Inherited Thrombophilia in the Era of Direct Oral Anticoagulants
Abstract
:1. Introduction
2. Inherited Thrombophilia
2.1. FVL
2.2. F2 c.*97G>A Variant
2.3. AT Deficiency
2.4. PC Deficiency
2.5. PS Deficiency
3. Laboratory Testing for Inherited Thrombophilia upon DOACs
3.1. Biological Diagnostics of Inherited Thrombophilia
3.2. Interference of DOACs in Inherited Thrombophilia Testing
3.2.1. Antithrombin
3.2.2. Protein C
3.2.3. Protein S
Methods | Dabigatran | Apixaban | Edoxaban | Rivaroxaban |
---|---|---|---|---|
Antithrombin activity | ||||
FXa-based assays | √ no effect | X increase | X increase | X increase |
➢ In vitro studies: 25–1000 ng/mL 5 assays tested [39,51,52,53] | ➢ In vitro studies: 8–1000 ng/mL 5 assays tested [40,41,47,48,49] | ➢ In vitro studies: 10–600 ng/mL 3 assays tested [41,49,50] | ➢ In vitro studies: 7–1000 ng/mL 4 assays tested [38,39,40,41] | |
➢ Ex vivo studies: 17 ng/mL (IQR, 48–144) (n = 27) 1 assay tested [44] | ➢ Ex vivo studies: 94 ng/mL (IQR, 64–145) (n = 54)/NP (n = 72) 1 assay tested [43,44] | ➢ Ex vivo studies: 104 ng/mL (IQR, 45–334) (n = 49)/NP (n = 86)/prophyactic (n = 47) 2 assays tested [42,43,44] | ||
FIIa-based assays | X increase/no effect* | √ no effect | √ no effect | √ no effect |
➢ In vitro studies: 4.7–1000 ng/mL 4 assays tested [39,51,52,53,54,55] | ➢ In vitro studies: 8–1000 ng/mL 2 assays tested [40,47,48,49] | ➢ In vitro studies: 10–500 ng/mL 2 assays tested [49,50] | ➢ In vitro studies: 7–1000 ng/mL 3 assays tested [38,39,40,59] | |
➢ Ex vivo studies: 71 ng/mL (IQR, 48–144) (n = 27)/2–406 ng/mL (n = 30) 2 assays tested [44,57] | ➢ Ex vivo studies: 94 ng/mL (IQR, 64–145) (n = 54)/NP (n = 72)/10–316 ng/mL (n = 26) 3 assays tested [43,44,57] | ➢ Ex vivo studies: 21–354 ng/mL (n = 10) 1 assay tested [57] | ➢ Ex vivo studies: 104 ng/mL (IQR, 45–334) (n = 49)/NP (n = 86)/prophylactic (n = 47)/7–457 ng/mL (n = 27) 3 assays tested [42,43,44,57] | |
Protein C activity | ||||
Clot-based assays | X increase | X increase | X increase | X increase |
➢ In vitro studies: 25–500 ng/mL 1 assay tested [51] | ➢ In vitro studies: 10–1000 ng/mL 2 assays tested [41,49] | ➢ In vitro studies: 10–~600 ng/mL 1 assay tested [41] | ➢ In vitro studies: 10–~600 ng/mL 1 assay tested [41] | |
Chromogenic assays | √ no effect | √ no effect | √ no effect | √ no effect |
➢ In vitro studies: 10–800 ng/mL ≥3 assays tested [51,52,55] | ➢ In vitro studies: 8–1000 ng/mL ≥3 assays tested [40,41,47,49] | ➢ In vitro studies: 10–~600 ng/mL 2 assays tested [41,50] | ➢ In vitro studies: 7–638 ng/mL ≥3 assays tested [40,41,54,59] | |
➢ Ex vivo studies: prophylactic 1 assay tested [61] | ||||
Protein S activity | ||||
Clot-based assays | X increase | X increase/no effect | X increase | X increase |
➢ In vitro studies: 10–800 ng/mL ≥2 assays tested [51,52,55] | ➢ In vitro studies: 8–750 ng/mL ≥2 assays tested [40,41,47,49] | ➢ In vitro studies: 10–600 ng/mL 1 assay tested [41,50] | ➢ In vitro studies: 7–638 ng/mL ≥1 assay tested [40,41,54,59,63] | |
➢ Ex vivo studies: 140 ng/mL (range, 28–652) 1 assay tested [60] | ➢ Ex vivo studies: prophylactic (n = 40)/145 ng/mL (range, 23–349) 1 assay tested [61,62] | |||
Protein S Ag | ||||
Protein S free Ag | √ no effect | √ no effect | √ no effect | √ no effect |
➢ In vitro studies: 25–800 ng/mL ≥2 assays tested [49,51,52] | ➢ In vitro studies: 8–501 ng/mL 2 assays tested [40,47] | ➢ In vitro studies: 100–500 ng/mL 1 assay tested [50] | ➢ In vitro studies: 7–638 ng/mL 2 assays tested [40,54] | |
➢ Ex vivo studies: 140 ng/mL (range, 26–652) 1 assay tested [60] | ➢ Ex vivo studies: prophylactic (n = 40) 1 assay tested [61] |
3.3. DOAC Neutralization
4. Place of DOAC for the Treatment of VTD in Patients with Inherited Thrombophilia
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mannucci, P.M.; Franchini, M. Classic Thrombophilic Gene Variants. Thromb. Haemost. 2015, 114, 885–889. [Google Scholar] [CrossRef] [Green Version]
