Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals
Abstract
:1. Introduction
2. Using Radiolysis to Probe Nitro-Oxidative Modifications to Amino Acids and Proteins
2.1. ‘Converting’ eaq− and •OH to Specific Oxidants
2.2. Yields of Radicals Produced by the Radiolysis of Water
2.3. Measuring Rate Constants Using Radiation-Chemical Generation of Radicals: Some Limitations
2.4. It Is Important Not to Overlook Minor Reactions
2.5. Reduction (Electrode) Potentials of Radicals as a Guide to Reactivity
3. Oxidation of Tyrosine and the ‘Repair’ of the Tyrosyl Radical
3.1. Kinetics of Reduction of Tyrosine Phenoxyl Radicals By Glutathione
3.2. Kinetics of Oxidation of Tyrosine by a Model Alkoxyl Radical and Free-Radical Reactions in Hydrophobic Membranes
4. Involvement of Nitric Oxide and Oxygen in Reactions of Tyrosyl Radicals
The Effects of Nitric Oxide or Oxygen on the Stable Products Formed from the Tyrosine Phenoxyl Radical and Tyrosine Hydroxyl Radical Adducts
5. Reactions of Other Biological Targets Towards Peroxynitrite-Derived Radicals
5.1. Carbonate and Nitrogen Dioxide Radicals Readily React with Lipoic and Dihydrolipoic Acid
5.2. Reactivity of Hydrogen Sulfide with Peroxynitrite
6. Reactivities of Peroxynitrite-Derived Radicals with a Spin Trap and an Iron Chelator
6.1. Reactions of CO3•− and NO2 with DMPO
6.2. Reactions of CO3•− and •NO2 with Desferrioxamine
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Halliwell, B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Lett. 1978, 96, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Burkitt, M.J. Chemical, biological and medical controversies surrounding the Fenton reaction. Prog. React. Kinet. Mech. 2003, 38, 75–103. [Google Scholar] [CrossRef]
- Wardman, P.; Candeias, L.P. Fenton chemistry: An introduction. Radiat. Res. 1996, 145, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 1990, 87, 1620–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018, 118, 1338–1408. [Google Scholar] [CrossRef]
- Ischiropoulos, H.; Zhu, L.; Beckman, J.S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 1992, 298, 446–451. [Google Scholar] [CrossRef]
- Radi, R.; Beckman, J.S.; Bush, K.M.; Freeman, B.A. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991, 288, 481–487. [Google Scholar] [CrossRef]
- Radi, R.; Beckman, J.S.; Bush, K.M.; Freeman, B.A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 1991, 266, 4244–4250. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526. [Google Scholar] [CrossRef]
- Radi, R.; Cosgrove, T.P.; Beckman, J.S.; Freeman, B.A. Peroxynitrite-induced luminol chemiluminescence. Biochem. J. 1993, 290, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusto, O.; Goldstein, S.; Hurst, J.K.; Lind, J.; Lymar, S.V.; Merenyi, G.; Radi, R. Carbon dioxide-catalyzed peroxynitrite reactivity—The resilience of the radical mechanism after two decades of research. Free Radic. Biol. Med. 2019, 135, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl Acad Sci USA 2004, 101, 4003–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radi, R.; Denicola, A.; Alvarez, B.; Ferrer-Sueta, G.; Rubbo, H. The Biological Chemistry of Peroxynitrite. In Nitric Oxide Biology and Pathobiology; Ignarro, L.J., Ed.; Academic Press: San Diego, CA, USA, 2000; pp. 57–82. [Google Scholar]
- Fleming, A.M.; Burrows, C.J. Iron Fenton oxidation of 2′-deoxyguanosine in physiological bicarbonate buffer yields products consistent with the reactive oxygen species carbonate radical anion not the hydroxyl radical. Chem. Commun. 2020, 56, 9779–9782. [Google Scholar] [CrossRef]
