Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Synthesis of IBU-Xylitol Ester
2.2. IBU-Xylitol Ester: NMR and MS Spectroscopy Characterization
2.3. Preliminary In Vitro Tests of IBU-Xylitol Ester
3. Materials and Methods
3.1. Materials
3.2. Thin-Layer Chromatography (TLC)
3.3. Biocatalytic Synthesis of IBU-Xylitol Ester
3.4. Analytical HPLC Analysis
3.5. Analytical uHPLC-MS Method
3.6. Purification and Spectroscopic Characterization of IBU-Xylitol Ester
3.7. Cell and Bacterial Line: Culture Condition
3.8. Cytotoxicity Determination-IC50
3.9. Anti-Bacterial Assay
3.10. RNA Extraction and IL-8 Gene Expression Analysis (RT-qPCR)
3.11. Apoptosis Analysis
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Deutschmann, O.; Knözinger, H.; Kochloefl, K.; Turek, T. Heterogeneous Catalysis and Solid Catalysts, 2. Development and Types of Solid Catalysts. Ullmann’s Encycl. Ind. Chem. 2011, 17, 52. [Google Scholar] [CrossRef]
- Dills, W.L. Sugar Alcohols as Bulk Sweeteners. Annu. Rev. Nutr. 1989, 9, 161–186. [Google Scholar] [CrossRef]
- Livesey, G. Health Potential of Polyols as Sugar Replacers, with Emphasis on Low Glycaemic Properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [Green Version]
- Ur-Rehman, S.; Mushtaq, Z.; Zahoor, T.; Jamil, A.; Murtaza, M.A. Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Crit. Rev. Food Sci. Nutr. 2015, 55, 1514–1528. [Google Scholar] [CrossRef]
- Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in Drug Delivery: An Updated Review. AAPS PharmSciTech 2005, 6, 329–357. [Google Scholar] [CrossRef]
- Adams, S.S.; Cliffe, E.E.; Lessel, B.; Nicholson, J.S. Some Biological Properties of 2-(4-Isobutylphenyl)- Propionic Acid. J. Pharm. Sci. 1967, 56, 1686. [Google Scholar] [CrossRef]
- Mazaleuskaya, L.L.; Theken, K.N.; Gong, L.; Thorn, C.F.; Fitzgerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Ibuprofen Pathways. Pharmacogenet. Genom. 2015, 25, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.S.; Bresloff, P.; Mason, C.G. Pharmacological Differences between the Optical Isomers of Ibuprofen: Evidence for Metabolic Inversion of the (—)-isomer. J. Pharm. Pharmacol. 1976, 28, 256–257. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X. Comparison of the Efficacy and Safety of Non-Steroidal Anti-Inflammatory Drugs for Patients with Primary Dysmenorrhea: A Network Meta-Analysis. Mol. Pain 2018, 14, 1744806918770320. [Google Scholar] [CrossRef] [Green Version]
- Kandreli, M.G.; Vadachkoriia, N.R.; Gumberidze, N.S.; Mandzhavidze, N.A. Pain Management in Dentistry. Georgian Med. News 2013, 225, 44–49. [Google Scholar] [CrossRef]
- Gigante, A.; Tagarro, I. Non-Steroidal Anti-Inflammatory Drugs and Gastroprotection with Proton Pump Inhibitors: A Focus on Ketoprofen/Omeprazole. Clin. Drug Investig. 2012, 32, 221–233. [Google Scholar] [CrossRef]
- Rainsford, K.D. Anti-Inflammatory Drugs in the 21st Century. Subcell. Biochem. 2007, 42, 3–27. [Google Scholar] [CrossRef]
- Marchlewicz, A.; Guzik, U.; Wojcieszyńska, D. Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation. Water Air Soil Pollut. 2015, 226, 355. [Google Scholar] [CrossRef] [Green Version]
- Yalkowsky, S.; Dannenfelser, R. The Aquasol Database of Aqueous Solubility; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Stoyanova, K.; Vinarov, Z.; Tcholakova, S. Improving Ibuprofen Solubility by Surfactant-Facilitated Self-Assembly into Mixed Micelles. J. Drug Deliv. Sci. Technol. 2016, 36, 208–215. [Google Scholar] [CrossRef]
- Klueglich, M.; Ring, A.; Scheuerer, S.; Trommeshauser, D.; Schuijt, C.; Liepold, B.; Berndl, G. Ibuprofen Extrudate, a Novel, Rapidly Dissolving Ibuprofen Formulation: Relative Bioavailability Compared to Ibuprofen Lysinate and Regular Ibuprofen, and Food Effect on All Formulations. J. Clin. Pharmacol. 2005, 45, 1055–1061. [Google Scholar] [CrossRef]
- Modi, J.D.; Patel, J.K. Nanoemulsion-Based Gel Formulation of Aceclofenac for Topical Delivery. Int. J. 2011, 1, 6–12. [Google Scholar]
