Conductive Mediators in Oxidation Based on Ferrocene Functionalized Phosphonium Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
Compound | 1/2Eox, V vs. Ag/AgCl | ΔEPEAK, V | DCV, cm2/s |
---|---|---|---|
Ferrocene | 0.41 | 0.06 | 1.30 × 10−7 [32] |
4a | 0.77 | 0.06 | 1.72 × 10−5 |
4b | 0.71 | 0.06 | 1.71 × 10−5 |
4c | 0.71 | 0.06 | 1.71 × 10−5 |
The analog of 4c (Fc-C(O)(CH2)5P(n-Bu)3PF6−) [22] | 0.60 | 0.30 | 6.40 × 10−9 |
4d | 0.71 | 0.06 | 1.68 × 10−5 |
8a | 0.46 | 0.06 | 1.64 × 10−5 |
8b | 0.44 | 0.06 | 1.65 × 10−5 |
8c | 0.43 | 0.06 | 1.62 × 10−5 |
The analog of 8c (Fc(CH2)6P(n-Bu)3PF6−) [22] | 0.25 | 0.30 | 1.53 × 10−8 |
8d | 0.42 | 0.06 | 1.58 × 10−5 |
3. Materials and Methods
3.1. NMR Experiments
3.2. TG-DSC
3.3. Mass-Spectra
3.4. Electrochemical Measurements
3.5. Reagents and Research Subjects
3.6. General Procedure
3.6.1. General Procedure for the Synthesis of ω-Bromoalkanoyl Chloride 1a–1d (Scheme S1)
3.6.2. General Procedure for the Synthesis of 2a–2d
3.6.3. General Procedure for the Synthesis of 3a–3d
3.6.4. General Procedure for the Synthesis of 4a–4d
3.6.5. General Procedure for the Synthesis of 5a–5d
3.6.6. General Procedure for the Synthesis of 6a–6d
3.6.7. General Procedure for the Synthesis of 7a–7d
3.6.8. General Procedure for the Synthesis of 8a–8d
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wieszczycka, K.; Staszak, K.; Woźniak-Budych, M.J.; Litowczenko, J.; Maciejewska, B.M.; Jurga, S. Surface functionalization–The way for advanced applications of smart materials. Coord. Chem. Rev. 2021, 436, 213846. [Google Scholar] [CrossRef]
- Mrinalini, M.; Prasanthkumar, S. Recent Advances on Stimuli-Responsive Smart Materials and their Applications. ChemPlusChem 2019, 84, 1103–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Li, Y.; Chen, D.; Zhan, T.-G.; Zhang, K.-D. Ionic Liquid-Based Stimuli-Responsive Functional Materials. Adv. Funct. Mater. 2020, 30, 2005522. [Google Scholar] [CrossRef]
- Khazalpour, S.; Yarie, M.; Kianpour, E.; Amani, A.; Asadabadi, S.; Seyf, J.Y.; Rezaeivala, M.; Azizian, S.; Zolfigol, M.A. Applications of phosphonium-based ionic liquids in chemical processes. J. Iran. Chem. Soc. 2020, 17, 1775–1917. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Hou, P.; Pan, H.; Fu, S. Polyisocyanide Quaternary Ammonium Salts with Exceptionally Star-Shaped Structure for Enhanced Antibacterial Properties. Polymers 2022, 14, 1737. [Google Scholar] [CrossRef]
- Metelytsia, L.O.; Hodyna, D.M.; Semenyuta, I.V.; Kovalishyn, V.V.; Rogalsky, S.P.; Derevianko, K.Y.; Tetko, I.V. Theoretical and Experimental Studies of Phosphonium Ionic Liquids as Potential Antibacterials of MDR Acinetobacter baumannii. Antibiotics 2022, 11, 491. [Google Scholar] [CrossRef]
- Rochefort, D. Enabling new electrochemical methods with redox-active ionic liquids. Cur. Opin. Electrochem. 2019, 15, 125–132. [Google Scholar] [CrossRef]
- Gholamhosseini-Nazari, M.; Esmati, S.; Safa, K.D.; Khataee, A.; Teimuri-Mofrad, R. Synthesis and application of novel 1,2,3-triazolylferrocene-containing ionic liquid supported on Fe3O4 nanocatalyst in the synthesis of new pyran-substituted Betti bases: Novel nanocatalyst for the synthesis of pyran substituted Betti bases. Appl. Organomet. Chem. 2019, 33, e4701. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Maslakov, K.I.; Kupreenko, S.Y.; Levin, M.M.; Iurenkov, M.V.; Lyssenko, K.A.; Savilov, S.V.; Aldoshin, S.M. Ferrocene based ionic liquid: Synthesis, structure, transport properties and mechanism of thermal degradation. J. Mol. Liq. 2022, 355, 118933. [Google Scholar] [CrossRef]