- Fekih-Mrissa, N.; Klai, S.; Mrad, M.; Zaouali, J.; Sayeh, A.; Nsiri, B.; Gritli, N.; Mrissa, R. Role of Methylenetetrahydrofolate Reductase A1298C Polymorphism in Cerebral Venous Thrombosis. Blood Coagul. Fibrinolysis 2013, 24, 118–119. [Google Scholar] [CrossRef] [PubMed]
- Simioni, P.; Tormene, D.; Tognin, G.; Gavasso, S.; Bulato, C.; Iacobelli, N.P.; Finn, J.D.; Spiezia, L.; Radu, C.; Arruda, V.R. X-Linked Thrombophilia with a Mutant Factor IX (Factor IX Padua). N. Engl. J. Med. 2009, 361, 1671–1675. [Google Scholar] [CrossRef] [PubMed]
- Casini, A.; Undas, A.; Palla, R.; Thachil, J.; de Moerloose, P. Subcommittee on Factor XIII and Fibrinogen Diagnosis and Classification of Congenital Fibrinogen Disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. JTH 2018, 16, 1887–1890. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Dobrotova, M.; Skornova, I.; Brunclíkova, M.; Grendar, M.; Lasabova, Z.; Stasko, J.; et al. Comparison of Clinical Phenotype with Genetic and Laboratory Results in 31 Patients with Congenital Dysfibrinogenemia in Northern Slovakia. Int. J. Hematol. 2020, 111, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Wu, O.; Bayoumi, N.; Vickers, M.A.; Clark, P. ABO(H) Blood Groups and Vascular Disease: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. JTH 2008, 6, 62–69. [Google Scholar] [CrossRef]
- Trégouët, D.-A.; Heath, S.; Saut, N.; Biron-Andreani, C.; Schved, J.-F.; Pernod, G.; Galan, P.; Drouet, L.; Zelenika, D.; Juhan-Vague, I.; et al. Common Susceptibility Alleles Are Unlikely to Contribute as Strongly as the FV and ABO Loci to VTE Risk: Results from a GWAS Approach. Blood 2009, 113, 5298–5303. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, O.; Benhamou, Y.; Bertoletti, L.; Constant, J.; Couturaud, F.; Delluc, A.; Elias, A.; Fischer, A.-M.; Frappé, P.; Gendron, N.; et al. Recommendations of good practice for the management of thromboembolic venous disease in adults. Short version. Rev. Mal. Respir. 2019, 36, 249–283. [Google Scholar] [CrossRef]
- Thrombophilie Biologique: Propositions GFHT 2020—Groupe d’etude Sur l’hemostase et La Thrombose. Available online: https://site.geht.org/actu/thrombophilie-biologique/ (accessed on 29 November 2021).
- Alhenc-Gelas, M.; Plu-Bureau, G.; Horellou, M.H.; Rauch, A.; Suchon, P. GEHT genetic thrombophilia group PROS1 Genotype Phenotype Relationships in a Large Cohort of Adults with Suspicion of Inherited Quantitative Protein S Deficiency. Thromb. Haemost. 2016, 115, 570–579. [Google Scholar] [CrossRef]
- Alhenc-Gelas, M.; Plu-Bureau, G.; Mauge, L.; Gandrille, S.; Présot, I. GFHT Study Group on Genetic Thrombophilia Genotype-Phenotype Relationships in a Large French Cohort of Subjects with Inherited Protein C Deficiency. Thromb. Haemost. 2020, 120, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- van Es, N.; Coppens, M.; Schulman, S.; Middeldorp, S.; Büller, H.R. Direct Oral Anticoagulants Compared with Vitamin K Antagonists for Acute Venous Thromboembolism: Evidence from Phase 3 Trials. Blood 2014, 124, 1968–1975. [Google Scholar] [CrossRef] [PubMed]
- Smadja, D.-M.; Gendron, N.; Sanchez, O. Comment et chez qui faut-il surveiller les traitements anticoagulants? Rev. Mal. Respir. 2019, S076184251930213X. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2019, 40, 3453–3455. [Google Scholar] [CrossRef] [Green Version]
- Rosendaal, F.R. Venous Thrombosis: The Role of Genes, Environment, and Behavior. Hematol. Am. Soc. Hematol. Educ. Program 2005, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Di Minno, M.N.D.; Ambrosino, P.; Ageno, W.; Rosendaal, F.; Di Minno, G.; Dentali, F. Natural Anticoagulants Deficiency and the Risk of Venous Thromboembolism: A Meta-Analysis of Observational Studies. Thromb. Res. 2015, 135, 923–932. [Google Scholar] [CrossRef]
- Simone, B.; De Stefano, V.; Leoncini, E.; Zacho, J.; Martinelli, I.; Emmerich, J.; Rossi, E.; Folsom, A.R.; Almawi, W.Y.; Scarabin, P.Y.; et al. Risk of Venous Thromboembolism Associated with Single and Combined Effects of Factor V Leiden, Prothrombin 20210A and Methylenetethraydrofolate Reductase C677T: A Meta-Analysis Involving over 11,000 Cases and 21,000 Controls. Eur. J. Epidemiol. 2013, 28, 621–647. [Google Scholar] [CrossRef] [PubMed]
