Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover
Abstract
:1. Introduction
2. Results
2.1. Different Expression Levels of CSP1 and CSP4 in Diverse Strains
2.2. RNAi Increases Thiamethoxam and Spirotetramat Toxicity
2.3. Ectopic Expression of CSPs Enhanced Drosophila Tolerance
3. Discussion
4. Materials and Methods
4.1. Insects and Chemicals
4.2. RNA Extraction, cDNA Synthesis and Gene Cloning
4.3. Quantitative PCR and Data Analysis
4.4. DsRNA Synthesis and Diet-Mediated RNAi
4.5. Construction of UAS-CSP Transgenic Drosophila and Bioassays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helps, J.C.; Paveley, N.D.; White, S.; van den Bosch, F. Determinants of optimal insecticide resistance management strategies. J. Theor. Biol. 2020, 503, 110383. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalucki, M.P.; Furlong, M.J. Behavior as a mechanism of insecticide resistance: Evaluation of the evidence. Curr. Opin. Insect Sci. 2017, 21, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, V.A.; Wagstaff, S.; Ranson, H. Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat. Commun. 2018, 9, 5282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feyereisen, R.; Dermauw, W.; Van Leeuwen, T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic. Biochem. Physiol. 2015, 121, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Balabanidou, V.; Grigoraki, L.; Vontas, J. Insect cuticle: A critical determinant of insecticide resistance. Curr. Opin. Insect Sci. 2018, 27, 68–74. [Google Scholar] [CrossRef]
- Martinez, D.; Devonshire, A.L.; Williamson, M.S. Molecular Studies of Knockdown Resistanceto Pyrethroids: Cloning of Domain II Sodium Channel Gene Sequences from Insects. Pestic. Sci. 1997, 51, 265–270. [Google Scholar] [CrossRef]
- Guo, L.; Liang, P.; Zhou, X.; Gao, X. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Sci. Rep. 2014, 4, 6924. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, Y.; Zhou, X.; Li, Z.; Liu, S.; Pei, L.; Gao, X. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. Pest. Manag. Sci. 2014, 70, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Balabanidou, V.; Kampouraki, A.; MacLean, M.; Blomquist, G.J.; Tittiger, C.; Juarez, M.P.; Mijailovsky, S.J.; Chalepakis, G.; Anthousi, A.; Lynd, A.; et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2016, 113, 9268–9273. [Google Scholar] [CrossRef] [Green Version]
- Pignatelli, P.; Ingham, V.A.; Balabanidou, V.; Vontas, J.; Lycett, G.; Ranson, H. The Anopheles gambiae ATP-binding cassette transporter family: Phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. Insect. Mol. Biol. 2018, 27, 110–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockwood, J.A.; Sparks, T.C.; Story, R.N. Evolution of Insect Resistance to Insecticides: A Reevaluation of the Roles of Physiology and Behavior. Bull. Entomol. Soc. Am. 1984, 30, 41–51. [Google Scholar] [CrossRef]
- Wada-Katsumata, A.; Silverman, J.; Schal, C. Changes in Taste Neurons Support the Emergence of an Adaptive Behavior in Cockroaches. Science 2013, 340, 972–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, C.-W.; Zhang, J.; Gao, X.-W.; Liang, P.; Guo, H.-L. Differential mRNA expression levels and gene sequences of carboxylesterase in both deltamethrin resistant and susceptible strains of the cotton aphid, Aphis gossypii. Insect Sci. 2008, 15, 209–216. [Google Scholar] [CrossRef]
- Li, X.; Shi, H.; Gao, X.; Liang, P. Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.). Pest. Manag. Sci. 2018, 74, 695–704. [Google Scholar] [CrossRef]