- Patra, S.G.; Mizrahi, A.; Meyerstein, D. The Role of Carbonate in Catalytic Oxidations. Acc. Chem Res. 2020, 53, 2189–2200. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta 2001, 1504, 196–219. [Google Scholar] [CrossRef] [Green Version]
- Houée-Levin, C.; Bobrowski, K. The use of the methods of radiolysis to explore the mechanisms of free radical modifications in proteins. J. Proteom. 2013, 92, 51–62. [Google Scholar] [CrossRef]
- Kobayashi, K. Pulse Radiolysis Studies for Mechanism in Biochemical Redox Reactions. Chem. Rev. 2019, 119, 4413–4462. [Google Scholar] [CrossRef]
- Schoneich, C. Radical rearrangement and transfer reactions in proteins. Essays Biochem. 2020, 64, 87–96. [Google Scholar] [CrossRef]
- Adams, G.E.; Michael, B.D. Pulse radiolysis of benzoquinone and hydroquinone. Semiquinone formation by water elimination from trihydroxy-ciclohexadienyl radicals. Trans. Faraday Soc. 1967, 63, 1171–1180. [Google Scholar] [CrossRef]
- Land, E.J.; Ebert, M. Pulse radiolysis studies in aqueous phenol. Trans. Faraday Soc. 1967, 63, 1181–1190. [Google Scholar] [CrossRef]
- Adams, G.E.; Aldrich, J.E.; Bisby, R.H.; Cundall, R.B.; Redpath, J.L.; Willson, R.L. Selective free radical reactions with proteins and enzymes: Reactions of inorganic radical anions with amino acids. Radiat Res. 1972, 49, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.E.; Bisby, R.H.; Cundall, R.B.; Redpath, J.L.; Willson, R.L. Selective free radical reactions with proteins and enzymes: The inactivation of ribonuclease. Radiat. Res. 1972, 49, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Prutz, W.A.; Monig, H.; Butler, J.; Land, E.J. Reactions of nitrogen dioxide in aqueous model systems: Oxidation of tyrosine units in peptides and proteins. Arch. Biochem. Biophys. 1985, 243, 125–134. [Google Scholar] [CrossRef]
- Prutz, W.A.; Butler, J.; Land, E.J.; Swallow, A.J. Direct demonstration of electron transfer between tryptophan and tyrosine in proteins. Biochem. Biophys. Res. Commun. 1980, 96, 408–414. [Google Scholar] [CrossRef]
- Bobrowski, K.; Wierzchowski, K.L.; Holcman, J.; Ciurak, M. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. IV. Met/S:.Br-->Tyr/O. radical transformation in aqueous solution of H-Tyr-(Pro)n-Met-OH peptides. Int. J. Radiat. Biol. 1992, 62, 507–516. [Google Scholar] [CrossRef]
- Dixon, W.T.; Murphy, D. Determination of acid dissociation constants of some phenol radical cations. J. Chem. Soc. Faraday Trans. 2 1978, 74, 432–439. [Google Scholar] [CrossRef]
- Czapski, G.; Lymar, S.V.; Schwarz, H.A. Acidity of the carbonate radical. J. Phys. Chem. 1999, 103, 3447–3450. [Google Scholar] [CrossRef]
- Posener, M.L.; Adams, G.E.; Wardman, P.; Cundall, R.B. Mechanisms of tryptophan oxidations by some inorganic radical-anions: A pulse radiolysis study. J. Chem. Soc. Faraday Trans. 1 1976, 72, 2231–2239. [Google Scholar] [CrossRef]
- Mozumder, A. Fundamentals of Radiation Chemistry; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Buxton, G.V. Radiation chemistry of the liquid state: (I) Water and homogeneous aqueous solutions. In Radiation Chemistry. Principles and Applications; Farhataziz, R.M.A.J., Ed.; VCH Publisher: New York, NY, USA, 1987; pp. 321–349. [Google Scholar]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/ ·O-) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Madden, K.P.; Mezyk, S.P. Critical review of aqueous solution reaction rate constants for hydrogen atoms. J. Phys. Chem. Ref. Data. 2011, 40, 023103. [Google Scholar] [CrossRef]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L. Reactivity of HO2/O2- radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of peroxyl radicals in fluid solutions. J. Phys. Chem. Ref. Data. 1990, 19, 413–513. [Google Scholar] [CrossRef] [Green Version]
