Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Description of {[Cd3(btc)2(BTD-bpy)2]∙1.5MeOH∙4H2O}n (1)
2.2. Crystal Structure Description of [Cd2(1,4-ndc)2(BTD-bpy)2]n (2)
2.3. X-ray Powder Diffraction (XRPD) and Thermogravimetric (TG) Analysis
2.4. Gas Adsorption Properties
2.5. Photoluminescent Properties
2.6. Fluorescence Sensing of Metal Ions
2.7. Sensing Mechanism
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthesis of {Cd3(btc)2(BTD-bpy)2]∙1.5MeOH∙4H2O}n (1)
3.3. Synthesis of [Cd2(1,4-ndc)2(BTD-bpy)2]n (2)
3.4. Single-Crystal X-ray Structure Determination
3.5. Fluorescence Sensing Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawicka, E.; Jurkowska, K.; Piwowar, A. Chromium (III) and chromium (VI) as important players in the induction of genotoxicity−current view. Ann. Agric. Environ. Med. 2021, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bondy, S.C. The neurotoxicity of environmental aluminum is still an issue. NeuroToxicology 2010, 31, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, V.K.M.; Burd, A. In vitro cytotoxity of silver: Implication for clinical wound care. Burns 2004, 30, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Pithadia, A.S.; Lim, M.H. Metal-associated amyloid-β species in Alzheimer’s disease. Curr. Opin. Chem. Biol. 2012, 16, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Funck, J.A.; Danger, M.; Gismondi, E.; Cossu-Leguille, C.; Guérold, F.; Felten, V. Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver. Aquat. Toxicol. 2013, 142–143, 73–84. [Google Scholar] [CrossRef]
- Flaten, T.P. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res. Bull. 2001, 55, 187–196. [Google Scholar] [CrossRef]
- Calevro, F.; Campani, S.; Ragghianti, M.; Bucci, S.; Mancino, G. Tests of toxicity and teratogenicity in biphasic vertebrates treated with heavy metals (Cr3+, A13+, Cd2+). Chemosphere 1998, 37, 3011–3017. [Google Scholar] [CrossRef]
- Zheng, H.; Weiner, L.M.; Bar-Am, O.; Epsztejn, S.; Cabantchik, Z.I.; Warshawsky, A.; Youdim, M.B.H.; Fridkin, M. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg. Med. Chem. 2005, 13, 773–783. [Google Scholar] [CrossRef]
- Martin-Camean, A.; Molina-Villalba, I.; Jos, A.; Iglesias-Linares, A.; Solano, E.; Camean, A.M.; Gil, F. Biomonitorization of chromium, copper, iron, manganese and nickel in scalp hair from orthodontic patients by atomic absorption spectrometry. Environ. Toxicol. Pharmacol. 2014, 37, 759–771. [Google Scholar] [CrossRef]
- Dadfarnia, S.; Shabani, A.H.; Gohari, M. Trace enrichment and determination of silver by immobilized DDTC microcolumn and flow injection atomic absorption spectrometry. Talanta 2004, 64, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Inductively coupled plasma−Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements—A tutorial review. Anal. Chim. Acta 2015, 894, 7–19. [Google Scholar] [CrossRef]
- Didukh-Shadrina, S.L.; Losev, V.N.; Samoilo, A.; Trofimchuk, A.K.; Nesterenko, P.N. Determination of Metals in Natural Waters by Inductively Coupled Plasma Optical Emission Spectroscopy after Preconcentration on Silica Sequentially Coated with Layers of Polyhexamethylene Guanidinium and Sulphonated Nitrosonaphthols. Int. J. Anal. Chem. 2019, 2019, 1467631. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, M.S. Solid phase extraction of trace level Ag(I) using coriolus versicolor immobilized magnetic nanoparticles and its determination by ICP-OES. Environ. Prog. Sustain. Energy 2019, 38, e13251. [Google Scholar]
