Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China
Abstract
:1. Introduction
2. Results
2.1. Phenotype Comparison between Longli-4 and CA3-1
2.2. Statistics of Genomic Variances in Longli-4 and CA3-1 against the Reference Genome (PI614886)
2.3. Genetic Divergence between Longli-4 and CA3-1
2.4. Variation of Candidate Genes Relevant to Vital Agronomic Traits and Domestication
2.5. Heterozygosity Rates of Two Varieties
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Phenotype Comparison
4.3. Genome Resequencing
4.4. SNP and INDEL Calling and Statistical Analyses
4.5. GO Enrichment Analyses and Variation in Candidate Genes
4.6. Heterozygosity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dillehay, T.D.; Rossen, J.; Andres, T.C.; Williams, D.E. Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 2007, 316, 1890–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangelson, H.; Jarvis, D.E.; Mollinedo, P.; Rollano-Penaloza, O.M.; Palma-Encinas, V.D.; Gomez-Pando, L.R.; Jellen, E.N.; Maughan, P.J. The genome of Chenopodium pallidicaule: An emerging Andean super grain. Appl. Plant. Sci. 2019, 7, e11300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazile, D.; Fuentes, F.; Mujica, A. Historical perspectives and domestication of quinoa. In Quinoa: Botany, Production and Uses; Bhargava, A., Srivastava, S., Eds.; CABI: Wallingford, UK, 2013; pp. 16–35. [Google Scholar]
- Gomez-Pando, L.R.; Aguilar-Castellanos, E.; Ibanez-Tremolada, M. Quinoa (Chenopodium quinoa Willd.) breeding. In Advances in Plant Breeding Strategies: Cereals; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland; New York, NY, USA, 2019; Volume 5, pp. 259–313. [Google Scholar] [CrossRef]
- Filho, A.M.; Pirozi, M.R.; Borges, J.T.; Pinheiro Sant’Ana, H.M.; Chaves, J.B.; Coimbra, J.S. Quinoa: Nutritional; functional; and antinutritional aspects. Crit. Rev. Food. Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef]
- Zhao, P.; Li, X.; Sun, H.; Zhao, X.; Wang, X.; Ran, R.; Zhao, J.; Wei, Y.; Liu, X.; Chen, G. Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum), a comparative view against Chenopodium quinoa. Crit. Rev. Food. Sci. Nutr. 2021, 1–22. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food and Agriculture Organization of the United States/Wold Health Organization/United Nations University. Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Meeting; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Bazile, D.; Jacobsen, S.E.; Verniau, A. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Bazile, D.; Pulvento, C.; Verniau, A.; Al-Nusairi, M.S.; Ba, D.; Breidy, J.; Hassan, L.; Mohammed, M.I.; Mambetov, O.; Otambekova, M.; et al. Worldwide evaluations of quinoa: Preliminary results from post international year of quinoa FAO projects in nine countries. Front. Plant Sci. 2016, 7, 850. [Google Scholar] [CrossRef] [Green Version]
- Choukr-Allah, R.; Rao, N.K.; Hirich, A.; Shahid, M.; Alshankiti, A.; Toderich, K.; Gill, S.; Butt, K.U. Quinoa for Marginal Environments: Toward future food and nutritional security in MENA and Central Asia Regions. Front. Plant Sci. 2016, 7, 346. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.M.; Bazile, D.; Kellogg, J.; Rahmanian, M. Development of a worldwide consortium on evolutionary participatory breeding in Quinoa. Front. Plant Sci. 2016, 7, 608. [Google Scholar] [CrossRef]
- McElhinny, E.; Peralta, E.; Mazón, N.; Danial, D.L.; Thiele, G.; Lindhout, P. Aspects of participatory plant breeding for quinoa in␣marginal areas of Ecuador. Euphytica 2007, 153, 373–384. [Google Scholar] [CrossRef]
- Bazile, D.; Salcedo, S.; Santivañez, T. Conclusions: Challenge; opportunities and threats to quinoa in the face of global change. In State of the Art Report of Quinoa in the World in 2013; Bazile, D., Bertero, D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 2015; pp. 586–589. [Google Scholar]
- Zurita-Silva, A.; Fuentes, F.; Zamora, P.; Jacobsen, S.; Schwember, A.R. Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Mol. Breeding 2014, 34, 13–30. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Y.; Wen, X.; Li, Y.; Hou, L.; Zhao, J.; Cao, Q.; Wang, B.; Wu, S.; Qin, Y. The research progress on breeding technology of quinoa. China Seed Ind. 2020, 1, 8–13, (In Chinese with English abstract). [Google Scholar]
- Rojas, W.; Pinto, M.; Alanoca, C.; Gomez, P.L.; Leon-Lobos, P.; Alercia, A.; Diulgheroff, S.; Padulosi, S.; Bazile, D. Quinoa Genetic Resources and Ex Situ Conservation. In State of the Art Report on Quinoa Around the World in 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 2015; pp. 56–82. Available online: http://www.fao.org/quinoa-2013/publications/detail/en/item/278923/icode/?no_mobile=1 (accessed on 26 December 2020).