- Neta, P.; Grodkowski, J. Rate constants for reactions of phenoxyl radicals in solution. J. Phys. Chem. Ref. Data. 2005, 34, 109–199. [Google Scholar] [CrossRef] [Green Version]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Neta, P.; Grodkowski, J.; Ross, A.B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1996, 25, 709–1050. [Google Scholar] [CrossRef]
- Buxton, G.V.; Mulazzani, Q.G.; Ross, A.B. Critical review of rate constants for reactions of transients from metal ions and metal complexes in aqueous solution. J. Phys. Chem. Ref. Data. 1985, 24, 1055–1349. [Google Scholar] [CrossRef] [Green Version]
- Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Folkes, L.K.; Candeias, L.P. Interpretation of the reactivity of peroxidase compounds I and II with phenols by the Marcus equation. FEBS Lett 1997, 412, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, T.P. Marcus Theory: Thermodynamics CAN control the kinetics of electron transfer reactions. J. Chem. Educ. 2012, 89, 1159–1167. [Google Scholar] [CrossRef]
- Armstrong, D.A.; Huie, R.E.; Koppenol, W.H.; Lymar, S.V.; Merenyi, G.; Neta, P.; Ruscica, B.; Stanburyd, D.M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1139–1150. [Google Scholar] [CrossRef]
- Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data. 1989, 18, 1637–1755. [Google Scholar] [CrossRef] [Green Version]
- Madej, E.; Wardman, P. The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH. Arch. Biochem. Biophys. 2007, 462, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Augusto, O.; Bonini, M.G.; Amanso, A.M.; Linares, E.; Santos, C.C.; De Menezes, S.L. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic. Biol. Med. 2002, 32, 841–859. [Google Scholar] [CrossRef]
- Gunther, M.R.; Hsi, L.C.; Curtis, J.F.; Gierse, J.K.; Marnett, L.J.; Eling, T.E.; Mason, R.P. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J. Biol. Chem. 1997, 272, 17086–17090. [Google Scholar] [CrossRef] [Green Version]
- Lepoivre, M.; Flaman, J.M.; Henry, Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J. Biol. Chem. 1992, 267, 22994–23000. [Google Scholar] [CrossRef]
- Heinecke, J.W.; Li, W.; Francis, G.A.; Goldstein, J.A. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J. Clin. Investig. 1993, 91, 2866–2872. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, B.; Ferrer-Sueta, G.; Freeman, B.A.; Radi, R. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J. Biol. Chem. 1999, 274, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Folkes, L.K.; Trujillo, M.; Bartesaghi, S.; Radi, R.; Wardman, P. Kinetics of reduction of tyrosine phenoxyl radicals by glutathione. Arch. Biochem. Biophys. 2011, 506, 242–249. [Google Scholar] [CrossRef]
- Hunter, E.P.; Desrosiers, M.F.; Simic, M.G. The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization. Free Radic Biol. Med. 1989, 6, 581–585. [Google Scholar] [CrossRef]
- Cuddihy, S.L.; Parker, A.; Harwood, D.T.; Vissers, M.C.; Winterbourn, C.C. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radic. Biol. Med. 2008, 44, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.S.; Cistola, D.P.; Hsu, F.F.; Muzaffar, S.; Mueller, D.M.; Hazen, S.L.; Heinecke, J.W. Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. J. Biol. Chem. 1996, 271, 19950–19956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaff, O.; Jolliffe, K.A.; Hutton, C.A. Synthesis of the side chain cross-linked tyrosine oligomers dityrosine, trityrosine and pulcherosine. J. Org. Chem. 2005, 70, 7353–7363. [Google Scholar] [CrossRef]
