Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results and Discussion
3.1. Study Selection, Characteristics, and Quality
3.2. Overview of Extracellular Vesicles Sources, Isolation, and Characterization Methodology
3.3. The Effect of Allergic-Rhinitis-Derived Exosomes on the Occurrence of Allergic Rhinitis
3.4. Differentially Expressed MicroRNA in Allergic-Rhinitis-Derived Exosomes and Corresponding Biological Pathways
3.5. The Role of Long Non-Coding RNA in the Pathogenesis of Allergic Rhinitis
3.6. The Role of Exosomes in Regulation of Dendritic Cell Maturation in Allergic Rhinitis
3.7. Extracellular Vesicles for Therapeutic Applications in Allergic Rhinitis
3.7.1. The Potential of Mesenchymal-Stromal-Cell-Derived Extracellular Vesicles Therapy in Allergic Rhinitis
3.7.2. Extracellular Vesicles Containing T Cell Activators as Treatment of Allergic Rhinitis
3.7.3. Allergen-Specific Immunotherapy—Antigen-Loaded Extracellular Vesicles as Therapeutic Method for Allergic Rhinitis
3.7.4. Exosomal Biomarker for Predicting the Response to Immunotherapy in Allergic Rhinitis
3.8. Microbiota in Extracellular Vesicles from Allergic Rhinitis Patients
3.8.1. Microbiota Characteristics in Nasal Extracellular Vesicles in Allergic Rhinitis
3.8.2. Urine-Bacteria-Derived Extracellular Vesicles in Allergic Rhinitis
3.9. Discussion—Strengths and Limitations of This Systematic Review and Included Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A549 | mouse airway epithelial cell line |
AR | allergic rhinitis |
BMDC | bone-marrow-derived dendritic cell |
CD | cluster of differentiation |
CRS | chronic rhinosinusitis |
DC | dendritic cell |
Derp | Dermatophagoides pteronyssinus |
Derp (1) | Dermatophagoides pteronyssinus (protease) |
ELISA | enzyme-linked immunosorbent assay |
EZH2 | enhancer of zeste homolog 2 |
FC | flow cytometry |
FLLL31 | tetramethylcurcumin (a curcumin analog) |
GATA-3 | GATA binding protein-3 |
GM-CSF | granulocyte–macrophage colony-stimulating factor |
HDM | house dust mite |
HLA-DR | Human Leukocyte Antigen—DR isotype |
HNECs | human nasal epithelial cells |
HUC-MSC-EVs | human umbilical cord mesenchymal stem cell-derived extracellular vesicle |
HS | healthy subject |
iDC | immature dendritic cell |
IFN-ɣ | interferon ɣ |
iPSC | induced pluripotent stem cells |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LncGAS5 | long non-coding ribonucleic acid Growth Arrest Specific 5 |
lncRNA | long non-coding ribonucleic acid |
mDCs | mature dendritic cell |
MHC | major histocompatibility complex |
miR = miRNA | micro ribonucleic acid |
mRNA | messenger ribonucleic acid |
MSC | mesenchymal stromal cell |
NEAT1 | Nuclear Paraspeckle Assembly Transcript 1 |
NR | not reported |
NR4A2 | Nuclear Receptor Subfamily 4 Group A Member 2 |
ov | overexpressed vectors |
OVA | ovalbumin |
PBS | phosphate-buffered saline |
PM | particulate matter |
RPMI 2650 | human airway epithelial cell line |
SCIT | subcutaneous immunotherapy |
SEB | Staphylococcal enterotoxin B |
EV | extracellular vesicle |
TEM | transmission electron microscopy |
Tfhs | follicular helper T cells |
Treg | regulatory T cell |
WB | Western blotting |
References
- Small, P.; Keith, P.K.; Kim, H. Allergic rhinitis. Allergy Asthma Clin. Immunol. 2018, 14, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, L. Increasing Prevalence of Allergic Rhinitis in China. Allergy Asthma Immunol. Res. 2019, 11, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Brożek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canonica, G.W.; Casale, T.; Chavannes, N.H.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 2017, 140, 950–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, Z.A.; Walker, A.; Pirwani, M.M.; Tahiri, M.; Syed, I. Allergic rhinitis: Diagnosis and management. Br. J. Hosp. Med. 2022, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter Canonica, G.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; et al. Allergic rhinitis. Nat. Rev. Dis. Prim. 2020, 6, 95. [Google Scholar] [CrossRef]
- Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018, 75, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Boriachek, K.; Islam, M.N.; Möller, A.; Salomon, C.; Nguyen, N.-T.; Hossain, M.S.A.; Yamauchi, Y.; Shiddiky, M.J.A. Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small 2018, 14, 1702153. [Google Scholar] [CrossRef]
