Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Included Subjects
2.2. Genotypic Call Rate, Hardy–Weinberg Equilibrium (HWE), and Sample Power
2.3. Primary Endpoint
2.3.1. Analysis for ADORA2A rs5760423
2.3.2. Analysis for the CYP1A2 rs762551
2.4. Secondary Endpoint (Allele–Allele Combination Analysis)
3. Discussion
4. Materials and Methods
4.1. Study Design, Ethics, and Informed Consent
4.2. Study Population
4.3. Laboratory Techniques
4.4. Quality Assessment
4.5. Endpoints
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimers Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Prim. 2021, 7, 33. [Google Scholar] [CrossRef]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Yu, J.T.; Xu, W.; Tan, C.C.; Andrieu, S.; Suckling, J.; Evangelou, E.; Pan, A.; Zhang, C.; Jia, J.; Feng, L.; et al. Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Siokas, V.; Moza, S.; Kosmidis, M.H.; Vogiatzi, C.; Aloizou, A.M.; Geronikola, N.; Ntanasi, E.; Zalonis, I.; Yannakoulia, M.; et al. Pesticide exposure and cognitive function: Results from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). Environ. Res. 2019, 177, 108632. [Google Scholar] [CrossRef] [PubMed]
- Ranson, J.M.; Rittman, T.; Hayat, S.; Brayne, C.; Jessen, F.; Blennow, K.; van Duijn, C.; Barkhof, F.; Tang, E.; Mummery, C.J.; et al. Modifiable risk factors for dementia and dementia risk profiling. A user manual for Brain Health Services—Part 2 of 6. Alzheimer’s Res. Ther. 2021, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Bellenguez, C.; Grenier-Boley, B.; Lambert, J.C. Genetics of Alzheimer’s disease: Where we are, and where we are going. Curr. Opin. Neurobiol. 2020, 61, 40–48. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef]
- Cunha, R.A. How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem. 2016, 139, 1019–1055. [Google Scholar] [CrossRef]
- Faivre, E.; Coelho, J.E.; Zornbach, K.; Malik, E.; Baqi, Y.; Schneider, M.; Cellai, L.; Carvalho, K.; Sebda, S.; Figeac, M.; et al. Beneficial Effect of a Selective Adenosine A(2A) Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease. Front. Mol. Neurosci. 2018, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Erblang, M.; Drogou, C.; Gomez-Merino, D.; Metlaine, A.; Boland, A.; Deleuze, J.F.; Thomas, C.; Sauvet, F.; Chennaoui, M. The Impact of Genetic Variations in ADORA2A in the Association between Caffeine Consumption and Sleep. Genes 2019, 10, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannata, A.; De Luca, C.; Korkina, L.G.; Ferlazzo, N.; Ientile, R.; Currò, M.; Andolina, G.; Caccamo, D. The SNP rs2298383 Reduces ADORA2A Gene Transcription and Positively Associates with Cytokine Production by Peripheral Blood Mononuclear Cells in Patients with Multiple Chemical Sensitivity. Int. J. Mol. Sci. 2020, 21, 1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lappas, C.M.; Sullivan, G.W.; Linden, J. Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin. Investig. Drugs 2005, 14, 797–806. [Google Scholar] [CrossRef]
- Banks, N.F.; Tomko, P.M.; Colquhoun, R.J.; Muddle, T.W.D.; Emerson, S.R.; Jenkins, N.D.M. Genetic Polymorphisms in ADORA2A and CYP1A2 Influence Caffeine’s Effect on Postprandial Glycaemia. Sci. Rep. 2019, 9, 10532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Al-Attas, O.S.; Al-Daghri, N.M.; Mohammed, A.A.; De Rosas, E.; Ibrahim, S.; Vinodson, B.; Ansari, M.G.; El-Din, K.I. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol. Cell. Biochem. 2014, 391, 127–136. [Google Scholar] [CrossRef]