- van Boven, H.H.; Vandenbroucke, J.P.; Brie¨t, E.; Rosendaal, F.R. Gene-Gene and Gene-Environment Interactions Determine Risk of Thrombosis in Families With Inherited Antithrombin Deficiency. Blood 1999, 94, 2590–2594. [Google Scholar] [CrossRef]
- Gemmati, D.; Longo, G.; Franchini, E.; Araujo Silva, J.; Gallo, I.; Lunghi, B.; Moratelli, S.; Maestri, I.; Serino, M.L.; Tisato, V. Cis-Segregation of c.1171C>T Stop Codon (p.R391*) in SERPINC1 Gene and c.1691G>A Transition (p.R506Q) in F5 Gene and Selected GWAS Multilocus Approach in Inherited Thrombophilia. Genes 2021, 12, 934. [Google Scholar] [CrossRef]
- Bertina, R.M.; Koeleman, B.P.C.; Koster, T.; Rosendaal, F.R.; Dirven, R.J.; de Ronde, H.; van der Velden, P.A.; Reitsma, P.H. Mutation in Blood Coagulation Factor V Associated with Resistance to Activated Protein C. Nature 1994, 369, 64–67. [Google Scholar] [CrossRef]
- Dahlbäck, B.; Carlsson, M.; Svensson, P.J. Familial Thrombophilia Due to a Previously Unrecognized Mechanism Characterized by Poor Anticoagulant Response to Activated Protein C: Prediction of a Cofactor to Activated Protein C. Proc. Natl. Acad. Sci. USA 1993, 90, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Koster, T.; Rosendaal, F.R.; de Ronde, H.; Briët, E.; Vandenbroucke, J.P.; Bertina, R.M. Venous Thrombosis Due to Poor Anticoagulant Response to Activated Protein C: Leiden Thrombophilia Study. Lancet Lond. Engl. 1993, 342, 1503–1506. [Google Scholar] [CrossRef]
- Lijfering, W.M.; Middeldorp, S.; Veeger, N.J.G.M.; Hamulyák, K.; Prins, M.H.; Büller, H.R.; van der Meer, J. Risk of Recurrent Venous Thrombosis in Homozygous Carriers and Double Heterozygous Carriers of Factor V Leiden and Prothrombin G20210A. Circulation 2010, 121, 1706–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poort, S.R.; Rosendaal, F.R.; Reitsma, P.H.; Bertina, R.M. A Common Genetic Variation in the 3′-Untranslated Region of the Prothrombin Gene Is Associated with Elevated Plasma Prothrombin Levels and an Increase in Venous Thrombosis. Blood 1996, 88, 3698–3703. [Google Scholar] [CrossRef] [Green Version]
- Egeberg, O. Inherited Antithrombin Deficiency Causing Thrombophilia. Thromb. Diath. Haemorrh. 1965, 13, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Alhenc-Gelas, M.; Plu-Bureau, G.; Hugon-Rodin, J.; Picard, V.; Horellou, M.-H. GFHT study group on Genetic Thrombophilia Thrombotic Risk According to SERPINC1 Genotype in a Large Cohort of Subjects with Antithrombin Inherited Deficiency. Thromb. Haemost. 2017, 117, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- de la Morena-Barrio, M.E.; Martínez-Martínez, I.; de Cos, C.; Wypasek, E.; Roldán, V.; Undas, A.; van Scherpenzeel, M.; Lefeber, D.J.; Toderici, M.; Sevivas, T.; et al. Hypoglycosylation Is a Common Finding in Antithrombin Deficiency in the Absence of a SERPINC1 Gene Defect. J. Thromb. Haemost. JTH 2016, 14, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Branson, H.; Marble, R.; Katz, J.; Griffin, J. Inherited Protein C Deficiency and Coumarin-Responsive Chronic Relapsing Purpura Fulminans in a Newborn Infant. Lancet 1983, 322, 1165–1168. [Google Scholar] [CrossRef]
- Marlar, R.A.; Montgomery, R.R.; Broekmans, A.W. Diagnosis and Treatment of Homozygous Protein C Deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S, International Committee on Thrombosis and Haemostasis. J. Pediatr. 1989, 114, 528–534. [Google Scholar] [CrossRef]
- Griffin, J.H.; Evatt, B.; Zimmerman, T.S.; Kleiss, A.J.; Wideman, C. Deficiency of Protein C in Congenital Thrombotic Disease. J. Clin. Investig. 1981, 68, 1370–1373. [Google Scholar] [CrossRef] [Green Version]
- Broekmans, A.W.; Veltkamp, J.J.; Bertina, R.M. Congenital Protein C Deficiency and Venous Thromboembolism. A Study of Three Dutch Families. N. Engl. J. Med. 1983, 309, 340–344. [Google Scholar] [CrossRef]