- Macia, L.; Nanan, R.; Hosseini-Beheshti, E.; Grau, G.E. Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. Int. J. Mol. Sci. 2019, 21, 107. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kim, E.K.; McDowell, A.; Kim, Y.-K. Microbe-derived extracellular vesicles as a smart drug delivery system. Transl. Clin. Pharmacol. 2018, 26, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Harrell, C.R.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells 2019, 8, 1605. [Google Scholar] [CrossRef]
- Anel, A.; Gallego-Lleyda, A.; de Miguel, D.; Naval, J.; Martínez-Lostao, L. Role of Exosomes in the Regulation of T-Cell Mediated Immune Responses and in Autoimmune Disease. Cells 2019, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Demkow, U.; Stelmaszczyk-Emmel, A. Extracellular Vesicles in Allergic Rhinitis and Asthma and Laboratory Possibilities for Their Assessment. Int. J. Mol. Sci. 2021, 22, 2273. [Google Scholar] [CrossRef]
- Nocera, A.L.; Mueller, S.K.; Stephan, J.R.; Hing, L.; Seifert, P.; Han, X.; Lin, D.T.; Amiji, M.M.; Libermann, T.; Bleier, B.S. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. J. Allergy Clin. Immunol. 2019, 143, 1525–1535.e1. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, Y.-Y.; Yang, G.; Mo, L.-H.; Liu, D.-B.; Yang, L.-T.; Liu, Z.-G.; Ning, Y.; Yang, P.-C. Integrin αvβ6 cooperates with resiquimod to restore antigen-specific immune tolerance in airway allergy. Immunol. Lett. 2021, 230, 49–58. [Google Scholar] [CrossRef]
- Engeroff, P.; Vogel, M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines 2022, 10, 133. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. Br. Med. J. 2021, 372, n160. [Google Scholar] [CrossRef]
- Teng, Z.X.; Zhou, X.C.; Xu, R.T.; Zhu, F.Y.; Bing, X.; Guo, N.; Shi, L.; Qi, W.W.; Liu, C.C.; Xia, M. Tfh Exosomes Derived from Allergic Rhinitis Promote DC Maturation Through miR-142-5p/CDK5/STAT3 Pathway. J. Inflamm. Res. 2022, 15, 3187–3205. [Google Scholar] [CrossRef]
- Peng, Y.Q.; Wu, Z.C.; Xu, Z.B.; Fang, S.B.; Chen, D.H.; Zhang, H.Y.; Liu, X.Q.; He, B.X.; Chen, D.; Akdis, C.A.; et al. Mesenchymal stromal cells-derived small extracellular vesicles modulate DC function to suppress Th2 responses via IL-10 in patients with allergic rhinitis. Eur. J. Immunol. 2022, 52, 1129–1140. [Google Scholar] [CrossRef]
- Liu, W.; Ota, M.; Tabushi, M.; Takahashi, Y.; Takakura, Y. Development of allergic rhinitis immunotherapy using antigen-loaded small extracellular vesicles. J. Control. Release 2022, 345, 433–442. [Google Scholar] [CrossRef]
- Li, W.; Cai, C.-Y.; Zeng, J.-J. Mesenchymal Stem Cell-Derived Exosome-Containing Linc00632 Regulates GATA Binding Protein-3 Expression in Allergic Rhinitis by Interacting with Enhancer of Zeste Homolog 2 to Inhibit T Helper Cell 2 Differentiation. Int. Arch Allergy Immunol. 2022, 183, 235–245. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, S.; Fan, R.; Tang, Q.; Zhang, H.; Wang, F.; Xie, S.; Gao, K.; Zhang, J.; Xie, Z.; et al. Exosomes Derived hsa-miR-4669 as a Novel Biomarker for Early Predicting the Response of Subcutaneous Immunotherapy in Pediatric Allergic Rhinitis. J. Inflamm. Res. 2022, 15, 5063–5074. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.-Y.; Yang, Y.-R.; Zhuo, M.-Y.; Yang, F.; Zhang, Y.-F.; Fu, C.-H.; Lee, T.-J.; Chung, W.-H.; Chen, L.; Chang, C.-J. Microbiome profiling of nasal extracellular vesicles in patients with allergic rhinitis. World Allergy Organ. J. 2022, 15, 100674. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Lu, Y.; Wu, W.; Feng, Y. HMSC-Derived Exosome Inhibited Th2 Cell Differentiation via Regulating miR-146a-5p/SERPINB2 Pathway. J. Immunol. Res. 2021, 2021, 6696525. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cai, W.; Wu, Q.; Chen, D.; Wang, P.; Xu, Z. Exosomal lncRNA Nuclear Paraspeckle Assembly Transcript 1 (NEAT1)contributes to the progression of allergic rhinitis via modulating microRNA-511/Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) axis. Bioengineered 2021, 12, 8067–8079. [Google Scholar] [CrossRef] [PubMed]
