Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Sodium Pectate Complex with Nickel
2.2. Optical Atomic Emission Spectroscopy (AES) with Inductively Coupled Plasma
2.3. Morphology Studies by TEM and AFM Methods
2.4. CV in Acidic Solution
2.5. Electrochemical Stability during the ORR in Acidic Solution
2.6. Study of the ORR Kinetics on a Rotating Disk Electrode Using the Koutecky–Levich Method
2.7. PEMFC Tests
3. Materials and Methods
3.1. Synthesis of the Sodium Pectate Complex with Copper
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Inductively Coupled Plasma Optical Emission Spectroscopy
3.4. Specific Surface Area
3.5. Electrochemistry
3.6. TEM
3.7. AFM
3.8. Fuel Cell Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steele, B.C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, D.P.; Zhang, J.; Hui, R.; Fergus, J.; Li, X. Proton Exchange Membrane Fuel Cells: Materials Properties and Performance. Platin. Met. Rev. 2011, 55, 225–228. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parthasarathy, A.; Srinivasan, S.; Appleby, A.J.; Martin, C.R. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface—A microelectrode investigation. J. Electrochem. Soc. 1992, 139, 2530–2537. [Google Scholar] [CrossRef]
- Mazumder, V.; Lee, Y.; Sun, S. Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions. Adv. Funct. Mater. 2010, 20, 1224–1231. [Google Scholar] [CrossRef]
- Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef]
- Pylypenko, S.; Mukherjee, S.; Olson, T.S.; Atanassov, P. Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochim. Acta 2008, 53, 7875–7883. [Google Scholar] [CrossRef]
- Bashyam, R.; Zelenay, P. Aclass of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63–66. [Google Scholar] [CrossRef]
- Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447. [Google Scholar] [CrossRef]
- Vij, V.; Sultan, S.; Harzandi, A.M.; Meena, A.; Tiwari, J.N.; Lee, W.G.; Yoon, T.; Kim, K.S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Acs Catal. 2017, 7, 7196–7225. [Google Scholar] [CrossRef]
- Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Fischer, R.A.; Schuhmann, W.; Muhler, M. Metal–organic framework derived carbon nanotube grafted cobalt/carbon polyhedra grown on nickel foam: An efficient 3D electrode for full water splitting. ChemElectroChem 2017, 4, 188–193. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Zhang, L.; He, D.; Zhou, G.; Lin, Y.; Deng, Z.; Hong, X.; Wu, Y.; Chen, C.; Li, Y. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Xiao, C.; Xie, S.; Liang, J.; Chen, X.; Tang, Y. Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: Efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 2016, 28, 6934–6941. [Google Scholar] [CrossRef]
- Menezes, P.W.; Indra, A.; Das, C.; Walter, C.; Gobel, C.; Gutkin, V.; Driess, M. Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. Acs Catal. 2017, 7, 103–109. [Google Scholar] [CrossRef]
- Browne, M.P.; Stafford, S.; O’Brien, M.; Nolan, H.; Berner, N.C.; Duesberg, G.S.; Colavita, P.E.; Lyons, M.E. The goldilocks electrolyte: Examining the performance of iron/nickel oxide thin films as catalysts for electrochemical water splitting in various aqueous NaOH solutions. J. Mater. Chem. A 2016, 4, 11397–11407. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kadirov, M.K.; Karasik, A.A.; Nizameev, I.R.; Strelnik, I.D.; Kholin, K.V.; Kadirov, D.M.; Ismaev, T.I.; Budnikova, Y.H.; Sinyashin, O.G. Organometallic Polymer Electrolyte Membrane Fuel Cell Bis-Ligand Nickel (Ii) Complex of 1,5-Di-P-Tolyl-3,7-Dipyridine-1,5,3,7-Diazadiphosphacyclo-Octane Catalyst. Energy Technol. 2018, 6, 1088–1095. [Google Scholar] [CrossRef]