- Linssen, M.; Mohamed, M.; Wevers, R.A.; Lefeber, D.J.; Morava, E. Thrombotic Complications in Patients with PMM2-CDG. Mol. Genet. Metab. 2013, 109, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Alhenc-Gelas, M.; Canonico, M.; Morange, P.E.; Emmerich, J. Geht Genetic Thrombophilia Group Protein S Inherited Qualitative Deficiency: Novel Mutations and Phenotypic Influence. J. Thromb. Haemost. JTH 2010, 8, 2718–2726. [Google Scholar] [CrossRef] [Green Version]
- Bertina, R.M.; Ploos van Amstel, H.K.; van Wijngaarden, A.; Coenen, J.; Leemhuis, M.P.; Deutz-Terlouw, P.P.; van der Linden, I.K.; Reitsma, P.H. Heerlen Polymorphism of Protein S, an Immunologic Polymorphism Due to Dimorphism of Residue 460. Blood 1990, 76, 538–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchon, P.; Germain, M.; Delluc, A.; Smadja, D.; Jouven, X.; Gyorgy, B.; Saut, N.; Ibrahim, M.; Deleuze, J.F.; Alessi, M.C.; et al. Protein S Heerlen Mutation Heterozygosity Is Associated with Venous Thrombosis Risk. Sci. Rep. 2017, 7, 45507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recherche d’une thrombophilie biologique: Propositions du GFHT 2020. Rev. Francoph. Hémostase Thromb. Available online: https://www.rfht.fr/publication/recherche-dune-thrombophilie-biologique-propositions-du-gfht-2020/ (accessed on 2 February 2021).
- Alhenc-Gelas, M.; Mauge, L. Bilan de thrombophilie. Rev. Francoph. Lab. 2020, 2020, 26–33. [Google Scholar] [CrossRef]
- Hillarp, A.; Baghaei, F.; Fagerberg Blixter, I.; Gustafsson, K.M.; Stigendal, L.; Sten-Linder, M.; Strandberg, K.; Lindahl, T.L. Effects of the Oral, Direct Factor Xa Inhibitor Rivaroxaban on Commonly Used Coagulation Assays. J. Thromb. Haemost. JTH 2011, 9, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Van Blerk, M.; Bailleul, E.; Chatelain, B.; Demulder, A.; Devreese, K.; Douxfils, J.; Jochmans, K.; Mullier, F.; Wijns, W.; Soumali, M.R.; et al. Influence of Dabigatran and Rivaroxaban on Routine Coagulation Assays. A Nationwide Belgian Survey. Thromb. Haemost. 2015, 113, 154–164. [Google Scholar] [CrossRef]
- Bonar, R.; Favaloro, E.J.; Mohammed, S.; Ahuja, M.; Pasalic, L.; Sioufi, J.; Marsden, K. The Effect of the Direct Factor Xa Inhibitors Apixaban and Rivaroxaban on Haemostasis Tests: A Comprehensive Assessment Using in Vitro and Ex Vivo Samples. Pathology 2016, 48, 60–71. [Google Scholar] [CrossRef]
- Gosselin, R.; Grant, R.P.; Adcock, D.M. Comparison of the Effect of the Anti-Xa Direct Oral Anticoagulants Apixaban, Edoxaban, and Rivaroxaban on Coagulation Assays. Int. J. Lab. Hematol. 2016, 38, 505–513. [Google Scholar] [CrossRef]
- Mani, H.; Hesse, C.; Stratmann, G.; Lindhoff-Last, E. Rivaroxaban Differentially Influences Ex Vivo Global Coagulation Assays Based on the Administration Time. Thromb. Haemost. 2011, 106, 156–164. [Google Scholar] [CrossRef]
- Rühl, H.; Reda, S.; Müller, J.; Oldenburg, J.; Pötzsch, B. Activated Factor X-Based versus Thrombin-Based Antithrombin Testing in Thrombophilia Workup in the DOAC Era. Thromb. Haemost. 2018, 118, 381–387. [Google Scholar] [CrossRef]
- Ząbczyk, M.; Natorska, J.; Kopytek, M.; Malinowski, K.P.; Undas, A. The Effect of Direct Oral Anticoagulants on Antithrombin Activity Testing Is Abolished by DOAC-Stop in Venous Thromboembolism Patients. Arch. Pathol. Lab. Med. 2021, 145, 99–104. [Google Scholar] [CrossRef]
- Exner, T.; Michalopoulos, N.; Pearce, J.; Xavier, R.; Ahuja, M. Simple Method for Removing DOACs from Plasma Samples. Thromb. Res. 2018, 163, 117–122. [Google Scholar] [CrossRef]
- Tripodi, A.; Padovan, L.; Testa, S.; Legnani, C.; Chantarangkul, V.; Scalambrino, E.; Ludovici, S.; Bassi, L.; Peyvandi, F. How the Direct Oral Anticoagulant Apixaban Affects Hemostatic Parameters. Results of a Multicenter Multiplatform Study. Clin. Chem. Lab. Med. 2015, 53, 265–273. [Google Scholar] [CrossRef]