- Levis, K.A.; Lane, M.E.; Corrigan, O.I. Effect of Buffer Media Composition on the Solubility and Effective Permeability Coefficient of Ibuprofen. Int. J. Pharm. 2003, 253, 49–59. [Google Scholar] [CrossRef]
- Halen, P.K.; Chagti, K.K.; Giridhar, R.; Yadav, M.R. Combining Anticholinergic and Anti-Inflammatory Activities into a Single Moiety: A Novel Approach to Reduce Gastrointestinal Toxicity of Ibuprofen and Ketoprofen. Chem. Biol. Drug Des. 2007, 70, 450–455. [Google Scholar] [CrossRef]
- Shanbhag, V.R.; Crider, A.M.; Gokhale, R.; Harpalani, A.; Dick, R.M. Ester and Amide Prodrugs of Ibuprofen and Naproxen: Synthesis, Anti-inflammatory Activity, and Gastrointestinal Toxicity. J. Pharm. Sci. 1992, 81, 149–154. [Google Scholar] [CrossRef]
- Bundgaard, H.; Nielsen, N.M. Glycolamide Esters as a Novel Biolabile Prodrug Type for Non-Steroidal Anti-Inflammatory Carboxylic Acid Drugs. Int. J. Pharm. 1988, 43, 101–110. [Google Scholar] [CrossRef]
- Stella, V.J.; Nti-Addae, K.W. Prodrug Strategies to Overcome Poor Water Solubility. Adv. Drug Deliv. Rev. 2007, 59, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Redasani, V.K.; Bari, S.B. Prodrug Design: Perspectives, Approaches and Applications in Medicinal Chemistry; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Konstan, M.W.; Byard, P.J.; Hoppel, C.L.; Davis, P.B. Effect of High-Dose Ibuprofen in Patients with Cystic Fibrosis. N. Engl. J. Med. 1995, 332, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.-S.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.-L.; et al. Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S. Cystic Fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Mitri, C.; Xu, Z.; Bardin, P.; Corvol, H.; Touqui, L.; Tabary, O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front. Pharmacol. 2020, 11, 1–25. [Google Scholar] [CrossRef]
- Li, J.; Xiang, Y.Y.; Ye, L.; Tsui, L.C.; MacDonald, J.F.; Hu, J.; Lu, W.Y. Nonsteroidal Anti-Inflammatory Drugs Upregulate Function of Wild-Type and Mutant CFTR. Eur. Respir. J. 2008, 32, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Lands, L.C.; Dauletbaev, N. High-Dose Ibuprofen in Cystic Fibrosis. Pharmaceuticals 2010, 3, 2213–2224. [Google Scholar] [CrossRef] [Green Version]
- Carlile, G.W.; Robert, R.; Goepp, J.; Matthes, E.; Liao, J.; Kus, B.; Macknight, S.D.; Rotin, D.; Hanrahan, J.W.; Thomas, D.Y. Ibuprofen Rescues Mutant Cystic Fibrosis Transmembrane Conductance Regulator Trafficking. J. Cyst. Fibros. 2015, 14, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Flores, D.; Salvador, J.M. Facile Conversion of Racemic Ibuprofen to (S)-Ibuprofen. Tetrahedron Asymmetry 2012, 23, 237–239. [Google Scholar] [CrossRef]
- Brady, D. Green Catalysis; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar]
- Kharissova, O.V.; Kharisov, B.I.; González, C.M.O.; Méndez, Y.P.; López, I. Greener Synthesis of Chemical Compounds and Materials. R. Soc. Open Sci. 2019, 6, 191378. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.P.; Wang, Y.J.; Zheng, Y.G. Enantioselective Hydrolysis of Diethyl 3-Hydroxyglutarate to Ethyl (S)-3-Hydroxyglutarate by Immobilized Candida Antarctica Lipase B. J. Mol. Catal. B Enzym. 2010, 66, 90–94. [Google Scholar] [CrossRef]
- Adlercreutz, P. Comparison of Lipases and Glycoside Hydrolases as Catalysts in Synthesis Reactions. Appl. Microbiol. Biotechnol. 2017, 101, 513–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozzini, A.; Rovida, E.; Dello Sbarba, P.; Galimbert, S.; Santini, V. Butyrates, as a Single Drug, Induce Histone Acetylation and Granulocytic Maturation: Possible Selectivity on Core Binding Factor-Acute Myeloid Leukemia Blasts. Cancer Res. 2008, 68, 9105. [Google Scholar] [CrossRef] [Green Version]
- Zabner, J. Aerosolized Hypertonic Xylitol Versus Hypertonic Saline in Cystic Fibrosis (CF) Subjects; NCT00928135, 672. 2009. Available online: https://clinicaltrials.gov/ct2/show/NCT00928135 (accessed on 23 December 2021).