- Shen, G.; Shen, Y. Label-Free Electrochemical Immunosensor Based on β-Cyclodextrin-Functionalized Helical Carbon Nanotube and Ionic Liquid Containing Ferrocene and Aldehyde Groups. ACS Omega 2019, 4, 20252–20256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astruc, D. Why is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 1, 6–29. [Google Scholar] [CrossRef]
- Elisabeth, S.P. Ferrocenes: Compounds, Properties and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2011; ISBN 978-1-61761-880-2. [Google Scholar]
- Pournaghi-Azar, M.H.; Ojani, R. Catalytic oxidation of ascorbic acid by some ferrocene derivative mediators at the glassy carbon electrode. Application to the voltammetric resolution of ascorbic acid and dopamine in the same sample. Talanta 1995, 42, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Tahara, H.; Baba, R.; Iwanaga, K.; Sagara, T.; Murakami, H. Electrochromism of a bipolar reversible redox-active ferrocene–viologen linked ionic liquid. Chem. Commun. 2017, 53, 2455–2458. [Google Scholar] [CrossRef] [Green Version]
- Tahara, H.; Uranaka, K.; Hirano, M.; Ikeda, T.; Sagara, T.; Murakami, H. Electrochromism of Ferrocene- and Viologen-Based Redox-Active Ionic Liquids Composite. ACS Appl. Mater. Interfaces 2019, 11, 1–6. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, J.; Ding, Y.; Mao, H.; Yan, F. Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications. Sci. China Chem. 2018, 62, 95–104. [Google Scholar] [CrossRef]
- Teimuri-Mofrad, R.; Esmati, S.; Rabiei, M.; Gholamhosseini-Nazari, M. Efficient synthesis of new pyrano [3,2-b] pyran derivatives via Fe3O4@SiO2-IL-Fc catalyzed three-component reaction. Heterocycl. Commun. 2017, 23, 439–444. [Google Scholar] [CrossRef]
- Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R.J. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives. Mol. Liq. 2019, 275, 523–534. [Google Scholar] [CrossRef]
- Gharib, B.; Hirsch, A. Synthesis and Characterization of New Ferrocene-Containing Ionic Liquids. Eur. J. Org. Chem. 2014, 19, 4123–4136. [Google Scholar] [CrossRef]
- Weaver, J.E.F.; Breadner, D.; Deng, F.; Ramjee, B.; Ragogna, P.J.; Murray, R.W. Electrochemistry of Ferrocene-Functionalized Phosphonium Ionic Liquids. J. Phys. Chem. C 2011, 115, 19379–19385. [Google Scholar] [CrossRef]
- Kübler, P.; Sundermeyer, J. Ferrocenyl-phosphonium ionic liquids—Synthesis, characterisation and electrochemistry. Dalton Trans. 2014, 43, 3750–3766. [Google Scholar] [CrossRef]
- Arkhipova, D.M.; Ermolaev, V.V.; Miluykov, V.A.; Valeeva, F.G.; Gaynanova, G.A.; Zakharova, L.Y.; Minyaev, M.E.; Ananikov, V.P. Tri-tert-butyl(n-alkyl)phosphonium Ionic Liquids: Structure, Properties and Application as Hybrid Catalyst Nanomaterials. Sustainability 2021, 13, 9862. [Google Scholar] [CrossRef]
- Ermolaev, V.V.; Arkhipova, D.M.; Miluykov, V.A.; Lyubina, A.P.; Amerhanova, S.K.; Kulik, N.V.; Voloshina, A.D.; Ananikov, V.P. Sterically Hindered Quaternary Phosphonium Salts (QPSs): Antimicrobial Activity and Hemolytic and Cytotoxic Properties. Int. J. Mol. Sci. 2022, 23, 86. [Google Scholar] [CrossRef] [PubMed]
- Arkhipova, D.M.; Ermolaev, V.V.; Milyukov, V.A.; Valeeva, F.G.; Gaynanova, G.A.; Zakharova, L.Y. Micellar nanocontainers based on sterically hindered cationic phosphonium amphiphiles. Rus. Chem. Bull. 2022, 71, 804–811. [Google Scholar] [CrossRef]