- Douxfils, J.; Chatelain, C.; Chatelain, B.; Dogné, J.-M.; Mullier, F. Impact of Apixaban on Routine and Specific Coagulation Assays: A Practical Laboratory Guide. Thromb. Haemost. 2013, 110, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Van Blerk, M.; Bailleul, E.; Chatelain, B.; Demulder, A.; Devreese, K.; Douxfils, J.; Jacquemin, M.; Jochmans, K.; Mullier, F.; Wijns, W.; et al. Influence of Apixaban on Commonly Used Coagulation Assays: Results from the Belgian National External Quality Assessment Scheme. Int. J. Lab. Hematol. 2017, 39, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Hillarp, A.; Gustafsson, K.M.; Faxälv, L.; Strandberg, K.; Baghaei, F.; Fagerberg Blixter, I.; Berndtsson, M.; Lindahl, T.L. Effects of the Oral, Direct Factor Xa Inhibitor Apixaban on Routine Coagulation Assays and Anti-FXa Assays. J. Thromb. Haemost. JTH 2014, 12, 1545–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douxfils, J.; Chatelain, B.; Chatelain, C.; Dogné, J.-M.; Mullier, F. Edoxaban: Impact on Routine and Specific Coagulation Assays. A Practical Laboratory Guide. Thromb. Haemost. 2016, 115, 368–381. [Google Scholar] [CrossRef]
- Adcock, D.M.; Gosselin, R.; Kitchen, S.; Dwyre, D.M. The Effect of Dabigatran on Select Specialty Coagulation Assays. Am. J. Clin. Pathol. 2013, 139, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonar, R.; Favaloro, E.J.; Mohammed, S.; Pasalic, L.; Sioufi, J.; Marsden, K. The Effect of Dabigatran on Haemostasis Tests: A Comprehensive Assessment Using in Vitro and Ex Vivo Samples. Pathology 2015, 47, 355–364. [Google Scholar] [CrossRef]
- Lindahl, T.L.; Baghaei, F.; Blixter, I.F.; Gustafsson, K.M.; Stigendal, L.; Sten-Linder, M.; Strandberg, K.; Hillarp, A. Expert Group on Coagulation of the External Quality Assurance in Laboratory Medicine in Sweden Effects of the Oral, Direct Thrombin Inhibitor Dabigatran on Five Common Coagulation Assays. Thromb. Haemost. 2011, 105, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Douxfils, J.; Mullier, F.; Loosen, C.; Chatelain, C.; Chatelain, B.; Dogné, J.-M. Assessment of the Impact of Rivaroxaban on Coagulation Assays: Laboratory Recommendations for the Monitoring of Rivaroxaban and Review of the Literature. Thromb. Res. 2012, 130, 956–966. [Google Scholar] [CrossRef]
- Kim, Y.A.; Gosselin, R.; Van Cott, E.M. The Effects of Dabigatran on Lupus Anticoagulant, Diluted Plasma Thrombin Time, and Other Specialized Coagulation Assays. Int. J. Lab. Hematol. 2015, 37, e81–e84. [Google Scholar] [CrossRef]
- Cox-Morton, S.; MacDonald, S.; Thomas, W. A Diagnostic Solution for Haemostasis Laboratories for Patients Taking Direct Oral Anticoagulants Using DOAC-Remove. Br. J. Haematol. 2019, 187, 377–385. [Google Scholar] [CrossRef]
- Favresse, J.; Lardinois, B.; Sabor, L.; Devalet, B.; Vandepapeliere, J.; Braibant, M.; Lessire, S.; Chatelain, B.; Jacqmin, H.; Douxfils, J.; et al. Evaluation of the DOAC-Stop® Procedure to Overcome the Effect of DOACs on Several Thrombophilia Screening Tests. TH Open Companion J. Thromb. Haemost. 2018, 2, e202–e209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favre, R.; Zia-Chahabi, S.; Talb, Y.; de Gunzburg, N.; Flaujac, C. Direct Oral Anticoagulant Neutralization by Activated Charcoal DOAC-Remove for Thrombophilia Screening. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2021, 32, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Baccouche, H.; Sassi, M.; Galea, V.; Chaari, M.; Hatmi, M.; Samama, M.M.; Elalamy, I. Optimisation of the Assays for the Measurement of Clotting Factor Activity in the Presence of Rivaroxaban. Thromb. Res. 2012, 129, 101–103. [Google Scholar] [CrossRef]
- Maryamchik, E.; Van Cott, E.M. Apixaban Does Not Interfere With Protein S or Activated Protein C Resistance (Factor V Leiden) Testing Using APTT-Based Methods. Arch. Pathol. Lab. Med. 2020, 144, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Mani, H.; Hesse, C.; Stratmann, G.; Lindhoff-Last, E. Ex Vivo Effects of Low-Dose Rivaroxaban on Specific Coagulation Assays and Coagulation Factor Activities in Patients under Real Life Conditions. Thromb. Haemost. 2013, 109, 127–136. [Google Scholar] [CrossRef]
