043 | 0.065 | 0.071 | 0.066 | 0.073 |
M06-D3 | 0.068 | 0.172 | 0.136 | 0.073 | 0.136 | 0.073 | 0.123 | 0.172 | 0.171 | 0.118 | 0.124 |
M06L-D3 | 0.122 | 0.141 | 0.128 | 0.098 | 0.128 | 0.074 | 0.067 | 0.101 | 0.111 | 0.128 | 0.110 |
LC-wPBE-D3 | 0.049 | 0.157 | 0.162 | 0.115 | 0.161 | 0.112 | 0.140 | 0.173 | 0.155 | 0.166 | 0.139 |
PBE1PBE-D3 | 0.121 | 0.089 | 0.096 | 0.111 | 0.097 | 0.112 | 0.084 | 0.090 | 0.092 | 0.088 | 0.098 |
PBE1PBE-D3BJ | 0.112 | 0.087 | 0.084 | 0.102 | 0.084 | 0.102 | 0.082 | 0.090 | 0.086 | 0.087 | 0.091 |
PBEPBE-D3BJ | 0.150 | 0.097 | 0.098 | 0.118 | 0.098 | 0.119 | 0.090 | 0.095 | 0.104 | 0.097 | 0.107 |
B3LYP-D3BJ | 0.052 | 0.083 | 0.165 | 0.150 | 0.165 | 0.154 | 0.151 | 0.077 | 0.073 | 0.164 | 0.123 |
Ave | 0.164 | 0.200 | 0.197 | 0.129 | 0.187 | 0.124 | 0.140 | 0.149 | 0.170 | 0.158 | 0.162 |
Basis Set | The Best | The Next Best | ||
---|---|---|---|---|
MAD | Method | MAD | Method | |
Def2TZVP | 0.018 | DSDPBEP86, or DSDPBEP86(Full) | 0.023 | revDSDPBEP86(Full) |
Def2TZVPP | 0.027 | DSDPBEP86(Full) | 0.029 | DSDPBEP86 |
Def2QZVP | 0.012 | APFD | 0.029 | DSDPBEP86(Full) |
Def2QZVPP | 0.012 | APFD | 0.025 | DSDPBEP86(Full) |
6-311G** | 0.064 | M06 | 0.069 | M06-D3 |
6-311++G** | 0.005 | APFD | 0.049 | wPBEhB95 |
6-311++G(2d,2p) | 0.036 | DSDPBEP86 | 0.040 | DSDPBEP86(Full) |
6-311++G(3d,3p) | 0.054 | APFD | 0.055 | revDSDPBEP86 |
6-311++G(df,pd) | 0.006 | APFD | 0.040 | DSDPBEP86(Full) |
6-311++G(2df,2pd) | 0.036 | revDSDPBEP86(Full) | 0.038 | DSDPBEP86 |
6-311++G(3df,3pd) | 0.038 | BD(T) | 0.043 | BD(T)(Full) |
6-311++G(3d2f,3p2d) | 0.012 | APFD | 0.061 | PBEB95 |
cc-pVDZ | 0.055 | M06HF | 0.056 | M06HF-D3 |
aug-cc-pVDZ | 0.025 | APFD | 0.036 | DSDPBEP86(Full) |
cc-pVTZ | 0.051 | M06 | 0.053 | M06-D3 |
aug-cc-pVTZ | 0.008 | BD(T) | 0.014 | B2PLYPD3 |
cc-pVQZ | 0.016 | DSDPBEP86 | 0.018 | DSDPBEP86(Full), or revDSDPBEP86(Full) |
aug-cc-pVQZ | 0.007 | B2PLYPD3(Full) | 0.008 | B2PLYPD3 |
cc-pV5Z | 0.012 | APFD, or B2PLYPD3(Full) | 0.013 | DSDPBEP86 |
aug-cc-pV5Z | 0.008 | B2PLYPD3 | 0.010 | B2PLYPD3(Full) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-L.; Li, B. Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics. Int. J. Mol. Sci. 2022, 23, 13944. https://doi.org/10.3390/ijms232213944
Zhang Y-L, Li B. Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics. International Journal of Molecular Sciences. 2022; 23(22):13944. https://doi.org/10.3390/ijms232213944
Chicago/Turabian StyleZhang, Yi-Liang, and Bin Li. 2022. "Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics" International Journal of Molecular Sciences 23, no. 22: 13944. https://doi.org/10.3390/ijms232213944
APA StyleZhang, Y. -L., & Li, B. (2022). Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics. International Journal of Molecular Sciences, 23(22), 13944. https://doi.org/10.3390/ijms232213944