- Vibhuti, A.; Arif, E.; Mishra, A.; Deepak, D.; Singh, B.; Rahman, I.; Mohammad, G.; Pasha, M.A. CYP1A1, CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD. Clin. Chim. Acta 2010, 411, 474–480. [Google Scholar] [CrossRef]
- Laurent, C.; Eddarkaoui, S.; Derisbourg, M.; Leboucher, A.; Demeyer, D.; Carrier, S.; Schneider, M.; Hamdane, M.; Müller, C.E.; Buée, L.; et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol. Aging 2014, 35, 2079–2090. [Google Scholar] [CrossRef]
- Gardener, S.L.; Rainey-Smith, S.R.; Villemagne, V.L.; Fripp, J.; Doré, V.; Bourgeat, P.; Taddei, K.; Fowler, C.; Masters, C.L.; Maruff, P.; et al. Higher Coffee Consumption Is Associated with Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data from the Australian Imaging, Biomarkers, and Lifestyle Study. Front. Aging Neurosci. 2021, 13, 744872. [Google Scholar] [CrossRef]
- Ran, L.S.; Liu, W.H.; Fang, Y.Y.; Xu, S.B.; Li, J.; Luo, X.; Pan, D.J.; Wang, M.H.; Wang, W. Alcohol, coffee and tea intake and the risk of cognitive deficits: A dose-response meta-analysis. Epidemiol. Psychiatr. Sci. 2021, 30, e13. [Google Scholar] [CrossRef]
- Meng, S.X.; Wang, B.; Li, W.T. Serum expression of EAAT2 and ADORA2A in patients with different degrees of Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11783–11792. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre-Arbogast, S.; Dartigues, J.-F.; Tzourio, C.; Berr, C.; Helmer, C.; Samieri, C. Gene-diet interaction and dementia risk: The example of coffee and CYP1A2 gene. Alzheimer’s Dement. 2020, 16, e039850. [Google Scholar] [CrossRef]
- Palacios, N.; Weisskopf, M.; Simon, K.; Gao, X.; Schwarzschild, M.; Ascherio, A. Polymorphisms of caffeine metabolism and estrogen receptor genes and risk of Parkinson’s disease in men and women. Park. Relat. Disord. 2010, 16, 370–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, Y.H.; Lill, C.M.; Lee, P.C.; Hansen, J.; Lassen, C.F.; Bertram, L.; Greene, N.; Sinsheimer, J.S.; Ritz, B. Gene-Environment Interaction in Parkinson’s Disease: Coffee, ADORA2A, and CYP1A2. Neuroepidemiology 2016, 47, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siokas, V.; Aloizou, A.M.; Tsouris, Z.; Liampas, I.; Liakos, P.; Calina, D.; Docea, A.O.; Tsatsakis, A.; Bogdanos, D.P.; Hadjigeorgiou, G.M.; et al. ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson’s Disease. J. Clin. Med. 2021, 10, 381. [Google Scholar] [CrossRef]
- Siokas, V.; Karampinis, E.; Aloizou, A.M.; Mentis, A.A.; Liakos, P.; Papadimitriou, D.; Liampas, I.; Nasios, G.; Bogdanos, D.P.; Hadjigeorgiou, G.M.; et al. CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol. Sci. 2021, 42, 175–182. [Google Scholar] [CrossRef]
- Siokas, V.; Kardaras, D.; Aloizou, A.M.; Liampas, I.; Papageorgiou, E.; Drakoulis, N.; Tsatsakis, A.; Mitsias, P.D.; Hadjigeorgiou, G.M.; Tsironi, E.E.; et al. CYP1A2 rs762551 and ADORA2A rs5760423 Polymorphisms in Patients with Blepharospasm. J. Mol. Neurosci. 2020, 70, 1370–1375. [Google Scholar] [CrossRef]
- Xie, A.; Gao, J.; Xu, L.; Meng, D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. Biomed. Res. Int. 2014, 2014, 648740. [Google Scholar] [CrossRef]