- Bartesaghi, S.; Ferrer-Sueta, G.; Peluffo, G.; Valez, V.; Zhang, H.; Kalyanaraman, B.; Radi, R. Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 2007, 32, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, S.; Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018, 14, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Campolo, N.; Issoglio, F.M.; Estrin, D.A.; Bartesaghi, S.; Radi, R. 3-Nitrotyrosine and related derivatives in proteins: Precursors, radical intermediates and impact in function. Essays Biochem. 2020, 64, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C.; Parsons-Mair, H.N.; Gebicki, S.; Gebicki, J.M.; Davies, M.J. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem. J. 2004, 381, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Leitich, J.; von Sonntag, C. The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. Perkin Trans. 2 1993, 2, 1583–1588. [Google Scholar] [CrossRef]
- Das, A.B.; Nauser, T.; Koppenol, W.H.; Kettle, A.J.; Winterbourn, C.C.; Nagy, P. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition. Free Radic. Biol. Med. 2014, 70, 86–95. [Google Scholar] [CrossRef]
- Nagy, P.; Kettle, A.J.; Winterbourn, C.C. Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radic. Biol. Med. 2010, 49, 792–799. [Google Scholar] [CrossRef]
- Nagy, P.; Lechte, T.P.; Das, A.B.; Winterbourn, C.C. Conjugation of glutathione to oxidized tyrosine residues in peptides and proteins. J. Biol. Chem. 2012, 287, 26068–26076. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Joseph, J.; Feix, J.; Hogg, N.; Kalyanaraman, B. Nitration and oxidation of a hydrophobic tyrosine probe by peroxynitrite in membranes: Comparison with nitration and oxidation of tyrosine by peroxynitrite in aqueous solution. Biochemistry 2001, 40, 7675–7686. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, S.; Valez, V.; Trujillo, M.; Peluffo, G.; Romero, N.; Zhang, H.; Kalyanaraman, B.; Radi, R. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry 2006, 45, 6813–6825. [Google Scholar] [CrossRef] [PubMed]
- Batthyany, C.; Bartesaghi, S.; Mastrogiovanni, M.; Lima, A.; Demicheli, V.; Radi, R. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects. Antioxid. Redox Signal. 2017, 26, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi, S.; Herrera, D.; Martinez, D.M.; Petruk, A.; Demicheli, V.; Trujillo, M.; Marti, M.A.; Estrin, D.A.; Radi, R. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation. Arch. Biochem. Biophys. 2017, 622, 9–25. [Google Scholar] [CrossRef]
- Bartesaghi, S.; Wenzel, J.; Trujillo, M.; Lopez, M.; Joseph, J.; Kalyanaraman, B.; Radi, R. Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes. Chem. Res. Toxicol. 2010, 23, 821–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, N.; Peluffo, G.; Bartesaghi, S.; Zhang, H.; Joseph, J.; Kalyanaraman, B.; Radi, R. Incorporation of the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester to red blood cell membranes to study peroxynitrite-dependent reactions. Chem. Res. Toxicol. 2007, 20, 1638–1648. [Google Scholar] [CrossRef]
- Zhang, H.; Bhargava, K.; Keszler, A.; Feix, J.; Hogg, N.; Joseph, J.; Kalyanaraman, B. Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J. Biol. Chem. 2003, 278, 8969–8978. [Google Scholar] [CrossRef] [Green Version]
- Folkes, L.K.; Bartesaghi, S.; Trujillo, M.; Radi, R.; Wardman, P. Kinetics of oxidation of tyrosine by a model alkoxyl radical. Free Radic. Res. 2012, 46, 1150–1156. [Google Scholar] [CrossRef]
- Erben-Russ, M.; Michel, C.; Bors, W.; Saran, M. Absolute rate constants of alkoxyl radical reactions in aqueous solution. J. Phys. Chem. 1987, 91, 2362–2365. [Google Scholar] [CrossRef]