- Samra, M.S.; Lim, D.H.; Han, M.Y.; Jee, H.M.; Kim, Y.K.; Kim, J.H. Bacterial Microbiota-derived Extracellular Vesicles in Children With Allergic Airway Diseases: Compositional and Functional Features. Allergy Asthma Immunol. Res. 2021, 13, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.-H.; Han, H.-Y.; Jin, Q.-R.; Song, Y.-N.; Wu, G.-H.; Zhang, Y.; Yang, L.-T.; Liu, T.; Liu, Z.-G.; Feng, Y.; et al. T cell activator-carrying extracellular vesicles induce antigen-specific regulatory T cells. Clin. Exp. Immunol. 2021, 206, 129–140. [Google Scholar] [CrossRef]
- Mariani, J.; Iodice, S.; Cantone, L.; Solazzo, G.; Marraccini, P.; Conforti, E.; Bulsara, P.A.; Lombardi, M.S.; Howlin, R.P.; Bollati, V.; et al. Particulate Matter Exposure and Allergic Rhinitis: The Role of Plasmatic Extracellular Vesicles and Bacterial Nasal Microbiome. Int. J. Environ. Res. Public Health 2021, 18, 10689. [Google Scholar] [CrossRef]
- Fang, S.-B.; Zhou, Z.-R.; Peng, Y.-Q.; Liu, X.-Q.; He, B.-X.; Chen, D.-H.; Chen, D.; Fu, Q.-L. Plasma EVs Display Antigen-Presenting Characteristics in Patients with Allergic Rhinitis and Promote Differentiation of Th2 Cells. Front. Immunol. 2021, 12, 710372. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Wang, Y.; Zhao, Y. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis. Mol. Immunol. 2020, 118, 30–39. [Google Scholar] [CrossRef]
- Fang, S.B.; Zhang, H.Y.; Wang, C.; He, B.X.; Liu, X.Q.; Meng, X.C.; Peng, Y.Q.; Xu, Z.B.; Fan, X.L.; Wu, Z.J.; et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of mir-146a-5p. J. Extracell. Vesicles 2020, 9, 1723260. [Google Scholar] [CrossRef]
- Samra, M.; Nam, S.K.; Lim, D.H.; Kim, D.H.; Yang, J.; Kim, Y.-K.; Kim, J.H. Urine Bacteria-Derived Extracellular Vesicles and Allergic Airway Diseases in Children. Int. Arch. Allergy Immunol. 2018, 178, 150–158. [Google Scholar] [CrossRef]
- Wu, G.; Yang, G.; Zhang, R.; Xu, G.; Zhang, L.; Wen, W.; Lu, J.; Liu, J.; Yu, Y. Altered microRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus from Patients with Allergic Rhinitis. Allergy Asthma Immunol. Res. 2015, 7, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Han, M.; Liu, J.; Wang, Y.; Luo, X.; Zheng, J.; Wang, S.; Liu, Z.; Liu, D.; Yang, P.-C.; et al. Epithelial cell-derived micro RNA-146a generates interleukin-10-producing monocytes to inhibit nasal allergy. Sci. Rep. 2015, 5, 15937. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Du, Y.; Duan, X.; Geng, X.; Xie, J.; Gao, H.; Yang, P.-C. Cytotoxic T lymphocytes mediate chronic inflammation of the nasal mucosa of patients with atypical allergic rhinitis. N. Am. J. Med Sci. 2011, 3, 378–383. [Google Scholar] [CrossRef]
- Fang, S.-B.; Zhang, H.-Y.; Meng, X.-C.; Wang, C.; He, B.-X.; Peng, Y.-Q.; Xu, Z.-B.; Fan, X.-L.; Wu, Z.-J.; Wu, Z.-C.; et al. Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis. 2020, 11, 409. [Google Scholar] [CrossRef]
- Gál, Z.; Gézsi, A.; Semsei, Á.F.; Nagy, A.; Sultész, M.; Csoma, Z.; Tamási, L.; Gálffy, G.; Szalai, C. Investigation of circulating lncRNAs as potential biomarkers in chronic respiratory diseases. J. Transl. Med. 2020, 18, 422. [Google Scholar] [CrossRef]
- Jakwerth, C.A.; Chaker, A.M.; Guerth, F.; Oelsner, M.; Pechtold, L.; Zur Bonsen, L.S.; Ullmann, J.T.; Krauss-Etschmann, S.; Erb, A.; Kau, J.; et al. Sputum microRNA-screening reveals Prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy. Clin. Exp. Allergy 2021, 51, 1577–1591. [Google Scholar] [CrossRef]
- Kim, M.; Park, Y.; Kwon, Y.; Kim, Y.; Byun, J.; Jeong, M.S.; Kim, H.-U.; Jung, H.S.; Young Mun, J.; Jeoung, D. MiR-135-5p-p62 Axis Regulates Autophagic Flux, Tumorigenic Potential, and Cellular Interactions Mediated by Extracellular Vesicles during Allergic Inflammation. Front. Immunol. 2019, 10, 738. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.R.; Hong, S.W.; Choi, E.B.; Lee, W.H.; Kim, Y.S.; Jeon, S.G.; Jang, M.H.; Gho, Y.S.; Kim, Y.K. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy Eur. J. Allergy Clin. Immunol. 2012, 67, 1271–1281. [Google Scholar] [CrossRef]
- Mo, L.H.; Luo, X.Q.; Yang, G.; Liu, J.Q.; Yang, L.T.; Liu, Z.Q.; Wang, S.; Liu, D.B.; Liu, Z.G.; Yang, P.C. Epithelial cell-derived CD83 restores immune tolerance in the airway mucosa by inducing regulatory T-cell differentiation. Immunology 2021, 163, 310–322. [Google Scholar] [CrossRef]