- Kadirov, M.; Karasik, A.; Nizameev, I.; Spiridonova, Y.; Khrizanforov, M.; Kadirov, D.; Nizameeva, G.; Khrizanforova, V.; Mukhametzyanova, D.; Budnikova, Y.; et al. 1, 5-Diaza-3,7-Diphosphacyclooctane Bis-Ligand Nickel (II) Complexes as Oxygen Reduction Catalysts for Proton-Exchange Membrane Fuel Cells. Energy Technol. 2019, 7, 1900020. [Google Scholar] [CrossRef]
- Kadirov, M.K.; Minzanova, S.; Nizameev, I.; Mironova, L.G.; Gilmutdinov, I.; Khrizanforov, M.; Kholin, K.; Khamatgalimov, A.; Semeonov, V.; Morozov, V.; et al. Nickel-based pectin coordination polymer as oxygen reduction reaction catalyst for proton-exchange membrane fuel cell. Inorg. Chem. Front. 2018, 5, 780–784. [Google Scholar] [CrossRef]
- Kadirov, M.K.; Minzanova, S.T.; Nizameev, I.R.; Khrizanforov, M.N.; Mironova, L.G.; Kholin, K.V.; Kadirov, D.M.; Nefed‘ev, E.S.; Morozov, M.V.; Gubaidullin, A.T.; et al. A Nickel-Based Pectin Metal-Organic Framework as a Hydrogen Oxidation Reaction Catalyst for Proton-Exchange-Membrane Fuel Cells. ChemistrySelect 2019, 4, 4731–4734. [Google Scholar] [CrossRef]
- May, C.D. Industrial pectins: Sources, production and applications. Carbohydr. Polym. 1990, 12, 79–99. [Google Scholar] [CrossRef]
- Mishra, R.K.; Anis, A.; Mondal, S.; Dutt, M.; Banthia, A.K. Reparation and characterization of amidated pectin-based polymer electrolyte membranes. Chin. J. Polym. Sci. 2009, 27, 639–646. [Google Scholar] [CrossRef]
- Mishra, R.K.; Datt, M.; Banthia, A.K.; Majeed, A.B.A. Development of novel pectin-based membranes as proton conducting material. Int. J. Plast. Technol. 2012, 16, 80–88. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Vyshtakalyuk, A.B.; Tsepaeva, O.V.; Mironova, L.G.; Mindubaev, A.Z.; Nizameev, I.R.; Kholin, K.V.; Milyukov, V.A. Complexation of pectin with macro-and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes. Carbohydr. Polym. 2015, 134, 524–533. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Khamatgalimov, A.R.; Ryzhkina, I.S.; Murtazina, L.I.; Mironova, L.G.; Kadirov, M.K.; Mironov, V.F. Synthesis and physicochemical properties of antianemic iron and calcium complexes with sodium polygalacturonate. Dokl. Phys. Chem. 2016, 467, 45–48. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Mironova, L.G.; Nizameev, I.R.; Kholin, K.V.; Voloshina, A.D.; Kulik, N.V.N.; Nazarov, G.; Milyukov, V.A. Synthesis, Properties, and Antimicrobial Activity of Pectin Complexes with Cobalt and Nickel. Chem. Nat. Compd. 2016, 52, 26–31. [Google Scholar] [CrossRef]
- Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.; Thom, D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 1973, 32, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Jeon, M.K.; Zhang, Y.; McGinn, P.J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction. Electrochim. Acta 2010, 55, 5318–5325. [Google Scholar] [CrossRef]
- Paulus, U.A.; Wokaun, A.; Scherer, G.G.; Schmidt, T.J.; Stamenkovic, V.; Markovic, N.M.; Ross, P.N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 2002, 47, 3787–3798. [Google Scholar] [CrossRef]
Type of Oscillation | Pectin [Herbstreith & Fox KG (Germany)] | NaPG-Sodium Polygalacturonate | Sodium Polygalacturonate Complex with Nickel | |||
---|---|---|---|---|---|---|
Ni(5%)-NaPG | Ni(15%)-NaPG | Ni(20%)-NaPG | Ni(25%)-NaPG | |||
ν (OH) | 3430 | 3439 | 3443 | 3437 | 3443 | 3432 |