- Sánchez-Rodas, D.; Corns, W.T.; Chen, B.; Stockwell, P.B. Atomic Fluorescence Spectrometry: A suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J. Anal. At. Spectrom. 2010, 25, 933–946. [Google Scholar] [CrossRef] [Green Version]
- Pouzar, M.; Černohorský, T.; Krejčová, A. Determination of metals in lubricating oils by X-ray fluorescence spectrometry. Talanta 2001, 51, 829–835. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water−An electrochemical approach. Sens. Actuators B 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Hu, Y.; Zhuang, X.Y.; Lin, L.C.; Liu, J.Y.; Yao, Z.Y.; Xiao, Z.Y.; Shi, J.; Fang, B.S.; Hong, W.J. Determination of Ag[I] and NADH using single-molecule conductance ratiometric probes. ACS Sens. 2021, 6, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, A.; Panneerselvam, P.; Morad, N. Metal−Polydopamine Framework as an Effective Fluorescent Quencher for Highly Sensitive Detection of Hg(II) and Ag(I) Ions through Exonuclease III Activity. ACS Appl. Mater. Interfaces 2018, 10, 20550–20558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-q.; Gao, L.-j.; Chai, H.-m.; Ren, Y.-x. Novel Multifunctional Samarium−Organic Framework for Fluorescence Sensing of Ag+, MnO4−, and Cimetidine and Electrochemical Sensing of o-Nitrophenol in Aqueous Solutions. ACS Omega 2021, 6, 6810–6816. [Google Scholar] [CrossRef]
- Liu, Y.; Huangfu, M.; Wu, P.; Jiang, M.; Zhao, X.; Liang, L.; Xie, L.; Bai, J.; Wang, J. Post-imparting Brønsted acidity into an amino-functionalized MOF as a bifunctional luminescent turn-ON sensor for the detection of aluminum ions and lysine. Dalton Trans. 2019, 48, 13834–13840. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Zhao, F.; Liu, J.-J.; Liu, Z.-L.; Wang, Y.-Q. An ultrastable zinc(II)−organic framework as a recyclable multi-responsive luminescent sensor for Cr(III), Cr(VI) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity. J. Mater. Chem. A 2017, 5, 20035–20043. [Google Scholar] [CrossRef]
- Hao, J.-N.; Yan, B. Highly sensitive and selective fluorescent probe for Ag+ based on a Eu3+ post-functionalized metal−organic framework in aqueous media. J. Mater. Chem. A 2014, 2, 18018–18025. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Lustig, W.P.; Li, J. Functionalizing Luminescent Metal−Organic Frameworks for Enhanced Photoluminescence. ACS Energy Lett. 2020, 5, 2671–2680. [Google Scholar] [CrossRef]
- Yin, H.-Q.; Yin, X.-B. Metal−Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Acc. Chem. Res. 2020, 53, 485–495. [Google Scholar] [CrossRef]
- Huangfu, M.; Wang, M.; Lin, C.; Wang, J.; Wu, P. Luminescent metal–organic frameworks as chemical sensors based on “mechanism−response”: A review. Dalton Trans. 2021, 50, 3429–3449. [Google Scholar] [CrossRef]
- Xiao, Q.-Q.; Liu, D.; Wei, Y.-L.; Cui, G.-H. A new multifunctional two-dimensional cobalt(II) metal−organic framework for electrochemical detection of hydrogen peroxide, luminescent sensing of metal ions, and photocatalysis. Polyhedron 2019, 158, 342–351. [Google Scholar] [CrossRef]