- Schaefer, T.; Zajonz, A.; Lorentz, P.; Bohnacker, T.; Wymann, M.P.; Schweighoffer, T. Luminal decoration of blood vessels by activated perivasal mast cells in allergic rhinitis. Allergy Eur. J. Allergy Clin. Immunol. 2012, 67, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Villalba, M.; Rodríguez, R.; Batanero, E. The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods 2014, 66, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-S.; Kang, S.A.; Kim, S.-D.; Mun, S.-J.; Yu, H.S.; Roh, H.-J. Dendritic cells and M2 macrophage play an important role in suppression of Th2-mediated inflammation by adipose stem cells-derived extracellular vesicles. Stem Cell Res. 2019, 39, 101500. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-P.; Jeon, S.G.; Kim, Y.-K.; Cho, Y.S. Role of house dust mite-derived extracellular vesicles in a murine model of airway inflammation. Clin. Exp. Allergy 2018, 49, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Duan, X.; Geng, X.; Xie, J.; Gao, H. Antigen-specific activities of CD8+ T cells in the nasal mucosa of patients with nasal allergy. Asian Pac. J. Allergy Immunol. 2012, 30, 107–113. [Google Scholar] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In Current Protocols in Cell Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Segboer, C.L.; Fokkens, W.J.; Terreehorst, I.; Van Drunen, C.M. Endotyping of non-allergic, allergic and mixed rhinitis patients using a broad panel of biomarkers in nasal secretions. PLoS ONE 2018, 13, e0200366. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Liu, X.; He, B.; Nie, Z.; Zhu, C.; Zhang, P.; Wang, S. Exosomal lncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression. Cancer Cell Int. 2018, 18, 11. [Google Scholar] [CrossRef]
- Lee, E.-Y.; Bang, J.Y.; Park, G.W.; Choi, D.-S.; Kang, J.S.; Kim, H.-J.; Park, K.-S.; Lee, J.-O.; Kim, Y.-K.; Kwon, K.-H.; et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 2007, 7, 3143–3153. [Google Scholar] [CrossRef]
- Chen, X.; Song, C.-H.; Feng, B.-S.; Li, T.-L.; Li, P.; Zheng, P.-Y.; Chen, X.-M.; Xing, Z.; Yang, P.-C. Intestinal epithelial cell-derived integrin αβ6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J. Leukoc. Biol. 2011, 90, 751–759. [Google Scholar] [CrossRef]
- Lian, Q.; Zhang, Y.; Zhang, J.; Zhang, H.K.; Wu, X.; Zhang, Y.; Lam, F.F.-Y.; Kang, S.; Xia, J.C.; Lai, W.-H.; et al. Functional Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells Attenuate Limb Ischemia in Mice. Circulation 2010, 121, 1113–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.-K.; Nishida, H.; An, S.Y.; Shetty, A.K.; Bartosh, T.J.; Prockop, D.J. Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc. Natl. Acad. Sci. USA 2016, 113, 170–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, F.H.; Krijgsveld, J.; van Rijswijk, A.; van den Bemd, G.J.; van den Berg, M.S.; van Weerden, W.M.; Willemsen, R.; Dekker, L.J.; Luider, T.M.; Jenster, G. Exosomal Secretion of Cytoplasmic Prostate Cancer Xenograft-derived Proteins. Mol. Cell. Proteom. 2009, 8, 1192–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luketic, L.; Delanghe, J.; Sobol, P.T.; Yang, P.; Frotten, E.; Mossman, K.L.; Gauldie, J.; Bramson, J.; Wan, Y. Antigen Presentation by Exosomes Released from Peptide-Pulsed Dendritic Cells Is not Suppressed by the Presence of Active CTL. J. Immunol. 2007, 179, 5024–5032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Wang, C.; Wang, X.; Zhang, L.; Lou, H. Efficacy and safety of subcutaneous immunotherapy with house dust mite for allergic rhinitis: A Meta-analysis of Randomized Controlled Trials. Allergy 2019, 74, 189–192. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, D.; Zhang, Y.; Wang, J.; Liu, L.; Zhao, Y. miR-124-3p relieves allergic rhinitis by inhibiting dipeptidyl peptidase-4. Int. Immunopharmacol. 2021, 101, 108279. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, Y.; Xiao, Y.; Xiang, H.; Chu, L.; Wang, T.; Liu, H.; Tan, G. Increased miR-124-3p alleviates type 2 inflammatory response in allergic rhinitis via IL-4Rα. Inflamm. Res. 2022, 71, 1271–1282. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, T.; Yan, Y.; You, B.; You, Y.; Zhang, W.; Chen, J. MicroRNA-223-3p regulates allergic inflammation by targeting INPP4A. Braz. J. Otorhinolaryngol. 2021, 87, 591–600. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Song, X.; Dong, L.; Liu, D. MiR-202-5p Promotes M2 Polarization in Allergic Rhinitis by Targeting MATN2. Int. Arch. Allergy Immunol. 2019, 178, 119–127. [Google Scholar] [CrossRef]