- Maryamchik, E.; Rosenbaum, M.W.; Van Cott, E.M. Rivaroxaban Causes Missed Diagnosis of Protein S Deficiency but Not of Activated Protein C Resistance (Factor V Leiden). Arch. Pathol. Lab. Med. 2018, 142, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smock, K.J.; Plumhoff, E.A.; Meijer, P.; Hsu, P.; Zantek, N.D.; Heikal, N.M.; Van Cott, E.M. Protein S Testing in Patients with Protein S Deficiency, Factor V Leiden, and Rivaroxaban by North American Specialized Coagulation Laboratories. Thromb. Haemost. 2016, 116, 50–57. [Google Scholar] [CrossRef]
- Jacquemin, M.; Toelen, J.; Schoeters, J.; van Horenbeeck, I.; Vanlinthout, I.; Debasse, M.; Peetermans, M.; Vanassche, T.; Peerlinck, K.; van Ryn, J.; et al. The Addition of Idarucizumab to Plasma Samples Containing Dabigatran Allows the Use of Routine Coagulation Assays for the Diagnosis of Hemostasis Disorders. J. Thromb. Haemost. JTH 2015, 13, 2087–2092. [Google Scholar] [CrossRef] [Green Version]
- Favaloro, E.J.; Gilmore, G.; Arunachalam, S.; Mohammed, S.; Baker, R. Neutralising Rivaroxaban Induced Interference in Laboratory Testing for Lupus Anticoagulant (LA): A Comparative Study Using DOAC Stop and Andexanet Alfa. Thromb. Res. 2019, 180, 10–19. [Google Scholar] [CrossRef]
- Sevenet, P.-O.; Cucini, V.; Hervé, T.; Depasse, F.; Carlo, A.; Contant, G.; Mathieu, O. Evaluation of DOAC Filter, a New Device to Remove Direct Oral Anticoagulants from Plasma Samples. Int. J. Lab. Hematol. 2020, 42, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Monteyne, T.; De Kesel, P.; Devreese, K.M.J. Interference of DOAC Stop and DOAC Remove in the Thrombin Generation Assay and Coagulation Assays. Thromb. Res. 2020, 192, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Huang, M.-P. Lead Thrombus under Standard-Dose Edoxaban in a Patient with Normal to High Creatinine Clearance and Protein S Deficiency. Thromb. J. 2021, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Yagi, S.; Kagawa, K.; Fujimoto, E.; Sata, M. Recurrent Venous Thrombosis during Direct Oral Anticoagulant Therapy in a Patient with Protein S Deficiency. J. Med. Investig. JMI 2019, 66, 182–184. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, X.-J.; Zhu, H.-D.; Lu, M.; Wen, B.; Ma, L. Clinical Characteristics, Genes Identification and Follow-up Study of a Patient with Central Venous Thrombosis from a Protein S Deficiency Pedigree. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 353–361. [Google Scholar] [CrossRef]
- Lou, J.; Yin, L.; Ke, X.; Zhang, L.; Xu, F.; Liu, Z. A Case-Report of Two Patients with Hereditary Protein S Deficiency Treated by Rivaroxaban. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2020, 31, 405–409. [Google Scholar] [CrossRef]
- Krumb, E.; Hermans, C. An Exceptional Case of Severe Combined Inherited Thrombophilia Successfully Treated with Rivaroxaban. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2020, 31, 279–282. [Google Scholar] [CrossRef]
- Ameku, K.; Higa, M. Rivaroxaban Treatment for Warfarin-Refractory Thrombosis in a Patient with Hereditary Protein S Deficiency. Case Rep. Hematol. 2018, 2018, 5217301. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, A.; Martinelli, I.; Chantarangkul, V.; Clerici, M.; Artoni, A.; Passamonti, S.; Peyvandi, F. Thrombin Generation and Other Coagulation Parameters in a Patient with Homozygous Congenital Protein S Deficiency on Treatment with Rivaroxaban. Int. J. Hematol. 2016, 103, 165–172. [Google Scholar] [CrossRef]
- Sun, L.; Li, X.; Li, Q.; Wang, L.; Li, J.; Shu, C. Multiple Arterial and Venous Thromboembolism in a Male Patient with Hereditary Protein C Deficiency: A Case Report. Medicine 2021, 100, e25575. [Google Scholar] [CrossRef] [PubMed]
- Menon, N.; Sarode, R.; Zia, A. Rivaroxaban Dose Adjustment Using Thrombin Generation in Severe Congenital Protein C Deficiency and Warfarin-Induced Skin Necrosis. Blood Adv. 2018, 2, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Ishii, K.; Furuta, K.; Kobayashi, M.; Wada, Y.; Morishita, E. Recurrent Cerebral Venous Thrombosis Treated with Direct Oral Anticoagulants in a Japanese Man with Hereditary Protein C Deficiency. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2021, 30, 105320. [Google Scholar] [CrossRef]