- Pavlidi, N.; Vontas, J.; Van Leeuwen, T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect. Sci. 2018, 27, 97–102. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Wang, L.; Liu, S.; Wu, S.; Yang, Y.; Feyereisen, R.; Wu, Y. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 2018, 9, 4820. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Li, R.; Zhu, B.; Gao, X.W.; Liang, P. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest. Manag. Sci. 2018, 74, 1386–1393. [Google Scholar] [CrossRef]
- He, C.; Xie, W.; Yang, X.; Wang, S.L.; Wu, Q.J.; Zhang, Y.J. Identification of glutathione S-transferases in Bemisia tabaci (Hemiptera: Aleyrodidae) and evidence that GSTd7 helps explain the difference in insecticide susceptibility between B. tabaci Middle East-Minor Asia 1 and Mediterranean. Insect. Mol. Biol. 2018, 27, 22–35. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef]
- Vieira, F.G.; Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: Origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 2011, 3, 476–490. [Google Scholar] [CrossRef]
- Schneider, D. Insect Olfaction: Deciphering System for Chemical Messages. Nature 1969, 163, 1031–1037. [Google Scholar] [CrossRef]
- Pelosi, P.; Iovinella, I.; Zhu, J.; Wang, G.R.; Dani, F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 2018, 93, 184–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatier, L.; Jouanguy, E.; Dostert, C.; Zachary, D.; Dimarcq, J.L.; Bulet, P.; Imler, J.L. Two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur. J. Biochem. 2003, 270, 3398–3407. [Google Scholar] [CrossRef] [PubMed]
- Ingham, V.A.; Anthousi, A.; Douris, V.; Harding, N.J.; Lycett, G.; Morris, M.; Vontas, J.; Ranson, H. A sensory appendage protein protects malaria vectors from pyrethroids. Nature 2020, 577, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Xuan, N.; Guo, X.; Xie, H.Y.; Lou, Q.N.; Lu, X.B.; Liu, G.X.; Picimbon, J.F. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect. Sci. 2015, 22, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Bautista, M.A.; Bhandary, B.; Wijeratne, A.J.; Michel, A.P.; Hoy, C.W.; Mittapalli, O. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest. Manag. Sci. 2015, 71, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ma, H.; Xie, H.; Xuan, N.; Guo, X.; Fan, Z.; Rajashekar, B.; Arnaud, P.; Offmann, B.; Picimbon, J.F. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense. PLoS ONE 2016, 11, e0154706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied aspects of neonicotinoid uses in crop protection. Pest. Manag. Sci. 2008, 64, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Tang, C.; Ma, K.; Xia, J.; Song, D.; Gao, X.W. Overexpression of UDP-glycosyltransferase potentially involved in insecticide resistance in Aphis gossypii Glover collected from Bt cotton fields in China. Pest. Manag. Sci. 2020, 76, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Marcic, D.; Petronijevic, S.; Drobnjakovic, T.; Prijovic, M.; Peric, P.; Milenkovic, S. The effects of spirotetramat on life history traits and population growth of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2012, 56, 113–122. [Google Scholar] [CrossRef]