- Maughan, P.J.; Smith, S.M.; Rojas-Beltrán, J.A.; Elzinga, D.; Raney, J.A.; Jellen, E.N.; Bonifacio, A.; Udall, J.A.; Fairbanks, D.J. Single nucleotide polymorphism identification; characterization; and linkage mapping in quinoa. Plant Genome 2012, 5, 114–125. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.A.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al. The genome of Chenopodium quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Patiranage, D.S.R.; Rey, E.; Emrani, N.; Wellman, G.; Schmid, K.; Schmöckel, S.M.; Tester, M.; Jung, C. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. Elife 2022, 11, e66873. [Google Scholar] [CrossRef] [PubMed]
- Gongbu, T.; Wan, M.; Zhang, C. The biological characters and the performance of the quinoa, Henopdium quinoa Willd in Tibet. Southwest China J. Agric. Sci. 1994, 7, 54–62, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Gongbu, T.; Wang, M. Biological characteristics and cultivation techniques of Chenopodium quinoa Willd. Tibet Sci Technol. 1995, 4, 19–22, (In Chinese without English abstract). [Google Scholar]
- Ren, G. Development plan of quinoa industry in China. In Proceedings of the The Fourth China Quinoa Industry Summit Forum, Zhangjiakou, China, 4 September 2019. (In Chinese without English abstract). [Google Scholar]
- Lin, C.; Liu, Z.; Dong, Y.; Vales, M.; Mao, Z. Domesticated cultivation and genetic breeding of Chenopodium quinoa. Hereditas 2019, 41, 1009–1022, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, F. Breeding and application prospects of new variety Chenopodium quinoa cv. Longli 1. Gansu Agr. Sci. Technol. 2015, 12, 1–5, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Huang, J.; Yang, F.; Liu, W.; Wei, Y.; Jin, Q. Report on breeding of new quinoa cultivar Longli 2. Gansu Agr. Sci. Technol. 2020, 7, 1–4, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Huang, J.; Yang, F.; Liu, W.; Wei, Y.; Jin, Q.; Zhang, Y. Report on breeding of new quinoa cultivar Longli 3. Inform. Agric. Sci. Tech. 2020, 15, 5–7, (In Chinese without English abstract). [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Zhao, J.; Liu, W.; Wei, Y.; Yang, F. Report on breeding of new quinoa cultivar Longli 4. Gansu Agr. Sci. and Techn. 2020, 8, 1–5, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, F.; Liu, W.; Huang, J.; Wei, Y.; Wang, C. The development status and strategies of quinoa industry in Gansu province. Gansu Agr. Sci. Technol. 2019, 1, 76–79, (In Chinese without English abstract). [Google Scholar] [CrossRef]
- Wei, Y.; Huang, J.; Gu, X.; Jin, Q.; Liu, W.; Yang, F. Current situation and development strategy of quinoa industry in Gansu province. Crops 2016, 1, 12–15, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, C.; Ma, W.; Cui, J.; Zhang, J.; Zhao, P.; Chen, G. Introduction and evaluation of six new quinoa strains in Haiyuan dryland region of Ningxia. Gansu Agr. Sci. and Techn. 2021, 52, 67–73, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wei, Y.; Yang, F.; Liu, W.; Huang, J.; Jin, Q.; Wang, C. Adaptation evaluation of multiple cropping of 12 quinoa varieties on loess dryland in eastern Gansu. Southwest China J. Agric. Sci. 2020, 29, 675–686, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Gandarillas, A.; Rojas, W.; Bonifacio, A.; Ojeda, N. Quinoa in Bolivia: The PROINPA Foundation’s perspective. In State of the Art Report of Quinoa in the World in 2013; Bazile, D., Bertero, D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 2015; pp. 344–361. [Google Scholar]