- Varçin, M.; Bentea, E.; Michotte, Y.; Sarre, S. Oxidative stress in genetic mouse models of Parkinson’s disease. Oxid. Med. Cell. Longev. 2012, 2012, 624925. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Roberg, K.; Jerhammar, F.; Marcusson, J.; Terman, A. Oxidative stress induces intralysosomal accumulation of Alzheimer amyloid beta-protein in cultured neuroblastoma cells. Ann. N. Y. Acad. Sci. 2006, 1067, 248–251. [Google Scholar] [CrossRef]
- Gessi, S.; Poloni, T.E.; Negro, G.; Varani, K.; Pasquini, S.; Vincenzi, F.; Borea, P.A.; Merighi, S. A(2A) Adenosine Receptor as a Potential Biomarker and a Possible Therapeutic Target in Alzheimer’s Disease. Cells 2021, 10, 2344. [Google Scholar] [CrossRef] [PubMed]
- Horgusluoglu-Moloch, E.; Nho, K.; Risacher, S.L.; Kim, S.; Foroud, T.; Shaw, L.M.; Trojanowski, J.Q.; Aisen, P.S.; Petersen, R.C.; Jack, C.R., Jr.; et al. Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2017, 60, 92–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, K.; Faivre, E.; Pietrowski, M.J.; Marques, X.; Gomez-Murcia, V.; Deleau, A.; Huin, V.; Hansen, J.N.; Kozlov, S.; Danis, C.; et al. Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain 2019, 142, 3636–3654. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Liu, L.; Yan, C.; Zhu, X.; Fan, M.; Yu, P.; Ji, K.; Huang, Y.; Wang, Y.; Zhu, G. Association between ADORA2A gene polymorphisms and schizophrenia in the North Chinese Han population. Neuropsychiatr. Dis. Treat. 2019, 15, 2451–2458. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Chen, Y.; Li, W.; Xia, H.; Liu, B.; Guo, H.; Yang, Y.; Xu, C.; Xie, S.; Xu, X. Genetic Polymorphism of ADORA2A Is Associated with the Risk of Epilepsy and Predisposition to Neurologic Comorbidity in Chinese Southern Children. Front. Neurosci. 2020, 14, 590605. [Google Scholar] [CrossRef]
- Shinohara, M.; Saitoh, M.; Nishizawa, D.; Ikeda, K.; Hirose, S.; Takanashi, J.; Takita, J.; Kikuchi, K.; Kubota, M.; Yamanaka, G.; et al. ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus. Neurology 2013, 80, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.P.; Slager, S.L.; De Leon, A.B.; Heiman, G.A.; Klein, D.F.; Hodge, S.E.; Weissman, M.M.; Fyer, A.J.; Knowles, J.A. Evidence for genetic linkage between a polymorphism in the adenosine 2A receptor and panic disorder. Neuropsychopharmacology 2004, 29, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ma, Y.; Wang, X.; Zhang, W.; Han, W.; Liu, H.; Li, M.; Xiao, J.; Wei, H.; Wang, C.; et al. Evaluation of Adenosine A2A receptor gene polymorphisms as risk factors of methamphetamine use disorder susceptibility and predictors of craving degree. Psychiatry Res. 2022, 316, 114790. [Google Scholar] [CrossRef]
- Janik, P.; Berdyński, M.; Safranow, K.; Żekanowski, C. Association of ADORA1 rs2228079 and ADORA2A rs5751876 Polymorphisms with Gilles de la Tourette Syndrome in the Polish Population. PLoS ONE 2015, 10, e0136754. [Google Scholar] [CrossRef]
- Cornelis, M.C.; El-Sohemy, A.; Campos, H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 2007, 86, 240–244. [Google Scholar] [CrossRef]
- Domschke, K.; Gajewska, A.; Winter, B.; Herrmann, M.J.; Warrings, B.; Mühlberger, A.; Wosnitza, K.; Glotzbach, E.; Conzelmann, A.; Dlugos, A.; et al. ADORA2A Gene variation, caffeine, and emotional processing: A multi-level interaction on startle reflex. Neuropsychopharmacology 2012, 37, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, T.G.; Popescu, B.O. Impact of Caffeine on Alzheimer’s Disease Pathogenesis-Protective or Risk Factor? Life 2022, 12, 330. [Google Scholar] [CrossRef] [PubMed]