- Van Pottelberge, S.; Van Leeuwen, T.; Khajehali, J.; Tirry, L. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest. Manag. Sci. 2009, 65, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Lummen, P.; Khajehali, J.; Luther, K.; Van Leeuwen, T. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect. Biochem. Mol. Biol. 2014, 55, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A.M.; Nauen, R.; Niebes, J.-F.; Reckmann, U.; Schnorbach, H.-J.; et al. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Prot. 2009, 28, 838–844. [Google Scholar] [CrossRef]
- Bielza, P.; Moreno, I.; Belando, A.; Gravalos, C.; Izquierdo, J.; Nauen, R. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest. Manag. Sci. 2019, 75, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J. Studies on cross-resistance and mechanism of cyantraniliprole resistant in Aphis gossypii Glover. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Prelich, G. Gene overexpression: Uses, mechanisms, and interpretation. Genetics 2012, 190, 841–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, T.; Pan, Y.; Yang, C.; Gao, X.; Xi, J.; Wu, Y.; Huang, X.; Zhu, E.; Xin, X.; Zhan, C.; et al. Over-expression of CYP6A2 is associated with spirotetramat resistance and cross-resistance in the resistant strain of Aphis gossypii Glover. Pestic. Biochem. Physiol. 2016, 126, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Pan, Y.; Song, J.; Li, J.; Lv, Y.; Gao, X.; Tian, F.; Peng, T.; Xu, H.; Shang, Q. Resistance Risk Assessment of the Ryanoid Anthranilic Diamide Insecticide Cyantraniliprole in Aphis gossypii Glover. J. Agric. Food Chem. 2021, 69, 5849–5857. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.F.; Gao, S.S.; Lu, Y.Y.; Wei, L.T.; Mao, J.J.; Xie, J.; Cao, Q.Q.; Liu, J.J.; Bi, J.X.; Song, X.W.; et al. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. Pestic. Biochem. Phys. 2019, 159, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Qu, M.J.; Wang, S.J.; Huang, Y.X.; Chen, C.; Chen, M.H. Chemosensory proteins participate in insecticide susceptibility in Rhopalosiphum padi, a serious pest on wheat crops. Insect. Mol. Biol. 2021, 30, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Green, L.; Battlay, P.; Fournier-Level, A.; Good, R.T.; Robin, C. Cis- and trans-acting variants contribute to survivorship in a naive Drosophila melanogaster population exposed to ryanoid insecticides. Proc. Natl. Acad. Sci. USA 2019, 116, 10424–10429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Pan, Y.; Xin, X.; Zheng, C.; Gao, X.; Xi, J.; Shang, Q. Cross-resistance pattern and basis of resistance in a thiamethoxam-resistant strain of Aphis gossypii Glover. Pestic. Biochem. Physiol. 2017, 138, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, H.; Pan, Y.; Gao, X.; Xi, J.; Zhang, J.; Shang, Q. Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover. Pestic. Biochem. Physiol. 2018, 149, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Pan, Y.; Gao, X.; Xi, J.; Zhang, L.; Yang, C.; Bi, R.; Yang, S.; Xin, X.; Shang, Q. Cytochrome P450 CYP6DA2 regulated by cap ‘n’collar isoform C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover. Insect. Mol. Biol. 2016, 25, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids. Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. 1925. J. Am. Mosq. Control. Assoc. 1987, 3, 302–303. [Google Scholar] [PubMed]
- Qiao, H.H.; Wang, F.; Xu, R.G.; Sun, J.; Zhu, R.; Mao, D.; Ren, X.; Wang, X.; Jia, Y.; Peng, P.; et al. An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat. Commun. 2018, 9, 4160. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Pan, Y.; Tian, F.; Li, J.; Xu, H.; Liu, X.; Chen, X.; Gao, X.; Peng, T.; Bi, R.; et al. Functional validation of key cytochrome P450 monooxygenase and UDP-glycosyltransferase genes conferring cyantraniliprole resistance in Aphis gossypii Glover. Pestic. Biochem. Physiol. 2021, 176, 104879. [Google Scholar] [CrossRef] [PubMed]