- Liu, H.C.; Liao, Y.; Liu, C.Q. miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8076–8083. [Google Scholar] [CrossRef]
- Kuang, Y.; Hu, B.; Huang, M.; Zhao, S.; Wu, X.; Zhang, M.; Xie, Z. Phosphatidylethanolamine-binding protein 1 (PEBP1) mediates the regulatory role of microRNAs (miRNAs)-205-5p in degranulation and histamine release. Bioengineered 2022, 13, 13341–13351. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, W.; Chen, X.; Ning, Y.; Sun, M.; Wang, R. MiR-150-5p regulates the functions of type 2 innate lymphoid cells via the ICAM-1/p38 MAPK axis in allergic rhinitis. Mol. Cell. Biochem. 2022, 477, 1009–1022. [Google Scholar] [CrossRef]
- Peng, L.Y.; Li, B.B.; Deng, K.B.; Wang, W.G. MicroRNA-214-3p facilitates M2 macrophage polarization by targeting GSK3B. Kaohsiung J. Med. Sci. 2022, 38, 347–356. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, R.; Liang, X.; Jiang, X.; Bu, Q. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis. Cell. Signal. 2022, 99, 110435. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Guo, J.; Cui, L.; Yang, L.; Li, Y.; Mou, Y.; Jia, C.; Zhang, L.; Song, X. miR-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5b. Allergy 2022, 77, 550–558. [Google Scholar] [CrossRef]
- Lu, L.-F.; Boldin, M.P.; Chaudhry, A.; Lin, L.-L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses. Cell 2010, 142, 914–929. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Shang, F.; Ma, R.; Wang, M.; Rong, Y.; Liang, L.; Niu, S.; Li, Y.; Qi, Y.; Zhang, Y.; et al. [Advances of long non-coding RNA encoded micro-peptides]. Sheng Wu Gong Cheng Xue Bao 2022, 38, 3194–3214. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Taheri, M.; Sanak, M. Emerging role of non-coding RNAs in allergic disorders. Biomed. Pharmacother. 2020, 130, 110615. [Google Scholar] [CrossRef]
- Mowel, W.K.; Kotzin, J.J.; McCright, S.J.; Neal, V.D.; Henao-Mejia, J. Control of Immune Cell Homeostasis and Function by lncRNAs. Trends Immunol. 2018, 39, 55–69. [Google Scholar] [CrossRef]
- Qian, X.; Shi, S.; Zhang, G. Long non-coding RNA antisense non-coding RNA in the INK4 locus expression correlates with increased disease risk, severity, and inflammation of allergic rhinitis. Medicine 2019, 98, e15247. [Google Scholar] [CrossRef]
- Ma, Z.; Teng, Y.; Liu, X.; Li, J.; Mo, J.; Sha, M.; Li, Y. Identification and Functional Profiling of Differentially Expressed Long Non-Coding RNAs in Nasal Mucosa with Allergic Rhinitis. Tohoku J. Exp. Med. 2017, 242, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, H.; Wang, H.; Li, C.; Liu, X. [Research progress on the relationship between lncRNA and the pathogenesis of allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2022, 36, 233–238. [Google Scholar] [CrossRef]
- Yue, L.; Yin, X.; Hao, F.; Dong, J.; Ren, X.; Xu, O.; Shan, C. Long Noncoding RNA Linc00632 Inhibits Interleukin-13-Induced Inflammatory Cytokine and Mucus Production in Nasal Epithelial Cells. J. Innate Immun. 2020, 12, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Price, M.J.; Patterson, D.G.; Barwick, B.G.; Haines, R.R.; Kania, A.K.; Bradley, J.E.; Randall, T.D.; Boss, J.M.; Scharer, C.D. EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. J. Immunol. 2018, 200, 1039–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Cao, G.; Wu, J.; Wang, X.; Pan, Z.; Gao, J.; Tian, Q.; Xu, L.; Li, Z.; Hao, Y.; et al. The histone methyltransferase EZH2 primes the early differentiation of follicular helper T cells during acute viral infection. Cell. Mol. Immunol. 2020, 17, 247–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Xue, S.; Liu, Y.; Peng, M.; Guo, B. The correlation of long non-coding RNA NEAT1 and its targets microRNA (miR)-21, miR-124, and miR-125a with disease risk, severity, and inflammation of allergic rhinitis. Medicine 2021, 100, e22946. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, Z.-C.; Yu, D.; Liu, Z. Role of allergen-specific T-follicular helper cells in immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 495–501. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Z.; Zhang, H.; Chen, C.; Zeng, M.; Yunis, J.; Wei, Y.; Wan, Y.; Wang, N.; Zhou, M.; et al. Author Correction: Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat. Immunol. 2021, 22, 1599. [Google Scholar] [CrossRef]