- Xiao, Q.-Q.; Liu, D.; Wei, Y.-L.; Cui, G.-H. Two new ternary Mn(II) coordination polymers by regulation of aromatic carboxylate ligands: Synthesis, structures, photocatalytic and selective ion-sensing properties. J. Solid State Chem. 2019, 273, 67–74. [Google Scholar] [CrossRef]
- Singha, D.T.; Mahata, P. Highly Selective and Sensitive Luminescence Turn-On-Based Sensing of Al3+ Ions in Aqueous Medium Using a MOF with Free Functional Sites. Inorg. Chem. 2015, 54, 6373–6379. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Liu, Z.-T.; Xu, H.; Zheng, H.-G.; Ma, J.; Zhao, J. An excellent example illustrating the fluorescence sensing property of cobalt−organic frameworks. Dalton Trans. 2019, 48, 2285–2289. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, X.; Zhang, N.; Wu, J.; Huang, Y.-Q. A highly selective and sensitive Zn(II) coordination polymer luminescent sensor for Al3+ and NACs in the aqueous phase. Inorg. Chem. Front. 2017, 4, 1888–1894. [Google Scholar] [CrossRef]
- Chen, W.-T.; Tsai, M.-J.; Wu, J.-Y. A Thermally Stable Undulated Coordination Layer Showing a Sequentially Interweaving 2D → 3D Net as a Turn-On Sensor for Luminescence Detection of Al3+ in Water. Cryst. Growth Des. 2022, 22, 226–236. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Liao, K.-S.; Hsu, L.-J.; Wu, J.-Y. A luminescent Cd(II) coordination polymer as a fluorescence-responsive sensor for enhancement sensing of Al3+ and Cr3+ ions and quenching detection of chromium(VI) oxyanions. J. Solid State Chem. 2021, 304, 122564. [Google Scholar] [CrossRef]
- Liao, K.-S.; Tsai, M.-J.; Hsu, L.-J.; Wang, C.-M.; Wu, J.-Y. A Cd(II) luminescent coordination grid as a multiresponsive fluorescence sensor for Cr(VI) oxyanions and Cr(III), Fe(III), and Al(III) in aqueous medium. Molecules 2021, 26, 7103. [Google Scholar] [CrossRef]
- Ding, B.; Liu, S.X.; Cheng, Y.; Guo, C.; Wu, X.X.; Guo, J.H.; Liu, Y.Y.; Li, Y. Heterometallic Alkaline Earth−Lanthanide BaII−LaIII Microporous Metal−Organic Framework as Bifunctional Luminescent Probes of Al3+ and MnO4−. Inorg. Chem. 2016, 55, 4391–4402. [Google Scholar] [CrossRef]
- Lv, R.; Chen, Z.; Fu, X.; Yang, B.; Li, H.; Su, J.; Gu, W.; Liu, X. A Highly Selective and Fast-Response Fluorescent Probe Based on Cd-MOF for the Visual Detection of Al3+ Ion and Quantitative Detection of Fe3+ Ion. J. Solid State Chem. 2018, 259, 67–72. [Google Scholar] [CrossRef]
- Zhang, J.-R.; Lee, J.-J.; Su, C.-H.; Tsai, M.-J.; Li, C.-Y.; Wu, J.-Y. From lamellar net to bilayered-lamella and to porous pillared-bilayer: Reversible crystal-to-crystal transformation, CO2 adsorption, and fluorescence detection of Fe3+, Al3+, Cr3+, MnO4−, and Cr2O72− in water. Dalton Trans. 2020, 49, 14201–14215. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Liang, X.; Zhang, X.; Jia, Y.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe3+, Cr3+, Al3+), PO43− ions, and nitroaromatic explosives. Dalton Trans. 2019, 48, 1786–1794. [Google Scholar] [CrossRef]
- Chuang, P.-M.; Wu, J.-Y. A highly stable Zn coordination polymer exhibiting pH-dependent fluorescence and as a visually ratiometric and on−off fluorescence sensor. CrystEngComm 2021, 23, 5226–5240. [Google Scholar] [CrossRef]