Gene | Transcriptome Data | qPCR Result | |||||
---|---|---|---|---|---|---|---|
SS (FPKM) | ThR/SR (FPKM) | Log2 (FC) | FDR | Relative Expression Level | p-Value | ||
ThR/SS | CSP1 | 15.22 | 24.77 | 0.71 | <0.001 | 1.28 | 0.026 |
CSP4 | 139.44 | 258.34 | 0.90 | <0.001 | 2.30 | <0.0001 | |
SR/SS | CSP4 | 139.44 | 221.55 | 0.66 | <0.001 | 6.08 | 0.0008 |
Insecticide | Gene | UAS-CSPs > [y sc v Nanos-Integrase; attP40] Strain | Act5C > UAS-CSPs Strain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LD50 (95% CL a) (ng/per Adult) | Fit of Probit Line b | LD50 (95% CL a) (ng/per Adult) | Fit of Probit Line b | RF at LD50 c (95% CL a) | ||||||||
Slope ± SE | χ2 | p | df | Slope ± SE | χ2 | p | df | |||||
Thiamethoxam | CSP1 | 22.01 (17.88–27.49) | 2.80 ± 0.37 | 9.68 | 0.88 | 16 | 61.57 (49.39–81.17) | 2.57 ± 0.40 | 9.68 | 0.88 | 16 | 2.80 |
CSP4 | 13.06 (9.52–18.20) | 1.74 ± 0.23 | 17.03 | 0.38 | 16 | 88.33 (61.24–157.61) | 1.86 ± 0.30 | 19.72 | 0.23 | 16 | 6.76 | |
α-cypermethrin | CSP1 | 0.29 (0.24–0.35) | 3.00 ± 0.40 | 7.66 | 0.96 | 16 | 0.31 (0.25–0.38) | 2.64 ± 0.36 | 11.87 | 0.75 | 16 | 1.06 |
CSP4 | 0.12 (0.10–0.14) | 3.32 ± 0.41 | 15.44 | 0.49 | 16 | 0.66 (0.52–0.91) | 2.47 ± 0.41 | 6.89 | 0.98 | 16 | 5.76 |
Insecticide | Gene | UAS-CSPs > [y sc v Nanos-Integrase; attP40] Strain | Esg > UAS-CSPs Strain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LC50 (95% CL a) (mg L−1) | Fit of Probit Line b | LC50 (95% CL a) (mg L−1) | Fit of Probit Line b | RF at LC50 c (95% CLa) | ||||||||
Slope ± SE | χ2 | p | df | Slope ± SE | χ2 | p | df | |||||
Thiamethoxam | CSP1 | 5.36 (4.90–5.87) | 8.94 ± 0.85 | 43.38 | 0.00 | 16 | 7.35 (7.00–7.85) | 9.72 ± 1.39 | 7.56 | 0.96 | 16 | 1.37 |
CSP4 | 6.27 (5.80–6.88) | 6.99 ± 0.78 | 27.71 | 0.03 | 16 | 7.73 (7.18–8.75) | 9.44 ± 1.42 | 26.07 | 0.05 | 16 | 1.23 | |
α-cypermethrin | CSP1 | 1.49 (1.25–1.96) | 3.45 ± 0.61 | 4.80 | 0.99 | 16 | 4.90 (4.11–5.89) | 3.10 ± 0.34 | 17.30 | 0.37 | 16 | 3.29 |
CSP4 | 1.03 (0.81–1.41) | 2.27 ± 0.29 | 17.36 | 0.36 | 16 | 7.46 (6.04–9.72) | 2.59 ± 0.32 | 17.87 | 0.33 | 16 | 7.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Yan, K.; Ding, Y.; Lv, Y.; Li, J.; Yang, F.; Chen, X.; Gao, X.; Pan, Y.; Shang, Q. Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. Int. J. Mol. Sci. 2022, 23, 2356. https://doi.org/10.3390/ijms23042356
Xu H, Yan K, Ding Y, Lv Y, Li J, Yang F, Chen X, Gao X, Pan Y, Shang Q. Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. International Journal of Molecular Sciences. 2022; 23(4):2356. https://doi.org/10.3390/ijms23042356
Chicago/Turabian StyleXu, Hongfei, Kunpeng Yan, Yaping Ding, Yuntong Lv, Jianyi Li, Fengting Yang, Xuewei Chen, Xiwu Gao, Yiou Pan, and Qingli Shang. 2022. "Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover" International Journal of Molecular Sciences 23, no. 4: 2356. https://doi.org/10.3390/ijms23042356
APA StyleXu, H., Yan, K., Ding, Y., Lv, Y., Li, J., Yang, F., Chen, X., Gao, X., Pan, Y., & Shang, Q. (2022). Chemosensory Proteins Are Associated with Thiamethoxam and Spirotetramat Tolerance in Aphis gossypii Glover. International Journal of Molecular Sciences, 23(4), 2356. https://doi.org/10.3390/ijms23042356