- Yasui, Y.; Hirakawa, H.; Oikawa, T.; Toyoshima, M.; Matsuzaki, C.; Ueno, M.; Mizuno, N.; Nagatoshi, Y.; Imamura, T.; Miyago, M.; et al. Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res. 2016, 23, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Chen, A.; Xiao, L.; Muller, H.M.; Ache, P.; Haberer, G.; Zhang, M.; Jia, W.; Deng, P.; Huang, R.; et al. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res. 2017, 27, 1327–1340. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Xu, R.; Li, Y. Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 2019, 70, 435–463. [Google Scholar] [CrossRef]
- Jiang, C.; Mithani, A.; Gan, X.; Belfield, E.J.; Klingler, J.P.; Zhu, J.K.; Ragoussis, J.; Mott, R.; Harberd, N.P. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr. Biol. 2011, 21, 1385–1390. [Google Scholar] [CrossRef] [Green Version]
- Miyao, A.; Nakagome, M.; Ohnuma, T.; Yamagata, H.; Kanamori, H.; Katayose, Y.; Takahashi, A.; Matsumoto, T.; Hirochika, H. Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol. 2012, 53, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Hour, A.L.; Hsieh, W.H.; Chang, S.H.; Wu, Y.P.; Chin, H.S.; Lin, Y.R. Genetic diversity of landraces and improved varieties of rice (Oryza sativa L.) in Taiwan. Rice 2020, 13, 82. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 2011, 155, 125–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Q.; Li, C.; Li, H.; Zheng, Q.; Li, B.; Li, Z. An analysis of the genetic relation between photosynthesis and yield-related traits in Wheat. Agriculture 2022, 12, 560. [Google Scholar] [CrossRef]
- Takai, T.; Adachi, S.; Taguchi-Shiobara, F.; Sanoh-Arai, Y.; Iwasawa, N.; Yoshinaga, S.; Hirose, S.; Taniguchi, Y.; Yamanouchi, U.; Wu, J.; et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 2013, 3, 2149. [Google Scholar] [CrossRef] [Green Version]
- Morales, F.; Ancín, M.; Fakhet, D.; González-Torralba, J.; Gámez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landoni, M.; Cassani, E.; Pilu, R. Arabidopsis thaliana plants overexpressing Ramosa1 maize gene show an increase in organ size due to cell expansion. Sex. Plant Reprod. 2007, 20, 191–198. [Google Scholar] [CrossRef]
- Sigmon, B.; Vollbrecht, E. Evidence of selection at the ramosa1 locus during maize domestication. Mol. Ecol. 2010, 19, 1296–1311. [Google Scholar] [CrossRef] [PubMed]
- Ollbrecht, E.; Springer, P.S.; Goh, L.; Buckler, E.S.; Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 2005, 436, 1119–1126. [Google Scholar] [CrossRef]
- Soto, A.H.; Beirute, E.F.; Esqu, A.A.; Melara, M.V.; Boch, J.; Arias, A.G. Rice breeding in the new era: Comparison of useful agronomic traits. Curr. Plant Biol. 2021, 27, 100211. [Google Scholar] [CrossRef]
- Li, B.; Li, Y. Maternal control of seed size in plants. J. Exp. Bot. 2015, 66, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.S.; Li, Q.F.; Zhang, C.Q.; Zhang, C.; Yang, Q.Q.; Pan, L.X.; Ren, X.Y.; Lu, J.; Gu, M.H.; Liu, Q.Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 2018, 9, 1240. [Google Scholar] [CrossRef] [Green Version]
- Nisler, J.; Kopečný, D.; Pěkná, Z.; Končitíková, R.; Koprna, R.; Murvanidze, N.; Werbrouck, S.P.O.; Havlíček, L.; De Diego, N.; Kopečná, M.; et al. Diphenylurea-derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. J. Exp. Bot. 2021, 72, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Cheng, M.N.; Huang, Z.J.; Hua, Q.Z.; Shan, W.; Kuang, J.F.; Lu, W.J.; Qin, Y.H.; Chen, J.Y. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Hortic. Res. 2017, 4, 17039. [Google Scholar] [CrossRef] [Green Version]