- Chuang, P.-M.; Huang, Y.-W.; Liu, Y.-L.; Wu, J.-Y. Influence of linker substitution on fluorescence responsive sensing of isostructural coordination polymers: Visual turn-on, ratiometric, and turn-off sensing in water. CrystEngComm 2021, 23, 2222–2234. [Google Scholar] [CrossRef]
- Yang, S.-L.; Yuan, Y.-Y.; Sun, P.-P.; Lin, T.; Zhang, C.-X.; Wang, Q.-L. 3D water-stable europium metal organic frameworks as a multi-responsive luminescent sensor for high-efficiency detection of Cr2O72−, MnO4−, Cr3+ ions and SDBS in aqueous solution. New J. Chem. 2018, 42, 20137–20143. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Liao, K.-S.; Wu, J.-Y. A Water-Stable 2-Fold Interpenetrating cds Net as a Bifunctional Fluorescence-Responsive Sensor for Selective Detection of Cr(III) and Cr(VI) Ions. Nanomaterials 2022, 12, 158. [Google Scholar] [CrossRef]
- Dutta, B.; Jana, R.; Bhanja, A.K.; Ray, P.P.; Sinha, C.; Mir, M.H. Supramolecular Aggregate of Cadmium(II)-Based One-Dimensional Coordination Polymer for Device Fabrication and Sensor Application. Inorg. Chem. 2019, 58, 2686–2694. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Yan, H.; Lu, J.; Liu, H.; Li, Y.; Wang, S.; Li, D.; Dou, J.; Yang, L.; et al. Multiresponsive Luminescent Sensitivities of a 3D Cd-CP with Visual Turn-on and Ratiometric Sensing toward Al3+ and Cr3+ as Well as Turn-off Sensing toward Fe3+. Inorg. Chem. 2020, 59, 3828–3837. [Google Scholar] [CrossRef]
- Li, Y.-P.; Zhu, X.-H.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C.; Zhai, Q.-G. Highly Selective and Sensitive Turn-Off−On Fluorescent Probes for Sensing Al3+ Ions Designed by Regulating the Excited-State Intramolecular Proton Transfer Process in Metal−Organic Frameworks. ACS Appl. Mater. Interfaces 2019, 11, 11338–11348. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Chuang, P.-M.; Wu, J.-Y. Solvent-Induced Controllable Supramolecular Isomerism: Phase Transformation, CO2 Adsorption, and Fluorescence Sensing toward CrO42−, Cr2O72−, MnO4− and Fe3+. Inorg. Chem. 2020, 59, 9095–9107. [Google Scholar] [CrossRef]
- Su, C.-H.; Tsai, M.-J.; Wang, W.-K.; Li, Y.-Y.; Wu, J.-Y. Engineering Tailored Bifunctional Luminescent Pillared-Layer Frameworks for Adsorption of CO2 and Sensitive Detection of Nitrobenzene in Water Media. Chem. Eur. J. 2021, 27, 6529–6537. [Google Scholar] [CrossRef]
- Chuang, P.-M.; Tu, Y.-J.; Wu, J.-Y. A thiadiazole-functionalized Zn(II)-based luminescent coordination polymer with seven-fold interweaved herringbone nets showing solvent-responsive fluorescence properties and discriminative detection of ethylenediamine. Sens. Actuators B Chem. 2022, 366, 131967. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Yan, B. A reliable amplified fluorescence-enhanced chemosensor (Eu-MIL-61) for the directional detection of Ag+ in an aqueous solution. Dalton Trans. 2017, 46, 875–881. [Google Scholar] [CrossRef]
- Sun, N.; Yan, B. Ag+-induced photoluminescence enhancement in lanthanide post-functionalized MOFs and Ag+ sensing. Phys. Chem. Chem. Phys. 2017, 19, 9174–9180. [Google Scholar] [CrossRef]
- Hao, J.-N.; Yan, B. Ag+-sensitized lanthanide luminescence in Ln3+ post-functionalized metal−organic frameworks and Ag+ sensing. J. Mater. Chem. A 2015, 3, 4788–4792. [Google Scholar] [CrossRef]
