MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer’s Disease
Abstract
:1. Introduction
2. MRI and Clinical Biomarkers in Glaucoma
3. MRI and Clinical Biomarkers in Alzheimer’s Disease
4. Common Biomarkers in Glaucoma and Alzheimer’s Disease Diagnosis
5. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Allison, K.; Patel, D.; Alabi, O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef]
- Cedrone, C.; Mancino, R.; Cerulli, A.; Cesareo, M.; Nucci, C. Epidemiology of primary glaucoma: Prevalence, incidence, and blinding effects. Prog. Brain Res. 2008, 173, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Cedrone, C.; Mancino, R.; Ricci, F.; Cerulli, A.; Culasso, F.; Nucci, C. The 12-year Incidence of Glaucoma and Glaucoma-related Visual Field Loss in Italy. J. Glaucoma 2012, 21, 1–6. [Google Scholar] [CrossRef]
- Martucci, A.; Nucci, C.; Pinazo-Duran, M.D. Editorial: New perspectives in glaucoma pathophysiology, diagnosis, and treatment. Front. Med. 2023, 10, 1200427. [Google Scholar] [CrossRef]
- Nucci, C.; Martucci, A.; Martorana, A.; Sancesario, G.M.; Cerulli, L. Glaucoma progression associated with altered cerebral spinal fluid levels of amyloid beta and tau proteins. Clin. Exp. Ophthalmol. 2011, 39, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Cesareo, M.; Giannini, C.; Martucci, A.; Di Marino, M.; Pocobelli, G.; Aiello, F.; Mancino, R.; Nucci, C. Links between obstructive sleep apnea and glaucoma neurodegeneration. Prog. Brain Res. 2020, 257, 19–36. [Google Scholar] [CrossRef]
- Nucci, C.; Martucci, A.; Mancino, R.; Cerulli, L. Glaucoma progression associated with Leber’s hereditary optic neuropathy. Int. Ophthalmol. 2013, 33, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Martucci, A.; Nucci, C. Evidence on neuroprotective properties of coenzyme Q10 in the treatment of glaucoma. Neural Regen. Res. 2019, 14, 197. [Google Scholar] [CrossRef]
- Martucci, A.; Reurean-Pintilei, D.; Manole, A. Bioavailability and sustained plasma concentrations of CoQ10 in healthy volunteers by a novel oral timed-release preparation. Nutrients 2019, 11, 527. [Google Scholar] [CrossRef]
- Martucci, A.; Cesareo, M.; Nucci, C.; Mancino, R. Macular ganglion cells alteration in a patient with left homonymous hemianopia subsequent to surgical excision of an arteriovenous malformation. Am. J. Ophthalmol. Case Rep. 2018, 12, 9–14. [Google Scholar] [CrossRef]
- Mancino, R.; Cesareo, M.; Martucci, A.; Carlo, E.D.; Ciuffoletti, E.; Giannini, C.; Morrone, L.A.; Nucci, C.; Garaci, F. Neurodegenerative process linking the eye and the brain. Curr. Med. Chem. 2019, 26, 3754–3763. [Google Scholar] [CrossRef]
- Cesareo, M.; Martucci, A.; Ciuffoletti, E.; Mancino, R.; Cerulli, A.; Sorge, R.P.; Martorana, A.; Sancesario, G.; Nucci, C. Association between Alzheimer’s disease and glaucoma: A study based on heidelberg retinal tomography and frequency doubling technology perimetry. Front. Neurosci. 2015, 9, 479. [Google Scholar] [CrossRef]
- Mancino, R.; Martucci, A.; Cesareo, M.; Giannini, C.; Corasaniti, M.T.; Bagetta, G.; Nucci, C. Glaucoma and Alzheimer disease: One age-related neurodegenerative disease of the brain. Curr. Neuropharmacol. 2018, 16, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Martucci, A.; Cesareo, M.; Garaci, F.; Morrone, L.A.; Russo, R.; Corasaniti, M.T.; Bagetta, G.; Mancino, R.; Corasaniti, M.T.; et al. Links among glaucoma, neurodegenerative, and vascular diseases of the central nervous systemb. Prog. Brain Res. 2015, 221, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V.; Bharucha, N.E.; Schoenberg, B.S. Conditions associated with Alzheimer’s disease at death: Case-control study. Neurology 1986, 36, 209. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.U.; Ferrari, F.; Erb, C. High Occurrence Rate of Glaucoma among Patients with Alzheimer’s Disease. Eur. Neurol. 2002, 47, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.U.; Keller, O.N.; Ferrari, F.; Maag, K.-P. Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am. J. Ophthalmol. 2002, 133, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Kawakami, H.; Kanamoto, T.; Kato, T.; Yokoyama, T.; Sasaki, K.; Izumi, Y.; Matsumoto, M.; Mishima, H.K. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J. Neurol. Sci. 2006, 246, 79–83. [Google Scholar] [CrossRef]
- Lin, I.C.; Wang, Y.H.; Wang, T.J.; Wang, I.J.; Shen, Y.; Chi, N.F.; Chien, L.N. Glaucoma, Alzheimer’s disease, and Parkinson’s disease: An 8-year population-based follow-up study. PLoS ONE 2014, 9, e108938. [Google Scholar] [CrossRef]
- Kurna, S.A.; Akar, G.; Altun, A.; Agirman, Y.; Gozke, E.; Sengor, T. Confocal scanning laser tomography of the optic nerve head on the patients with Alzheimer’s disease compared to glaucoma and control. Int. Ophthalmol. 2014, 34, 1203–1211. [Google Scholar] [CrossRef]
- Kessing, L.V.; Lopez, A.G.; Andersen, P.K.; Kessing, S.V. No Increased Risk of Developing Alzheimer Disease in Patients With Glaucoma. J. Glaucoma 2007, 16, 47–51. [Google Scholar] [CrossRef]
- Bach-Holm, D.; Kessing, S.V.; Mogensen, U.; Forman, J.L.; Andersen, P.K.; Kessing, L.V. Normal tension glaucoma and Alzheimer disease: Comorbidity? Acta Ophthalmol. 2012, 90, 683–685. [Google Scholar] [CrossRef]
- Keenan, T.D.L.; Goldacre, R.; Goldacre, M.J. Associations between primary open angle glaucoma, Alzheimer’s disease and vascular dementia: Record linkage study. Br. J. Ophthalmol. 2015, 99, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Grossman, D.S.; Lee, P.P.; Sloan, F.A. Glaucoma, Alzheimer Disease and Other Dementia: A Longitudinal Analysis. Ophthalmic Epidemiol. 2012, 19, 285–292. [Google Scholar] [CrossRef]
- Della Santina, L.; Inman, D.M.; Lupien, C.B.; Horner, P.J.; Wong, R.O.L. Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma. J. Neurosci. 2013, 33, 17444–17457. [Google Scholar] [CrossRef] [PubMed]
- Jakobs, T.C.; Libby, R.T.; Ben, Y.; John, S.W.M.; Masland, R.H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 2005, 171, 313–325. [Google Scholar] [CrossRef]
- Poon, W.W.; Blurton-Jones, M.; Tu, C.H.; Feinberg, L.M.; Chabrier, M.A.; Harris, J.W.; Jeon, N.L.; Cotman, C.W. β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol. Aging 2011, 32, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, C.; Xu, Y.; Liu, B.; Wang, M.; Wu, K. Development and Expression of Amyloid-β Peptide 42 in Retinal Ganglion Cells in Rats. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2011, 294, 1401–1405. [Google Scholar] [CrossRef]
- Guo, L.; Salt, T.E.; Luong, V.; Wood, N.; Cheung, W.; Maass, A.; Ferrari, G.; Russo-Marie, F.; Sillito, A.M.; Cheetham, M.E.; et al. Targeting amyloid-β in glaucoma treatment. Proc. Natl. Acad. Sci. USA 2007, 104, 13444–13449. [Google Scholar] [CrossRef]
- Kipfer-Kauer, A.; McKinnon, S.J.; Frueh, B.E.; Goldblum, D. Distribution of Amyloid Precursor Protein and Amyloid-β in Ocular Hypertensive C57BL/6 Mouse Eyes. Curr. Eye Res. 2010, 35, 828–834. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, S.J.; Lehman, D.M.; Kerrigan-Baumrind, L.A.; Merges, C.A.; Pease, M.E.; Kerrigan, D.F.; Ransom, N.L.; Tahzib, G.N.; Reitsamer, H.A.; Levkovithc-Verbin, H.; et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1077–1087. [Google Scholar]