- Gao, W.-X.; Sun, Y.-Q.; Shi, J.; Li, C.-L.; Fang, S.-B.; Wang, D.; Deng, X.-Q.; Wen, W.; Fu, Q.-L. Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res. Ther. 2017, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Weng, Z.; Zhang, B.; Wu, C.; Yu, F.; Han, B.; Li, B.; Li, L. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J. Hematol. Oncol. 2021, 14, 136. [Google Scholar] [CrossRef]
- Riazifar, M.; Mohammadi, M.R.; Pone, E.J.; Yeri, A.; Lässer, C.; Segaliny, A.I.; McIntyre, L.L.; Shelke, G.V.; Hutchins, E.; Hamamoto, A.; et al. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano 2019, 13, 6670–6688. [Google Scholar] [CrossRef]
- Fujita, Y.; Kadota, T.; Araya, J.; Ochiya, T.; Kuwano, K. Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. J. Clin. Med. 2018, 7, 355. [Google Scholar] [CrossRef] [Green Version]
- Bang, O.Y.; Kim, E.H. Mesenchymal Stem Cell-Derived Extracellular Vesicle Therapy for Stroke: Challenges and Progress. Front. Neurol. 2019, 10, 211. [Google Scholar] [CrossRef] [Green Version]
- Harrell, C.R.; Volarevic, A.; Djonov, V.; Volarevic, V. Mesenchymal Stem Cell-Derived Exosomes as New Remedy for the Treatment of Neurocognitive Disorders. Int. J. Mol. Sci. 2021, 22, 1433. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, W.; Liu, J.; Tian, J.; Wang, S.; Rui, K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front. Immunol. 2021, 12, 749192. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Li, Q.; Liu, K.; Hou, J.; Shao, C.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol. 2018, 14, 493–507. [Google Scholar] [CrossRef]
- Fan, X.-L.; Zeng, Q.-X.; Li, X.; Li, C.-L.; Xu, Z.-B.; Deng, X.-Q.; Shi, J.; Chen, D.; Zheng, S.G.; Fu, Q.-L. Induced pluripotent stem cell-derived mesenchymal stem cells activate quiescent T cells and elevate regulatory T cell response via NF-kappaB in allergic rhinitis patients. Stem Cell Res. Ther. 2018, 9, 170. [Google Scholar] [CrossRef]
- Sun, Y.-Q.; Deng, M.-X.; He, J.; Zeng, Q.-X.; Wen, W.; Wong, D.S.H.; Tse, H.-F.; Xu, G.; Lian, Q.; Shi, J.; et al. Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Allergic Airway Inflammation in Mice. Stem Cells 2012, 30, 2692–2699. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.-B.; Zhang, H.-Y.; Jiang, A.-Y.; Fan, X.-L.; Lin, Y.-D.; Li, C.-L.; Wang, C.; Meng, X.-C.; Fu, Q.-L. Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res. Ther. 2018, 9, 147. [Google Scholar] [CrossRef]
- Calvo, V.; Izquierdo, M. Inducible Polarized Secretion of Exosomes in T and B Lymphocytes. Int. J. Mol. Sci. 2020, 21, 2631. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, C.; Zhang, L. Advances and novel developments in allergic rhinitis. Allergy 2020, 75, 3069–3076. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.; Pfaar, O.; Akdis, C.A.; Ansotegui, I.J.; Durham, S.R.; Gerth van Wijk, R.; Halken, S.; Larenas-Linnemann, D.; Pawankar, R.; Pitsios, C.; et al. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy 2018, 73, 765–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rondon, C.; Blanca-Lopez, N.; Campo, P.; Mayorga, C.; Jurado-Escobar, R.; Torres, M.J.; Canto, G.; Blanca, M. Specific immunotherapy in local allergic rhinitis: A randomized, double-blind placebo-controlled trial with Phleum pratense subcutaneous allergen immunotherapy. Allergy 2018, 73, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Couroux, P.; Ipsen, H.; Stage, B.S.; Damkjaer, J.T.; Steffensen, M.A.; Salapatek, A.M.; Lund, K.; Würtzen, P.A. A birch sublingual allergy immunotherapy tablet reduces rhinoconjunctivitis symptoms when exposed to birch and oak and induces IgG4 to allergens from all trees in the birch homologous group. Allergy 2019, 74, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuyama, K.; Okamoto, Y.; Okamiya, K.; Azuma, R.; Fujinami, T.; Riis, B.; Ohashi-Doi, K.; Natsui, K.; Imai, T.; Okubo, K. Efficacy and safety of SQ house dust mite sublingual immunotherapy-tablet in Japanese children. Allergy 2018, 73, 2352–2363. [Google Scholar] [CrossRef]