- Baeta-Corral, R.; Johansson, B.; Giménez-Llort, L. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer’s Disease and Affects Mice with Normal Aging. Front. Pharmacol. 2018, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Eskelinen, M.H.; Kivipelto, M. Caffeine as a protective factor in dementia and Alzheimer’s disease. J. Alzheimers Dis. 2010, 20, S167–S174. [Google Scholar] [CrossRef] [Green Version]
- Huin, V.; Dhaenens, C.-M.; Homa, M.; Carvalho, K.; Buée, L.; Sablonnière, B. Neurogenetics of the human adenosine receptor genes: Genetic structures and involvement in brain diseases. J. Caffeine Adenosine Res. 2019, 9, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Childs, E.; Hohoff, C.; Deckert, J.; Xu, K.; Badner, J.; de Wit, H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2008, 33, 2791–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arseniou, S.; Siokas, V.; Aloizou, A.M.; Stamati, P.; Mentis, A.A.; Tsouris, Z.; Dastamani, M.; Peristeri, E.; Valotassiou, V.; Bogdanos, D.P.; et al. SLC2A3 rs12842 polymorphism and risk for Alzheimer’s disease. Neurol. Res. 2020, 42, 853–861. [Google Scholar] [CrossRef]
- Siokas, V.; Aloizou, A.M.; Liampas, I.; Bakirtzis, C.; Tsouris, Z.; Sgantzos, M.; Liakos, P.; Bogdanos, D.P.; Hadjigeorgiou, G.M.; Dardiotis, E. Myelin-associated oligodendrocyte basic protein rs616147 polymorphism as a risk factor for Parkinson’s disease. Acta Neurol. Scand. 2022, 145, 223–228. [Google Scholar] [CrossRef]
- Siokas, V.; Aslanidou, P.; Aloizou, A.M.; Peristeri, E.; Stamati, P.; Liampas, I.; Arseniou, S.; Drakoulis, N.; Aschner, M.; Tsatsakis, A.; et al. Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer’s Disease? J. Mol. Neurosci. 2020, 70, 851–860. [Google Scholar] [CrossRef]
- Stamati, P.; Siokas, V.; Aloizou, A.M.; Karampinis, E.; Arseniou, S.; Rakitskii, V.N.; Tsatsakis, A.; Spandidos, D.A.; Gozes, I.; Mitsias, P.D.; et al. Does SCFD1 rs10139154 Polymorphism Decrease Alzheimer’s Disease Risk? J. Mol. Neurosci. 2019, 69, 343–350. [Google Scholar] [CrossRef]
- Siokas, V.; Stamati, P.; Pateraki, G.; Liampas, I.; Aloizou, A.-M.; Tsirelis, D.; Nousia, A.; Sgantzos, M.; Nasios, G.; Bogdanos, D.P.; et al. Analysis of SOD2 rs4880 Genetic Variant in Patients with Alzheimer’s Disease. Curr. Issues Mol. Biol. 2022, 44, 4406–4414. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siokas, V.; Aloizou, A.M.; Liampas, I.; Bakirtzis, C.; Nasios, G.; Paterakis, K.; Sgantzos, M.; Bogdanos, D.P.; Spandidos, D.A.; Tsatsakis, A.; et al. Lack of an association between SCFD1 rs10139154 polymorphism and amyotrophic lateral sclerosis. Mol. Med. Rep. 2022, 25, 1–8. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
SNP | Genotypes/ Alleles | Healthy Controls (n = 327) | AD (n = 327) | Whole Sample (n = 654) |
---|---|---|---|---|
rs5760423 | n (%) | n (%) | n (%) | |
Genotype | G/G | 106 (33) | 85 (27) | 191 (30) |
G/T | 161 (50) | 157 (49) | 318 (49) | |
T/T | 57 (17) | 78 (24) | 135 (21) | |
Allele | G | 373 (58) | 327 (51) | 700 (54) |
T | 275 (42) | 313 (49) | 588 (46) |
Unadjusted Analysis | Adjusted Analysis | ||||
---|---|---|---|---|---|
Mode | Genotype | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Codominant | G/G | 1.00 | 0.06 | 1.00 | 0.044 |
T/G | 1.22 (0.85–1.74) | 1.15 (0.79–1.66) | |||
T/T | 1.71 (1.09–2.66) | 1.76 (1.11–2.78) | |||
Dominant | G/G | 1.00 | 0.087 | 1.00 | 0.14 |