- Zabner, J. Inhaled Xylitol Versus Saline in Stable Subjects With Cystic Fibrosis; NCT01355796, 674. 2018. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01355796 (accessed on 23 December 2021).
- Illanes, A. Enzyme Biocatalysis: Principles and Applications; Springer Science: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Habibi, Z.; Mohammadi, M.; Yousefi, M. Enzymatic Hydrolysis of Racemic Ibuprofen Esters Using Rhizomucor Miehei Lipase Immobilized on Different Supports. Process. Biochem. 2013, 48, 669–676. [Google Scholar] [CrossRef]
- Mustranta, A. Use of Lipases in the Resolution of Racemic Ibuprofen. Appl. Microbiol. Biotechnol. 1992, 38, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ravelo, M.; Fuente, E.; Blanco, Á.; Ladero, M.; García-Ochoa, F. Esterification of Glycerol and Ibuprofen in Solventless Media Catalyzed by Free CALB: Kinetic Modelling. Biochem. Eng. J. 2015, 101, 228–236. [Google Scholar] [CrossRef]
- Chen, J.P. Production of Ethyl Butyrate Using Gel-Entrapped Candida Cylindracea Lipase. J. Ferment. Bioeng. 1996, 82, 404–407. [Google Scholar] [CrossRef]
- Wescott, C.R.; Klibanov, A.M. Solvent Variation Inverts Substrate Specificity of an Enzyme. J. Am. Chem. Soc. 1993, 115, 1629–1631. [Google Scholar] [CrossRef]
- Gomes, F.M.; Pereira, E.B.; de Castro, H.F. Immobilization of Lipase on Chitin and Its Use in Nonconventional Biocatalysis. Biomacromolecules 2004, 5, 17–23. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Foresti, M.L.; Galle, M.; Ferreira, M.L.; Briand, L.E. Enantioselective Esterification of Ibuprofen with Ethanol as Reactant and Solvent Catalyzed by Immobilized Lipase: Experimental Andmolecular Modeling Aspects. J. Chem. Technol. Biotechnol. 2009, 84, 1461–1473. [Google Scholar] [CrossRef]
- Ong, A.L.; Kamaruddin, A.H.; Bhatia, S.; Long, W.S.; Lim, S.T.; Kumari, R. Performance of Free Candida Antarctica Lipase B in the Enantioselective Esterification of (R)-Ketoprofen. Enzyme Microb. Technol. 2006, 39, 924–929. [Google Scholar] [CrossRef]
- Nordblad, M.; Adlercreutz, P. Immobilisation Procedure and Reaction Conditions for Optimal Performance of Candida Antarctica Lipase B in Transesterification and Hydrolysis. Biocatal. Biotransform. 2013, 31, 237–245. [Google Scholar] [CrossRef]
- Manoel, E.A.; dos Santos, J.C.S.; Freire, D.M.G.; Rueda, N.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports Involves the Open Form of the Enzyme. Enzyme Microb. Technol. 2015, 71, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wei, D.; Song, Q.; Zhang, M. Study of Ibuprofen Glucopyranoside Derivative Synthesis by Candida Antarctica Lipase in Organic Solvent. Prep. Biochem. Biotechnol. 2007, 37, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Zappaterra, F.; Costa, S.; Summa, D.; Semeraro, B.; Cristofori, V.; Trapella, C.; Tamburini, E. Glyceric Prodrug of Ursodeoxycholic Acid (UDCA): Novozym 435-Catalyzed Synthesis of UDCA-Monoglyceride. Molecules 2021, 25, 5966. [Google Scholar] [CrossRef]
- Patti, A.; Sanfilippo, C. Breaking Molecular Symmetry through Biocatalytic Reactions to Gain Access to Valuable Chiral Synthons. Symmetry 2020, 12, 1454. [Google Scholar] [CrossRef]
- Mendes, A.A.; Oliveira, P.C.; De Castro, H.F. Properties and Biotechnological Applications of Porcine Pancreatic Lipase. J. Mol. Catal. B Enzym. 2012, 78, 119–134. [Google Scholar] [CrossRef]
- Brockerhoff, H. Substrate Specificity of Pancreatic Lipase. BBA—Enzymol. 1968, 159, 296–303. [Google Scholar] [CrossRef]
- Zappaterra, F.; Summa, D.; Semeraro, B.; Buzzi, R.; Trapella, C.; Ladero, M.; Costa, S.; Tamburini, E. Enzymatic Esterification as Potential Strategy to Enhance the Sorbic Acid Behavior as Food and Beverage Preservative. Fermentation 2020, 6, 96. [Google Scholar] [CrossRef]