- Wilcox, A.L.; Marnett, L.J. Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: A key step in hydroperoxide-amplified lipid peroxidation. Chem. Res. Toxicol. 1993, 6, 413–416. [Google Scholar] [CrossRef]
- Folkes, L.K.; Bartesaghi, S.; Trujillo, M.; Wardman, P.; Radi, R. The effects of nitric oxide or oxygen on the stable products formed from the tyrosine phenoxyl radical. Free Radic Res. 2021, 55, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Eiserich, J.P.; Butler, J.; van der Vliet, A.; Cross, C.E.; Halliwell, B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem. J. 1995, 310, 745–749. [Google Scholar] [CrossRef] [Green Version]
- Lynn, K.R.; Purdie, J.W. Some pulse and gamma radiolysis studies of tyrosine and its glycyl peptides. Int. J. Radiat. Phys. Chem. 1976, 8, 685–689. [Google Scholar] [CrossRef]
- Solar, S.; Solar, W.; Getoff, N. Reactivity of OH with tyrosine in aqueous solution studied by pulse radiolysis. J. Phys. Chem. 1984, 88, 2091–2095. [Google Scholar] [CrossRef]
- Cudina, I.; Josimovic, J. The effect of oxygen on the radiolysis of tyrosine in aqueous solutions. Radiat. Res. 1987, 109, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Mvula, E.; Schuchmann, M.N.; Sonntag, C.V. Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J. Chem. Soc. Perkin Trans. 2001, 2, 264–268. [Google Scholar] [CrossRef]
- Pedron, F.N.; Bartesaghi, S.; Estrin, D.A.; Radi, R.; Zeida, A. A computational investigation of the reactions of tyrosyl, tryptophanyl, and cysteinyl radicals with nitric oxide and molecular oxygen. Free Radic. Res. 2019, 53, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Folkes, L.K. The Role of Nitric Oxide as a Hypoxic Cell Radiosensitizer. Doctoral Dissertation, Linacre College, University of Oxford, Oxford, UK, 2013. [Google Scholar]
- Packer, L.; Witt, E.H.; Tritschler, H.J. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef]
- Trujillo, M.; Radi, R. Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: New insights into the reaction of peroxynitrite with thiols. Arch. Biochem. Biophys. 2002, 397, 91–98. [Google Scholar] [CrossRef]
- Trujillo, M.; Folkes, L.; Bartesaghi, S.; Kalyanaraman, B.; Wardman, P.; Radi, R. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radic. Biol. Med. 2005, 39, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.C.; Aruoma, O.I.; Evans, P.J.; O’Neill, C.; Van der Vliet, A.; Cross, C.E.; Tritschler, H.; Halliwell, B. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radic. Res. 1994, 20, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Liu, Y. Interactions of lipoic acid radical cations with vitamins C and E analogue and hydroxycinnamic acid derivatives. Arch. Biochem. Biophys. 2002, 406, 78–84. [Google Scholar] [CrossRef]
- Benchoam, D.; Cuevasanta, E.; Moller, M.N.; Alvarez, B. Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant Oxidizing Species. Antioxidants 2019, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H2S Signaling through Persulfidation. Chem. Rev. 2018, 118, 1253–1337. [Google Scholar] [CrossRef] [PubMed]
- Levinn, C.M.; Cerda, M.M.; Pluth, M.D. Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxid. Redox Signal. 2020, 32, 96–109. [Google Scholar] [CrossRef]
- Myszkowska, J.; Derevenkov, I.; Makarov, S.V.; Spiekerkoetter, U.; Hannibal, L. Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide. Antioxidants 2021, 10, 1065. [Google Scholar] [CrossRef]
- Beltowski, J. Synthesis, Metabolism, and Signaling Mechanisms of Hydrogen Sulfide: An Overview. Methods Mol. Biol. 2019, 2007, 1–8. [Google Scholar] [CrossRef]