T/G-T/T | 1.34 (0.96–1.89) | 1.30 (0.92–1.85) | |||
Recessive | G/G-T/G | 1.00 | 0.034 | 1.00 | 0.017 |
T/T | 1.51 (1.03–2.21) | 1.61 (1.09–2.39) | |||
Overdominant | G/G-T/T | 1.00 | 0.87 | 1.00 | 0.56 |
T/G | 0.98 (0.72–1.33) | 0.91 (0.66–1.25) | |||
Log-additive | --- | 1.30 (1.04–1.62) | 0.02 | 1.31 (1.04–1.64) | 0.019 |
SNP | Genotypes/ Alleles | Healthy Controls (n = 327) | AD (n = 327) | Whole Sample (n = 654) |
---|---|---|---|---|
rs762551 | n (%) | n (%) | n (%) | |
Genotype | A/A | 131 (40) | 145 (45) | 276 (43) |
A/C | 147 (45) | 141 (44) | 288 (44) | |
C/C | 46 (14) | 38 (12) | 84 (13) | |
Allele | A | 409 (63) | 431 (67) | 840 (65) |
C | 239 (37) | 217 (33) | 456 (35) |
Unadjusted Analysis | Adjusted Analysis | ||||
---|---|---|---|---|---|
Mode | Genotype | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Codominant | A/A | 1.00 | 0.45 | 1.00 | 0.43 |
C/A | 0.87 (0.62–1.21) | 0.90 (0.64–1.26) | |||
C/C | 0.75 (0.46–1.22) | 0.72 (0.44–1.19) | |||
Dominant | A/A | 1.00 | 0.27 | 1.00 | 0.33 |
C/A-C/C | 0.84 (0.61–1.14) | 0.85 (0.62–1.18) | |||
Recessive | A/A-C/A | 1.00 | 0.35 | 1.00 | 0.25 |
C/C | 0.80 (0.51–1.27) | 0.76 (0.47–1.22) | |||
Overdominant | A/A-C/C | 1.00 | 0.64 | 1.00 | 0.85 |
C/A | 0.93 (0.68–1.26) | 0.97 (0.70–1.33) | |||
Log-additive | --- | 0.86 (0.69–1.08) | 0.21 | 0.86 (0.68–1.09) | 0.21 |
Combined Allele Carriage | Healthy Controls | AD | Whole Sample | |
---|---|---|---|---|
rs5760423 | rs762551 | |||
G | A | 231 | 213 | 444 |
Non-G | Non-A | 11 | 8 | 19 |
T | A | 184 | 206 | 390 |
Non-T | Non-A | 13 | 8 | 21 |
G | C | 158 | 131 | 289 |
Non-G | Non-C | 23 | 32 | 55 |
T | C | 124 | 138 | 262 |
Non-T | Non-C | 38 | 46 | 84 |
Unadjusted Analysis | Adjusted Analysis | ||||
---|---|---|---|---|---|
Combined Allele Carriage | |||||
rs5760423 | rs762551 | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
G | A | 1.27 (0.50–3.21) | 0.62 1 | 1.32 (0.51–3.46) | 0.57 1 |
T | A | 1.82 (0.74–4.49) | 0.19 2 | 1.89 (0.75–4.75) | 0.18 2 |
G | C | 0.59 (0.33–1.07) | 0.082 3 | 0.57 (0.31–1.03) | 0.064 3 |
T | C | 0.91 (0.56–1.51) | 0.74 4 | 0.91 (0.55–1.50) | 0.71 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siokas, V.; Mouliou, D.S.; Liampas, I.; Aloizou, A.-M.; Folia, V.; Zoupa, E.; Papadimitriou, A.; Lavdas, E.; Bogdanos, D.P.; Dardiotis, E. Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 14400. https://doi.org/10.3390/ijms232214400
Siokas V, Mouliou DS, Liampas I, Aloizou A-M, Folia V, Zoupa E, Papadimitriou A, Lavdas E, Bogdanos DP, Dardiotis E. Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease. International Journal of Molecular Sciences. 2022; 23(22):14400. https://doi.org/10.3390/ijms232214400
Chicago/Turabian StyleSiokas, Vasileios, Dimitra S. Mouliou, Ioannis Liampas, Athina-Maria Aloizou, Vasiliki Folia, Elli Zoupa, Anastasios Papadimitriou, Eleftherios Lavdas, Dimitrios P. Bogdanos, and Efthimios Dardiotis. 2022. "Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease" International Journal of Molecular Sciences 23, no. 22: 14400. https://doi.org/10.3390/ijms232214400
APA StyleSiokas, V., Mouliou, D. S., Liampas, I., Aloizou, A. -M., Folia, V., Zoupa, E., Papadimitriou, A., Lavdas, E., Bogdanos, D. P., & Dardiotis, E. (2022). Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease. International Journal of Molecular Sciences, 23(22), 14400. https://doi.org/10.3390/ijms232214400