- Khrizanforov, M.N.; Arkhipova, D.M.; Shekurov, R.P.; Gerasimova, T.P.; Ermolaev, V.V.; Islamov, D.R.; Miluykov, V.A.; Kataeva, O.N.; Khrizanforova, V.V.; Sinyashin, O.G.; et al. Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J. Solid State Electrochem. 2015, 19, 2883–2890. [Google Scholar] [CrossRef]
- Khrizanforov, M.N.; Shekurov, R.P.; Ermolaev, V.V.; Arkhipova, D.M.; Miluykov, V.A.; Kataeva, O.N.; Khrizanforova, V.V.; Budnikova, Y.H. Novel phosphonium salt for paste electrode to study the redox properties of insoluble compounds. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1611–1612. [Google Scholar] [CrossRef]
- Ermolaev, V.; Gerasimova, T.; Kadyrgulova, L.; Shekurov, R.; Dolengovski, E.; Kononov, A.; Miluykov, V.; Sinyashin, O.; Katsyuba, S.; Budnikova, Y.; et al. Ferrocene-Containing Sterically Hindered Phosphonium Salts. Molecules 2018, 23, 2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadyrgulova, L.; Ermolaev, V.; Gilmanova, L.; Miluykov, V. Novel sterically hindered ferrocenyl-phosphonium salt. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 989–991. [Google Scholar] [CrossRef]
- Arkhipova, D.M.; Ermolaev, V.V.; Miluykov, V.A.; Gubaidullin, A.T.; Islamov, D.R.; Kataeva, O.N.; Ananikov, V.P. Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization. Nanomaterials 2020, 10, 2457. [Google Scholar] [CrossRef]
- Eisele, S.; Schwarz, M.; Speiser, B.; Tittel, C. Diffusion coefficient of ferrocene in 1-butyl-3-methylimidazolium tetrafluoroborate—Concentration dependence and solvent purity. Electrochim. Acta 2006, 51, 5304–5306. [Google Scholar] [CrossRef]
- Zanello, P.; Nervi, C.; De Biani, F.F. Inorganic electrochemistry: Theory, practice and application. R. Soc. Chem. 2019. [Google Scholar] [CrossRef]
- Cimino, P.; Troiani, A.; Pepi, F.; Garzoli, S.; Salvitti, C.; Di Rienzo, B.; Barone, V.; Ricci, A. From ascorbic acid to furan derivatives: The gas phase acid catalyzed degradation of vitamin C. Phys. Chem. Chem. Phys. 2018, 20, 17132–17140. [Google Scholar] [CrossRef] [PubMed]
Compound | δ(C(O)CH2), ppm | δ(P-CH2), ppm |
---|---|---|
3a | 3.59 | 3.24 |
4a | 3.50 | 2.92 |
3b | 2.84 | 2.04 |
4b | 2.94 | 2.42 |
3c | 2.85 | 2.85 |
4c | 2.84 | 2.41 |
3d | 2.71 | 1.94 |
4d | 2.71 | 2.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermolaev, V.V.; Kadyrgulova, L.R.; Khrizanforov, M.N.; Gerasimova, T.P.; Baembitova, G.R.; Lazareva, A.A.; Miluykov, V.A. Conductive Mediators in Oxidation Based on Ferrocene Functionalized Phosphonium Ionic Liquids. Int. J. Mol. Sci. 2022, 23, 15534. https://doi.org/10.3390/ijms232415534
Ermolaev VV, Kadyrgulova LR, Khrizanforov MN, Gerasimova TP, Baembitova GR, Lazareva AA, Miluykov VA. Conductive Mediators in Oxidation Based on Ferrocene Functionalized Phosphonium Ionic Liquids. International Journal of Molecular Sciences. 2022; 23(24):15534. https://doi.org/10.3390/ijms232415534
Chicago/Turabian StyleErmolaev, Vadim V., Liliya R. Kadyrgulova, Mikhail N. Khrizanforov, Tatiana P. Gerasimova, Gulnaz R. Baembitova, Anna A. Lazareva, and Vasili A. Miluykov. 2022. "Conductive Mediators in Oxidation Based on Ferrocene Functionalized Phosphonium Ionic Liquids" International Journal of Molecular Sciences 23, no. 24: 15534. https://doi.org/10.3390/ijms232415534
APA StyleErmolaev, V. V., Kadyrgulova, L. R., Khrizanforov, M. N., Gerasimova, T. P., Baembitova, G. R., Lazareva, A. A., & Miluykov, V. A. (2022). Conductive Mediators in Oxidation Based on Ferrocene Functionalized Phosphonium Ionic Liquids. International Journal of Molecular Sciences, 23(24), 15534. https://doi.org/10.3390/ijms232415534