- Riva, S.; Chopineau, J.; Kieboom, A.P.G.; Klibanov, A.M. Protease-Catalyzed Regioselective Esterification of Sugars and Related Compounds in Anhydrous Dimethylformamide. J. Am. Chem. Soc. 1988, 110, 584–589. [Google Scholar] [CrossRef]
- Li, G.; Yao, D.; Zong, M. Lipase-Catalyzed Synthesis of Biodegradable Copolymer Containing Malic Acid Units in Solvent-Free System. Eur. Polym. J. 2008, 44, 1123–1129. [Google Scholar] [CrossRef]
- Durairaj, L.; Launspach, J.; Watt, J.L.; Mohamad, Z.; Kline, J.; Zabner, J. Safety Assessment of Inhaled Xylitol in Subjects with Cystic Fibrosis. J. Cyst. Fibros. 2007, 6, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Di Guida, F.; Pirozzi, C.; Magliocca, S.; Santoro, A.; Lama, A.; Russo, R.; Nieddu, M.; Burrai, L.; Boatto, G.; Mollica, M.P.; et al. A Galactosylated Pro-Drug of Ursodeoxycholic Acid: Design, Synthesis, Characterization, and Pharmacological Effects in a Rat Model of Estrogen-Induced Cholestasis. Mol. Pharm. 2018, 15, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Junior, E.R.; Truzzi, E.; Ferraro, L.; Fogagnolo, M.; Pavan, B.; Beggiato, S.; Rustichelli, C.; Maretti, E.; Lima, E.M.; Leo, E.; et al. Nasal Administration of Nanoencapsulated Geraniol/Ursodeoxycholic Acid Conjugate: Towards a New Approach for the Management of Parkinson’s Disease. J. Control. Release 2020, 321, 540–552. [Google Scholar] [CrossRef]
- Bonfield, T.L.; Panuska, J.R.; Konstan, M.W.; Hilliard, K.A.; Hilliard, J.B.; Ghnaim, H.; Berger, M. Inflammatory Cytokines in Cystic Fibrosis Lungs. Am. J. Respir. Crit. Care Med. 1995, 152, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Zappaterra, F.; Elena, M.; Rodriguez, M.; Summa, D.; Semeraro, B.; Costa, S.; Tamburini, E. Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. Int. J. Mol. Sci. 2021, 22, 3066. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Substrate | Chemical Formula | Molecular Weight | Melting Point (°C) | LogP |
---|---|---|---|---|
Ibuprofen | C13H18O2 | 206.29 | 76 | 3.97 |
Xylitol | C5H12O5 | 152.15 | 93.5 | −2.56 |
Solvent | LogP | Boiling Point (°C) |
---|---|---|
Acetonitrile | −0.34 | 81.6 |
Benzene | 2.13 | 80 |
Cyclohexane | 3.44 | 80.7 |
Dimethyl carbonate | 0.23 | 90.5 |
Ethyl acetate | 0.73 | 77.1 |
Hexane | 3.9 | 68.7 |
Isoamyl alcohol | 1.16 | 131.1 |
Petroleum ether | 4.66 | 98.5 |
2-methylbutan-2-ol | 0.89 | 102.4 |
Tetrahydrofuran | 0.46 | 65 |
Toluene | 2.73 | 110.6 |
Gene | Primer Sequence | Tm °C | Product Length (bp) |
---|---|---|---|
IL-8 | F: 5′-gtgcagttttgccaaggagt-3′ | 56.3 | 20 |
R: 5′-ttatgaattctcagccctcttcaaaaact-3′ | 58.6 | 29 | |
GAPDH | F: 5′-aaggtcggagtcaacggattt-3′ | 56.4 | 21 |
R: 5′-actgtggtcatgagtccttcc-3′ | 56.5 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappaterra, F.; Tupini, C.; Summa, D.; Cristofori, V.; Costa, S.; Trapella, C.; Lampronti, I.; Tamburini, E. Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug. Int. J. Mol. Sci. 2022, 23, 2026. https://doi.org/10.3390/ijms23042026
Zappaterra F, Tupini C, Summa D, Cristofori V, Costa S, Trapella C, Lampronti I, Tamburini E. Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug. International Journal of Molecular Sciences. 2022; 23(4):2026. https://doi.org/10.3390/ijms23042026
Chicago/Turabian StyleZappaterra, Federico, Chiara Tupini, Daniela Summa, Virginia Cristofori, Stefania Costa, Claudio Trapella, Ilaria Lampronti, and Elena Tamburini. 2022. "Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug" International Journal of Molecular Sciences 23, no. 4: 2026. https://doi.org/10.3390/ijms23042026
APA StyleZappaterra, F., Tupini, C., Summa, D., Cristofori, V., Costa, S., Trapella, C., Lampronti, I., & Tamburini, E. (2022). Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug. International Journal of Molecular Sciences, 23(4), 2026. https://doi.org/10.3390/ijms23042026