- Timoneda, A.; Feng, T.; Sheehan, H.; Walker-Hale, N.; Pucker, B.; Lopez-Nieves, S.; Guo, R.; Brockington, S. The evolution of betalain biosynthesis in Caryophyllales. New Phytol. 2019, 224, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Samach, A.; Klenz, J.E.; Kohalmi, S.E.; Risseeuw, E.; Haughn, G.W.; Crosby, W.L. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 1999, 20, 433–445. [Google Scholar] [CrossRef]
- Mathur, J.; Molnár, G.; Fujioka, S.; Takatsuto, S.; Sakurai, A.; Yokota, T.; Adam, G.; Voigt, B.; Nagy, F.; Maas, C.; et al. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J. 1998, 14, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhang, N.; Yang, J.; Si, H. Functional Analysis of Potato CPD Gene: A rate-limiting enzyme in brassinosteroid biosynthesis under polyethylene Glycol-Induced osmotic stress. Crop Sci. 2016, 56, 2675–2687. [Google Scholar] [CrossRef]
- Clouse, S.D. The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proc. Natl. Acad. Sci. USA 2008, 105, 7345–7346. [Google Scholar] [CrossRef] [PubMed]
- Vogler, F.; Schmalzl, C.; Englhart, M.; Bircheneder, M.; Sprunck, S. Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod. 2014, 27, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Bentsink, L.; Jowett, J.; Hanhart, C.J.; Koornneef, M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 17042–17047. [Google Scholar] [CrossRef] [Green Version]
- Huo, H.; Wei, S.; Bradford, K.J. Delay of Germination1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc. Natl. Acad. Sci. USA 2016, 113, E2199–E2206. [Google Scholar] [CrossRef] [Green Version]
- Vilcacundo, R.; Ledesma, B.H. Nutritional and biological value of quinoa (Chenopodium quinoa Willd). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2. Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.L. CMplot: Circle Manhattan Plot. R package Version 4.1.0. 2022. Available online: https://CRAN.R-project.org/package=CMplot (accessed on 24 May 2022).
- Zhang, J.; do Jin, Z. Data Operator. R package Version 2.0.0.0. 2021. Available online: https://CRAN.R-project.org/package=do (accessed on 3 August 2021).
- Dowle, M.; Srinivasan, A. Data.table: Extension of ‘Data.frame’. R Package Version 1.14.2. 2021. Available online: https://CRAN.R-project.org/package=data.table (accessed on 27 September 2021).
- Cingolani, P.; Platts, A.; Wang le, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms; SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Phillips, M.A.; León, P.; Boronat, A.; Rodríguez-Concepción, M. The plastidial MEP pathway: Unified nomenclature and resources. Trends Plant Sci. 2008, 13, 619–623. [Google Scholar] [CrossRef]
- Saito, K.; Yonekura-Sakakibara, K.; Nakabayashi, R.; Higashi, Y.; Yamazaki, M.; Tohge, T.; Fernie, A.R. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biochem. 2013, 72, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Zhao, J.J.; Hou, X.L.; Basnet, R.K.; Carpio, D.P.; Zhang, N.W.; Bucher, J.; Lin, K.; Cheng, F.; Wang, X.W.; et al. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time; identified through transcriptional co-expression networks. J. Exp. Bot. 2013, 64, 4503–4516. [Google Scholar] [CrossRef] [PubMed]
- Hatlestad, G.J.; Sunnadeniya, R.M.; Akhavan, N.A.; Gonzalez, A.; Goldman, I.L.; McGrath, J.M.; Lloyd, A.M. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat. Genet. 2012, 44, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Brockington, S.F.; Yang, Y.; Gandia-Herrero, F.; Covshoff, S.; Hibberd, J.M.; Sage, R.F.; Wong, G.K.; Moore, M.J.; Smith, S.A. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol. 2015, 207, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Polturak, G.; Heinig, U.; Grossman, N.; Battat, M.; Leshkowitz, D.; Malitsky, S.; Rogachev, I.; Aharoni, A. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Mol. Plant. 2018, 11, 189–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, T.; Takagi, H.; Miyazato, A.; Ohki, S.; Mizukoshi, H.; Mori, M. Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa. Biochem. Biophys. Res. Commun. 2018, 496, 280–286. [Google Scholar] [CrossRef]