- Das, T.N.; Huie, R.E.; Neta, P.; Padmaja, S. Reduction potential of the sulhydryl radical: Pulse radiolysis and laser flash photolysis studies on the formation and reactions of SH and HSSH—In aqueous solution. J. Phys. Chem. A 1999, 103, 5221–5226. [Google Scholar] [CrossRef]
- Alvarez, M.N.; Peluffo, G.; Folkes, L.; Wardman, P.; Radi, R. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: Pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies. Free Radic. Biol. Med. 2007, 43, 1523–1533. [Google Scholar] [CrossRef]
- Nash, K.M.; Rockenbauer, A.; Villamena, F.A. Reactive nitrogen species reactivities with nitrones: Theoretical and experimental studies. Chem. Res. Toxicol. 2012, 25, 1581–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusto, O.; Gatti, R.M.; Radi, R. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: Direct evidence for metal-independent formation of free radical intermediates. Arch. Biochem. Biophys. 1994, 310, 118–125. [Google Scholar] [CrossRef]
- Bartesaghi, S.; Trujillo, M.; Denicola, A.; Folkes, L.; Wardman, P.; Radi, R. Reactions of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals. Free Radic. Biol. Med. 2004, 36, 471–483. [Google Scholar] [CrossRef]
- Denicola, A.; Souza, J.M.; Gatti, R.M.; Augusto, O.; Radi, R. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: Role of the hydroxamic groups. Free Radic. Biol. Med. 1995, 19, 11–19. [Google Scholar] [CrossRef]
- Reeder, B.J.; Hider, R.C.; Wilson, M.T. Iron chelators can protect against oxidative stress through ferryl heme reduction. Free Radic. Biol. Med. 2008, 44, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Donkor, R.; Dunster, C.A.; Gee, C.A.; Jonas, S.; Willson, R.L. Desferrioxamine (Desferal) and superoxide free radicals. Formation of an enzyme-damaging nitroxide. Biochem. J. 1987, 246, 725–729. [Google Scholar] [CrossRef]
- Hoe, S.; Rowley, D.A.; Halliwell, B. Reactions of ferrioxamine and desferrioxamine with the hydroxyl radical. Chem. Biol. Interact. 1982, 41, 75–81. [Google Scholar] [CrossRef]
- Houée-Levin, C.; Bobrowski, K.; Horakova, L.; Karademir, B.; Schoneich, C.; Davies, M.J.; Spickett, C.M. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analyisis and biological consequences. Free Radic. Res. 2015, 49, 347–373. [Google Scholar] [CrossRef] [Green Version]
Couple (Oxidant/Reductant) | E°′/V |
---|---|
•OH, H+/ H2O | 2.32 |
Br2•−/ 2 Br− | 1.63 |
CO3•−/ CO32− | 1.57 |
N3•/ N3− | 1.33 |
(SCN)2•−/ 2 SCN– | 1.30 |
•NO2/ NO2− | 1.04 |
Trp•, H+/ TrpH b | 1.03 |
GS•, H+/ GSH c | 0.94 |
TyrO•, H+/ TyrOH d LOO•, H+/ LOOH LO•, H+/ LOH HS•, H+/ H2S | 0.91 1.01 1.76 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folkes, L.K.; Bartesaghi, S.; Trujillo, M.; Wardman, P.; Radi, R. Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals. Int. J. Mol. Sci. 2022, 23, 1797. https://doi.org/10.3390/ijms23031797
Folkes LK, Bartesaghi S, Trujillo M, Wardman P, Radi R. Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals. International Journal of Molecular Sciences. 2022; 23(3):1797. https://doi.org/10.3390/ijms23031797
Chicago/Turabian StyleFolkes, Lisa K., Silvina Bartesaghi, Madia Trujillo, Peter Wardman, and Rafael Radi. 2022. "Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals" International Journal of Molecular Sciences 23, no. 3: 1797. https://doi.org/10.3390/ijms23031797
APA StyleFolkes, L. K., Bartesaghi, S., Trujillo, M., Wardman, P., & Radi, R. (2022). Radiolysis Studies of Oxidation and Nitration of Tyrosine and Some Other Biological Targets by Peroxynitrite-Derived Radicals. International Journal of Molecular Sciences, 23(3), 1797. https://doi.org/10.3390/ijms23031797