- Luo, J.; Liu, B.-S.; Zhang, X.-R.; Liu, R.-T. A new fluorescent sensor constructed by Eu3+ post-functionalized metal−organic framework for sensing Ag+ with high selectivity and sensitivity in aqueous solution. J. Mol. Struct. 2021, 1227, 129518. [Google Scholar] [CrossRef]
- Zhang, L.; Jian, Y.; Wang, J.; He, C.; Li, X.; Liu, T.; Duan, C. Post-modification of a MOF through a fluorescent-labeling technology for the selective sensing and adsorption of Ag+ in aqueous solution. Dalton Trans. 2012, 41, 10153–10155. [Google Scholar] [CrossRef]
- Hien, N.K.; Bao, N.C.; Nhung, N.T.A.; Trung, N.T.; Nam, P.C.; Duong, T.; Kim, J.S.; Quang, D.T. A highly sensitive fluorescent chemosensor for simultaneous determination of Ag(I), Hg(II), and Cu(II) ions: Design, synthesis, characterization and application. Dyes Pigm. 2015, 116, 89–96. [Google Scholar] [CrossRef]
- Stevens, J.S.; Byard, S.J.; Seaton, C.C.; Sadiq, G.; Davey, R.J.; Schroeder, S.L.M. Proton transfer and hydrogen bonding in the organic solid state: A combined XRD/XPS/ssNMR study of 17 organic acid−base complexes. Phys. Chem. Chem. Phys. 2014, 16, 1150–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, I.K.; Lee, J.; Lee, H. Highly qualified reduced graphene oxides: The best chemical reduction. Chem. Commun. 2011, 47, 9681–9683. [Google Scholar] [CrossRef]
- Shen, K.; Ju, Z.; Qin, L.; Wang, T.; Zheng, H. Two stable 3D porous metal−organic frameworks with high selectivity for detection of PA and metal ions. Dyes Pigm. 2017, 136, 515–521. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C 2015, 71, 9–18. [Google Scholar] [CrossRef] [PubMed]
1 (Squeezed) | 2 | |
---|---|---|
empirical formula | C50H26Cd3N8O12S2 | C56H32Cd2N8O8S2 |
Mw | 1332.11 | 1233.81 |
crystal system | Monoclinic | Monoclinic |
space group | P2/c | P21/c |
a (Å) | 10.3802 (5) | 16.1752 (6) |
b (Å) | 16.0244 (8) | 14.1903 (5) |
c (Å) | 17.1960 (8) | 21.0636 (7) |
β (°) | 101.925 (2) | 95.715 (2) |
V (Å3) | 2798.6 (2) | 4810.7 (3) |
Z | 2 | 4 |
T (K) | 150 (2) | 150 (2) |
λ (Å) | 0.71073 | 0.71073 |
Dcalc (g cm–3) | 1.581 | 1.704 |
μ (mm–1] | 1.268 | 1.040 |
F000 | 1308 | 2464 |
GOF on F2 | 0.856 | 1.155 |
R1a (I > 2σ (I)) | 0.0701 | 0.0278 |
wR2b (I > 2σ (I)) | 0.2076 | 0.0745 |
R1a (all data) | 0.0745 | 0.0364 |
wR2b (all data) | 0.2114 | 0.0875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.-J.; Chuang, P.-M.; Wu, J.-Y. Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks. Int. J. Mol. Sci. 2023, 24, 369. https://doi.org/10.3390/ijms24010369
Jiang Q-J, Chuang P-M, Wu J-Y. Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks. International Journal of Molecular Sciences. 2023; 24(1):369. https://doi.org/10.3390/ijms24010369
Chicago/Turabian StyleJiang, Qi-Jin, Po-Min Chuang, and Jing-Yun Wu. 2023. "Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks" International Journal of Molecular Sciences 24, no. 1: 369. https://doi.org/10.3390/ijms24010369
APA StyleJiang, Q. -J., Chuang, P. -M., & Wu, J. -Y. (2023). Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks. International Journal of Molecular Sciences, 24(1), 369. https://doi.org/10.3390/ijms24010369