- Watanabe, K.; Arakawa, Y.; Yanagi, M.; Isobe, K.; Mori, M.; Koh, K. Management of Severe Congenital Protein C Deficiency with a Direct Oral Anticoagulant, Edoxaban: A Case Report. Pediatr. Blood Cancer 2019, 66, e27686. [Google Scholar] [CrossRef]
- Nojima, Y.; Ihara, M.; Adachi, H.; Kurimoto, T.; Nanto, S. Efficacy and Safety of Apixaban in a Patient with Systemic Venous Thromboembolism Associated with Hereditary Antithrombin Deficiency. J. Cardiol. Cases 2019, 19, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Minami, K.; Kumagai, K.; Sugai, Y.; Nakamura, K.; Naito, S.; Oshima, S. Efficacy of Oral Factor Xa Inhibitor for Venous Thromboembolism in a Patient with Antithrombin Deficiency. Intern. Med. Tokyo Jpn. 2018, 57, 2025–2028. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.M.; Rondina, M.T.; Horton, D.J. Rivaroxaban for the Long-Term Treatment of Spontaneous Ovarian Vein Thrombosis Caused by Factor V Leiden Homozygosity. Ann. Pharmacother. 2014, 48, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.L.; Triggs, M.; Cole, S.E.; Lacey, J.; Reddy, S. Anticoagulation Therapy in a Patient With Heterozygous Factor V Leiden and Coexisting Homozygous Prothrombin Gene Mutations. Cureus 2020, 12, e11949. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Casini, A.; Stasko, J.; Hudecek, J.; Skornova, I.; Vilar, R.; Neerman-Arbez, M.; Kubisz, P. Perioperative Management of a Severe Congenital Hypofibrinogenemia with Thrombotic Phenotype. Thromb. Res. 2020, 188, 1–4. [Google Scholar] [CrossRef]
- Zuk, J.; Papuga-Szela, E.; Zareba, L.; Undas, A. Direct Oral Anticoagulants in Patients with Severe Inherited Thrombophilia: A Single-Center Cohort Study. Int. J. Hematol. 2021, 113, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Hekman, K.E.; Chao, C.L.; Morgan, C.E.; Helenowski, I.B.; Eskandari, M.K. Direct Oral Anticoagulants Decrease Treatment Failure for Acute Lower Extremity Deep Venous Thrombosis. Vascular 2021, 17085381211042232. [Google Scholar] [CrossRef] [PubMed]
- Margaglione, M.; Antonucci, E.; D’Andrea, G.; Migliaccio, L.; Ageno, W.; Bucherini, E.; Cosmi, B.; Falanga, A.; Martini, G.; Mastroiacovo, D.; et al. Anticoagulation in Italian Patients with Venous Thromboembolism and Thrombophilic Alterations: Findings from START2 Register Study. Blood Transfus. Trasfus. Sangue 2020, 18, 486–495. [Google Scholar] [CrossRef]
- Serrao, A.; Lucani, B.; Mansour, D.; Ferretti, A.; Baldacci, E.; Santoro, C.; Foà, R.; Chistolini, A. Direct Oral Anticoagulants in Patients Affected by Major Congenital Thrombophilia. Mediterr. J. Hematol. Infect. Dis. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Undas, A.; Goralczyk, T. Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Severe Inherited Thrombophilia: A Series of 33 Patients. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2017, 28, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Campello, E.; Spiezia, L.; Simion, C.; Tormene, D.; Camporese, G.; Dalla Valle, F.; Poretto, A.; Bulato, C.; Gavasso, S.; Radu, C.M.; et al. Direct Oral Anticoagulants in Patients With Inherited Thrombophilia and Venous Thromboembolism: A Prospective Cohort Study. J. Am. Heart Assoc. 2020, 9, e018917. [Google Scholar] [CrossRef]
- Coleman, C.I.; Turpie, A.G.G.; Bunz, T.J.; Baker, W.L.; Beyer-Westendorf, J. Effectiveness and Safety of Outpatient Rivaroxaban versus Warfarin for Treatment of Venous Thromboembolism in Patients with a Known Primary Hypercoagulable State. Thromb. Res. 2018, 163, 132–137. [Google Scholar] [CrossRef]
- Delate, T.; Hsiao, W.; Kim, B.; Witt, D.M.; Meyer, M.R.; Go, A.S.; Fang, M.C. Assessment of Algorithms to Identify Patients with Thrombophilia Following Venous Thromboembolism. Thromb. Res. 2016, 137, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Elsebaie, M.A.T.; van Es, N.; Langston, A.; Büller, H.R.; Gaddh, M. Direct Oral Anticoagulants in Patients with Venous Thromboembolism and Thrombophilia: A Systematic Review and Meta-Analysis. J. Thromb. Haemost. JTH 2019, 17, 645–656. [Google Scholar] [CrossRef]