ν (CH) | 2930 | 2944 | 2930 | 2930 | 2940 | 2929 |
ν (C=O) | 1747 | - | - | - | - | - |
ν COO- | - | 1614 | 1614 | 1621 | 1618 | 1620 |
δ (CH) | 1331 | 1334 | 1332 | 1335 | 1332 | 1332 |
δ (OH) | 1234 | 1242 | 1242 | 1240 | 1240 | 1241 |
ν (C-O-C) | 1148 | 1147 | 1147 | 1148 | 1147 | 1149 |
ν (C-C) (C-O) | 1105 | 1101 | 1102 | 1101 | 1101 | 1102 |
ν (C-C) (C-O) | 1017 | 1013 | 1016 | 1018 | 1018 | 1019 |
Sample | Degree of Substitution of Sodium Ions for Nickel Ions (%) | Mass of NiCl2·6H2O (g) | Concentration of NiCl2·6H2O (g/L) |
---|---|---|---|
NaPG | 0.0 | 0.0 | 0 |
Ni(5%)-NaPG | 5.0 | 0.164 | 0.21 |
Ni(15%)-NaPG | 15.0 | 0.492 | 0.62 |
Ni(20%)-NaPG | 20.0 | 0.656 | 0.82 |
Ni(25%)-NaPG | 25.0 | 0.820 | 1.03 |
Ni(35%)-NaPG | 35.0 | 1.148 | 1.44 |
Coordination Biopolymer | Elemental Content (%) (Na + Ni = 100%) | Expected Content of Ni (%) | Deviation of Actual Ni Content from Expected (%) | |
---|---|---|---|---|
Na (588.995 nm) | Ni (231.604 nm) | |||
Ni(5%)-NaPG | 95.4 | 4.6 | 5.0 | 8.0 |
Ni(15%)-NaPG | 85.0 | 15.0 | 15.0 | 0 |
Ni(20%)-NaPG | 81.0 | 19.0 | 20.0 | 5.0 |
Ni(25%)-NaPG | 75.9 | 24.1 | 25.0 | 3.60 |
Ni(35%)-NaPG | 66.8 | 33.2 | 35.0 | 5.14 |
Electrolyte | D, cm2/s | υ, cm2/s | CO2, mol/cm3 | B, mAs0.5cm−2 | F, C/mol |
---|---|---|---|---|---|
0.5 M H2SO4 | 1.8 × 10−5 | 0.01 | 1.13 × 10−6 | 0.4 | 96,484.6 |
Entry | Ni Content % | Anode Catalyst | Cathode Catalyst | OCV [mV] | Maximum Current Density [mA cm−2] | Maximum Power Density [mW cm−2] |
---|---|---|---|---|---|---|
1 [a] | 25 | Pt/C | Ni-NaPG/C | 710 | 59 | 5.9 |
2 | 20 | Pt/C | Ni-NaPG/C | 602 | 57.8 | 10.58 |
3 | 15 | Pt/C | Ni-NaPG/C | 730 | 15.33 | 2.76 |
4 [b] | 25 | Ni-NaPG/C | Pt/C | 960 | 5.2 | 1.5 |
5 | 20 | Ni-NaPG/C | Pt/C | 929 | 23.21 | 6.03 |
6 | 15 | Ni-NaPG/C | Pt/C | 830 | 4.89 | 1.54 |
7 | 100 | Pt/C | Pt/C | 1 | 1280 | 324 |
Coordination Biopolymer | Sample Degassing | Specific Surface according to BET, m2/g | ||
---|---|---|---|---|
Time, h | Temperature, °C | Vacuum, Pa | ||
Ni(15%)-NaPG | 5 | 100 | 2 | 0.135 |
Ni(20%)-NaPG | 5 | 100 | 2 | 0.147 |
Ni(25%)-NaPG | 5 | 100 | 2 | 0.093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizameev, I.R.; Kadirov, D.M.; Nizameeva, G.R.; Sabirova, A.F.; Kholin, K.V.; Morozov, M.V.; Mironova, L.G.; Zairov, R.R.; Minzanova, S.T.; Sinyashin, O.G.; et al. Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Int. J. Mol. Sci. 2022, 23, 14247. https://doi.org/10.3390/ijms232214247
Nizameev IR, Kadirov DM, Nizameeva GR, Sabirova AF, Kholin KV, Morozov MV, Mironova LG, Zairov RR, Minzanova ST, Sinyashin OG, et al. Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. International Journal of Molecular Sciences. 2022; 23(22):14247. https://doi.org/10.3390/ijms232214247
Chicago/Turabian StyleNizameev, Irek R., Danis M. Kadirov, Guliya R. Nizameeva, Aigul’ F. Sabirova, Kirill V. Kholin, Mikhail V. Morozov, Lyubov’ G. Mironova, Rustem R. Zairov, Salima T. Minzanova, Oleg G. Sinyashin, and et al. 2022. "Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells" International Journal of Molecular Sciences 23, no. 22: 14247. https://doi.org/10.3390/ijms232214247
APA StyleNizameev, I. R., Kadirov, D. M., Nizameeva, G. R., Sabirova, A. F., Kholin, K. V., Morozov, M. V., Mironova, L. G., Zairov, R. R., Minzanova, S. T., Sinyashin, O. G., & Kadirov, M. K. (2022). Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. International Journal of Molecular Sciences, 23(22), 14247. https://doi.org/10.3390/ijms232214247