- Brehler, R. [Adjuvants]. Hautarzt 2017, 68, 292–296. [Google Scholar] [CrossRef]
- Gamazo, C.; D’Amelio, C.; Gastaminza, G.; Ferrer, M.; Irache, J.M. Adjuvants for allergy immunotherapeutics. Hum. Vaccines Immunother. 2017, 13, 2416–2427. [Google Scholar] [CrossRef] [Green Version]
- Pavon-Romero, G.F.; Larenas-Linnemann, D.E.; Xochipa Ruiz, K.E.; Ramirez-Jimenez, F.; Teran, L.M. Subcutaneous Allergen-Specific Immunotherapy Is Safe in Pediatric Patients with Allergic Rhinitis. Int. Arch. Allergy Immunol. 2021, 182, 553–561. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, Q.; He, C.; Chen, R.; Tang, Y.; Yan, S.; Luo, X.; Luo, R. Compliance, efficacy, and safety of subcutaneous and sublingual immunotherapy in children with allergic rhinitis. Pediatr. Allergy Immunol. 2021, 32, 86–91. [Google Scholar] [CrossRef]
- Hardin, F.M.; Eskander, P.N.; Franzese, C. Cost-effective Analysis of Subcutaneous vs. Sublingual Immunotherapy from the Payor’s Perspective. OTO Open 2021, 5, 2473974X211052955. [Google Scholar] [CrossRef]
- Pfaar, O.; Agache, I.; De Blay, F.; Bonini, S.; Chaker, A.M.; Durham, S.R.; Gawlik, R.; Hellings, P.W.; Jutel, M.; Kleine-Tebbe, J.; et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy 2019, 74 (Suppl. 108), 3–25. [Google Scholar] [CrossRef] [Green Version]
- Pascal, M.; Perez-Gordo, M.; Caballero, T.; Escribese, M.M.; Lopez Longo, M.N.; Luengo, O.; Manso, L.; Matheu, V.; Seoane, E.; Zamorano, M.; et al. Microbiome and Allergic Diseases. Front. Immunol. 2018, 9, 1584. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, C.; Wang, G.; Guo, X.; Jiang, S.; Zuo, X.; Wang, X.; Hsu, A.C.; Qi, M.; Wang, F. Airway Microbiome and Serum Metabolomics Analysis Identify Differential Candidate Biomarkers in Allergic Rhinitis. Front. Immunol. 2022, 12, 771136. [Google Scholar] [CrossRef]
- Gan, W.; Yang, F.; Meng, J.; Liu, F.; Liu, S.; Xian, J. Comparing the nasal bacterial microbiome diversity of allergic rhinitis, chronic rhinosinusitis and control subjects. Eur. Arch. Otorhinolaryngol. 2021, 278, 711–718. [Google Scholar] [CrossRef]
- Salzano, F.A.; Marino, L.; Salzano, G.; Botta, R.M.; Cascone, G.; D’Agostino Fiorenza, U.; Selleri, C.; Casolaro, V. Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. J. Immunol. Res. 2018, 2018, 2724951. [Google Scholar] [CrossRef]
- Rom, D.; Bassiouni, A.; Eykman, E.; Liu, Z.; Paramasivan, S.; Alvarado, R.; Earls, P.; Psaltis, A.J.; Harvey, R.J. The Association Between Disease Severity and Microbiome in Chronic Rhinosinusitis. Laryngoscope 2019, 129, 1265–1273. [Google Scholar] [CrossRef]
- Choi, E.-B.; Hong, S.-W.; Kim, D.-K.; Jeon, S.G.; Kim, K.-R.; Cho, S.-H.; Gho, Y.S.; Jee, Y.-K.; Kim, Y.-K. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy 2014, 69, 517–526. [Google Scholar] [CrossRef]
- Hoggard, M.; Waldvogel-Thurlow, S.; Zoing, M.; Chang, K.; Radcliff, F.J.; Wagner Mackenzie, B.; Biswas, K.; Douglas, R.G.; Taylor, M.W. Inflammatory Endotypes and Microbial Associations in Chronic Rhinosinusitis. Front. Immunol. 2018, 9, 2065. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Wang, G.; Gibson, P.; Guan, X.; Zhang, W.; Zheng, R.; Chen, F.; Wang, Z.; Wang, F. Airway Microbiome in Different Inflammatory Phenotypes of Asthma: A Cross-Sectional Study in Northeast China. Int. J. Med Sci. 2019, 16, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Kojima, K.; Mobley, J.A.; West, A.B. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine 2019, 45, 351–361. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies concerning EVs and AR | Studies not related to EVs and AR |
Original articles | Review papers, letters to the editor, conference reports, case reports, book chapters, expert opinions |
Completed, published | Unfinished, unpublished |
Full text available in English | Language other than English or only abstract available in English |
Good-quality studies | Poor-quality studies |
Study | Source of Exosomes | Methods of Isolation | Methods of Analysis | Positive Exosomal Markers | Negative Exosomal Markers | Cargo | |