- Imamura, T.; Isozumi, N.; Higashimura, Y.; Miyazato, A.; Mizukoshi, H.; Ohki, S.; Mori, M. Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. Plant Biotechnol. J. 2019, 17, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Huang, X.; Tian, Z.; Wing, R.A.; Han, B. The genomics of Oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant Biol. 2019, 70, 639–665. [Google Scholar] [CrossRef]
- Jia, X.; Li, J.; Zhao, Y.; Quan, J.; Dong, Z.; Dai, L.; Zhang, X.; Zhang, B. Correlation and regression analysis between heading date and agronomic traits in Foxtail Millet. J. Plant Genet. Resour. 2019, 20, 634–645. [Google Scholar] [CrossRef]
- Liu, J.; Fernie, A.R.; Yan, J. The past; present; and future of Maize improvement: Domestication; genomics; and functional genomic routes toward crop enhancement. Plant Commun. 2019, 1, 100010. [Google Scholar] [CrossRef]
- Lye, Z.N.; Purugganan, M.D. Copy number variation in domestication. Trends Plant Sci. 2019, 24, 352–365. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, W.; Tan, L.; Tian, F. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol. Plant. 2021, 14, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Capella-Gutiérrez, S.; Shi, Y.; Zhao, X.; Chen, G.; Gabaldón, T.; Ma, X.F. Transcriptomic analysis of a psammophyte food crop, sand rice (Agriophyllum squarrosum) and identification of candidate genes essential for sand dune adaptation. BMC Genom. 2014, 15, 872. [Google Scholar] [CrossRef] [PubMed]
L_non | C_non | L&C_non | L_STOP | C_STOP | L&C_STOP | |
---|---|---|---|---|---|---|
MEP | 0 | 6 | 1 | 0 | 0 | 0 |
Flavonoid | 0 | 6 | 2 | 0 | 0 | 0 |
Betalain | 1 | 8 | 2 | 0 | 1 | 0 |
Flowering | 7 | 153 | 40 | 0 | 4 | 0 |
Seed size | 3 | 73 | 20 | 0 | 2 | 1 |
Domestication | 1 | 47 | 13 | 1 | 1 | 0 |
Saponin | 0 | 14 | 3 | 0 | 4 | 0 |
Chr01 | Chr02 | Chr03 | Chr04 | Chr08 | Chr14 | Chr15 | Chr16 | Chr17 | |
---|---|---|---|---|---|---|---|---|---|
Longli-4-1 | 0 | 2.08 | 4.26 | 0 | 0 | 0 | 4.26 | 4.26 | 4.26 |
Longli-4-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Longli-4-3 | 6.25 | 13.04 | 12.77 | 28.26 | 2.08 | 6.38 | NA | NA | NA |
Longli-4-4 | 1.04 | 1.05 | 0 | 1.06 | 2.10 | 0 | 2.08 | 5.21 | 0 |
CA3-1-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CA3-1-2 | 0 | 2.08 | 0 | 2.08 | 0 | 0 | 0 | 0 | 0 |
CA3-1-3 | 2.08 | 2.08 | 2.08 | 0 | 0 | 2.08 | 20.83 | 25 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ran, R.; Chen, G.; Zhao, P. Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. Int. J. Mol. Sci. 2022, 23, 14030. https://doi.org/10.3390/ijms232214030
Li X, Ran R, Chen G, Zhao P. Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. International Journal of Molecular Sciences. 2022; 23(22):14030. https://doi.org/10.3390/ijms232214030
Chicago/Turabian StyleLi, Xiaofeng, Ruilan Ran, Guoxiong Chen, and Pengshan Zhao. 2022. "Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China" International Journal of Molecular Sciences 23, no. 22: 14030. https://doi.org/10.3390/ijms232214030
APA StyleLi, X., Ran, R., Chen, G., & Zhao, P. (2022). Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. International Journal of Molecular Sciences, 23(22), 14030. https://doi.org/10.3390/ijms232214030