- Stevens, S.M.; Woller, S.C.; Kreuziger, L.B.; Bounameaux, H.; Doerschug, K.; Geersing, G.-J.; Huisman, M.V.; Kearon, C.; King, C.S.; Knighton, A.J.; et al. Antithrombotic Therapy for VTE Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest 2021, 160, e545–e608. [Google Scholar] [CrossRef]
Inherited Thrombophilia | Prevalence in the General Population | Prevalence in Unselected Patients with VTE | RR for the First Episode of VTE * | RR for Recurrent VTE |
---|---|---|---|---|
Severe thrombophilia | ||||
Antithrombin deficiency | 0.02–0.2% | 1.0% | ≈15 | 1.9–2.6 |
FVL (homozygous) | 0.02% | <2.0% | ≈10 | 1.2 (0.5–2.6) |
Double heterozygous (FVL and F2 c.*97G>A) | <0.1% | <2.0% | ≈10 | (0.6–1.9) |
Protein C deficiency | 0.2–0.4% | 3.0% | 4.0–6.0 | 1.4–1.8 |
Protein S deficiency | 0.03–0.5% | 1.0–2.0% | 1.0–10.0 | 1.0–1.4 |
Mild thrombophilia | ||||
FVL (heterozygous) | 3.0–7.0% | 20.0% | 3.0–5.0 | 1.2–1.4 |
F2 c.*97G>A (heterozygous) | 0.7–4.0% | 6.0% | 2.0–3.0 | 0.7–1.4 |
Antithrombin Deficiency | Type I | Type IIHBS (Heparin-Binding Site) | Type IIRS (Reactive Site) | Type IIPE (Pleiotropic) |
---|---|---|---|---|
Heparin cofactor activity (FIIa- or FXa-based assay) | ↓ | ↓ | ↓ | ↓/N |
Progressive activity | ↓ | N | ↓ | ↓/N |
AT antigen | ↓ | N | N | ↓/N |
Protein C Deficiency | Type I | Type 2a (IIAM) (Amidolytic) | Type 2b (IIAC) (Anticoagulant) | |
PC anticoagulant activity (clot-based assays) | ↓ | ↓ | ↓ | |
PC amidolytic activity (chromogenic assays) | ↓ | ↓ | N | |
PC antigen | ↓ | N | N | |
Protein S Deficiency | Type I | Type II (Qualitative) | Type III | |
PS activity (clot-based assays) | ↓ | ↓ | ↓ | |
Free PS antigen | ↓ | N | ↓ |
DOAC-Stop® | DOAC Remove® | DOAC-Filter® | |
---|---|---|---|
DOAC Neutralization | |||
Samples tested | Patients treated with [57]: n = 30D (2–406 ng/mL) n = 26A (10–316 ng/mL) n = 10E (21–354 ng/mL) n = 27R (7–456 ng/mL) n = 3R, n = 1A [45] | Patients treated with [58]: n = 12A (80; 634 ng/mL) n = 9R (57; 922 ng/mL) | Normal pooled plasma spiked with DOAC about 300 ng/mL [66] Patients treated with [66]: n = 6D (30–439 ng/mL) n = 6A (147–298 ng/mL) n = 6R (34–295) |
Results | Residual level < limit of quantification of the corresponding DOAC assays. | Residual level < limit of quantification of the corresponding DOAC assays except for two patients (1R 344 → 32 ng/mL) and 1A 510 → 95 ng/mL | Residual level < limit of quantification of the corresponding DOAC assays except 1A at 298 → 25.1 ng/mL |
Impact on Natural Anticoagulant | |||
Antithrombin | No impact [44,45,57,67] | No impact [56,67] | No impact [66] |
Protein C | No impact [45,57,67] | No impact [56,58,67] | No impact [66] |
Protein S | No impact [45,57,67] | No impact [56,58,67] | |
Correction in DOAC-Treated Patients | |||
Antithrombin | Anti-FXa activity (Innovance) in rivaroxaban- and apixaban-treated patients [44] | ||
Protein C | Protein C anticoagulant activity (Staclot Protein C) in rivaroxaban- and apixaban-treated patients [58] | ||
Protein S | Protein S anticoagulant activity (Staclot Protein S ) in rivaroxaban- and apixaban-treated patients [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khider, L.; Gendron, N.; Mauge, L. Inherited Thrombophilia in the Era of Direct Oral Anticoagulants. Int. J. Mol. Sci. 2022, 23, 1821. https://doi.org/10.3390/ijms23031821
Khider L, Gendron N, Mauge L. Inherited Thrombophilia in the Era of Direct Oral Anticoagulants. International Journal of Molecular Sciences. 2022; 23(3):1821. https://doi.org/10.3390/ijms23031821
Chicago/Turabian StyleKhider, Lina, Nicolas Gendron, and Laetitia Mauge. 2022. "Inherited Thrombophilia in the Era of Direct Oral Anticoagulants" International Journal of Molecular Sciences 23, no. 3: 1821. https://doi.org/10.3390/ijms23031821
APA StyleKhider, L., Gendron, N., & Mauge, L. (2022). Inherited Thrombophilia in the Era of Direct Oral Anticoagulants. International Journal of Molecular Sciences, 23(3), 1821. https://doi.org/10.3390/ijms23031821