---|---|---|---|---|---|---|---|
Teng [17] | Tfhs | ultracentrifugation | TEM, NTA | NR | NR | miR-142-5p | |
Peng [18] | MSCs | refer to Fang, 2020 [30] | TEM, NTA, WB | CD9, CD63, CD81, Alix, TSG101 | calnexin | NR | |
Liu [19] | HEK293 cells | differential ultracentrifugation: 300× g, 10 min; 2000× g, 20 min; 10,000× g, 30 min; filtration using 0.2 µm syringe filters; 100,000× g, 1 h | TEM, DLS, WB | Alix, HSP70, CD81 | calnexin | NR | |
Li [20] | MSCs | differential ultracentrifugation: 12,000× g, 45 min, 4 °C; resuspending in PBS; filtration using 0.22 µm filter; 110,000× g, 70 min, 4 °C | TEM, DLS, WB | CD63, CD81 | GRP94 | Lnc00632 | |
Jiang [21] | serum | centrifugation (3000× g, 10 min) miRCURY Exosome Serum/Plasma Kit | TEM, DLS | NR | NR | hsa-miR-4669 (a total of 812 miRNAs) | |
Chiang [22] | nasal secretions | differential ultracentrifugation: 3000× g, 10 min [48]; 2000× g, 30 min, 4 °C; 10,000× g, 45 min, 4 °C; filtration using 0.45 µm syringe filter; 100,000× g, 70 min, 4 °C; resuspending in PBS; 100,000× g, 70 min, 4 °C | TEM, FC, DNA extraction | CD9, CD81 | NR | microbiome | |
Zhou [23] | MSCs | ExoQuick precipitation kit [49] gradient centrifugation: 70,000× g, overnight, 4 °C; twice, 500 × g, 10 min; twice, 2000× g, 15 min; twice, 10,000× g, 30 min; 70,000× g, 1 h, 4 °C; resuspending in PBS; 70,000× g, 1 h | TEM, WB | CD63, CD81, TSG101 | NR | miR-146a-5p | |
Wang [24] | nasal mucus | centrifugation (3000× g, 15 min) ExoQuick precipitation kit (30 min, 4 °C) [49] centrifugation (1500× g, 30 min, 4°C), removing of supernatant via aspiration, centrifugation (1500× g, 5 min, 4 °C) | TEM, WB | CD9, CD63 | NR | LncRNA NEAT1 | |
Samra [25,31] | urine | centrifugation (10,000× g, 10 min, 4 °C) [50], filtration using 0.22 µm filter | NR | NR | NR | bacterial DNA | |
Mo [26] | BMDCs, T cells | differential ultracentrifugation [51] | TEM, WB | CD9, CD63, CD81, MHC-II | NR | OVA/MHC-II, FLLL31 | |
Mariani [27] | serum | differential ultracentrifugation: 1000× g, 15 min, 4 °C; 2000× g, 15 min, 4 °C; 3000× g, 15 min, 4 °C; resuspending in PBS and filtration 0.1 µm pore-size polyethersulfone filter; 110,000× g, 94 min, 4 °C [46] | TEM, NTA, FC | NR | NR | NR | |
Fang [28] | serum, nasal mucus | differential ultracentrifugation: 2000× g, 20 min, 4°C; 12,000× g, 30 min, 4 °C; 110,000× g, 2 h, 4 °C; 110,000× g, 2 h and 70 min, 4°C [47] | ELISA, NTA, TEM, WB, FC | CD9, CD63, CD81, TSG101, Alix | NR | Derp 1 | |
Zhu [29] | RPMI 2650 | differential ultracentrifugation: 12,000× g, 45 min, 4 °C; dilution in PBS; 110,000× g, 2 h, 4 °C; resuspending in PBS and filtration using 0.22 µm filter; 110,000× g, 70 min, 4 °C [47] | TEM, WB | CD63, CD81 | calnexin | LncGAS5 | |
Fang [30] | iPSCs-derived MSCs [52], fibroblasts | anion-exchange chromatography [53] | differential ultracentrifugation: 300× g, 5 min; 2000× g, 20 min; 12,000× g, 30 min, 4 °C; 110,000× g, 2 h, 4 °C; washed with ice-cold PBS; 110,000× g, 70 min, 4 °C [47] | FC, NTA, TEM, WB | CD9, CD63, CD81, Alix and TSG101 | calnexin | miR-146a-5p |
Wu [32] | nasal mucus | gradient ultracentrifugation: 3000× g, 15 min; 10,000× g, 30 min; 100,000× g, 60 min [54] | FACS | CD63, MHC-II | NR | various miRNAs | |
Luo [33] | RPMI 2650, A549 | refer to Qiu, 2011 | qPCR, WB | LMP1 protein | NR | miR-146a | |
Qiu [34] | nasal mucosa, RPMI 2650 | gradient centrifugation: 300× g, 10 min; 1200× g, 20 min; 10,000× g, 30 min [55] | TEM, FC, WB | NR | NR | Derp 1, SEB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwaty, K.; Dżaman, K.; Miechowski, W. Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 367. https://doi.org/10.3390/ijms24010367
Czerwaty K, Dżaman K, Miechowski W. Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(1):367. https://doi.org/10.3390/ijms24010367
Chicago/Turabian StyleCzerwaty, Katarzyna, Karolina Dżaman, and Wiktor Miechowski. 2023. "Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review" International Journal of Molecular Sciences 24, no. 1: 367. https://doi.org/10.3390/ijms24010367
APA StyleCzerwaty, K., Dżaman, K., & Miechowski, W. (2023). Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review. International Journal of Molecular Sciences, 24(1), 367. https://doi.org/10.3390/ijms24010367