- Gupta, V.K.; Chitranshi, N.; Gupta, V.B.; Golzan, M.; Dheer, Y.; Vander Wall, R.; Georgevsky, D.; King, A.E.; Vickers, J.C.; Chung, R.; et al. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci. Lett. 2016, 623, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Perez, S.E.; Lumayag, S.; Kovacs, B.; Mufson, E.J.; Xu, S. β-Amyloid Deposition and Functional Impairment in the Retina of the APPswe/PS1ΔE9 Transgenic Mouse Model of Alzheimer’s Disease. Investig. Opthalmol. Vis. Sci. 2009, 50, 793. [Google Scholar] [CrossRef]
- Gasparini, L.; Anthony Crowther, R.; Martin, K.R.; Berg, N.; Coleman, M.; Goedert, M.; Spillantini, M.G. Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: Effects on axonal viability. Neurobiol. Aging 2011, 32, 419–433. [Google Scholar] [CrossRef]
- Martucci, A.; Picchi, E.; Di Giuliano, F.; Pocobelli, G.; Mancino, R.; Toschi, N.; Russo, R.; Floris, R.; Garaci, F.; Nucci, C. Imaging biomarkers for Alzheimer’s disease and glaucoma: Current and future practices. Curr. Opin. Pharmacol. 2022, 62, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Russo, R.; Martucci, A.; Giannini, C.; Garaci, F.; Floris, R.; Bagetta, G.; Morrone, L.A. New strategies for neuroprotection in glaucoma, a disease that affects the central nervous system. Eur. J. Pharmacol. 2016, 787, 119–126. [Google Scholar] [CrossRef]
- Chaturvedi, N.; Hedley-Whyte, E.T.; Dreyer, E.B. Lateral geniculate nucleus in glaucoma. Am. J. Ophthalmol. 1993, 116, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br. J. Ophthalmol. 2006, 90, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Greenberg, G.; de Tilly, L.N.; Gray, B.; Polemidiotis, M.; Yucel, Y.H. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br. J. Ophthalmol. 2009, 93, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Garaci, F.G.; Cozzolino, V.; Nucci, C.; Gaudiello, F.; Ludovici, A.; Lupattelli, T.; Floris, R.; Simonetti, G. Advances in neuroimaging of the visual pathways and their use in glaucoma. Prog. Brain Res. 2008, 173, 165–177. [Google Scholar] [CrossRef]
- Garaci, F.G.; Bolacchi, F.; Cerulli, A.; Melis, M.; Spanò, A.; Cedrone, C.; Floris, R.; Simonetti, G.; Nucci, C. Optic Nerve and Optic Radiation Neurodegeneration in Patients with Glaucoma: In Vivo Analysis with 3-T Diffusion-Tensor MR Imaging. Radiology 2009, 252, 496–501. [Google Scholar] [CrossRef]
- Nucci, C.; Mancino, R.; Martucci, A.; Bolacchi, F.; Manenti, G.; Cedrone, C.; Culasso, F.; Floris, R.; Cerulli, L.; Garaci, F.G. 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: Correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings. Br. J. Ophthalmol. 2012, 96, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Bolacchi, F.; Garaci, F.G.; Martucci, A.; Meschini, A.; Fornari, M.; Marziali, S.; Mancino, R.; Squillaci, E.; Floris, R.; Cerulli, L.; et al. Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4191–4196. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Martucci, A.; Cesareo, M.; Mancino, R.; Russo, R.; Bagetta, G.; Cerulli, L.; Garaci, F.G. Brain involvement in glaucoma: Advanced neuroimaging for understanding and monitoring a new target for therapy. Curr. Opin. Pharmacol. 2013, 13, 128–133. [Google Scholar] [CrossRef]
- Nucci, C.; Garaci, F.; Altobelli, S.; Di Ciò, F.; Martucci, A.; Aiello, F.; Lanzafame, S.; Di Giuliano, F.; Picchi, E.; Minosse, S.; et al. Diffusional kurtosis imaging of white matter degeneration in glaucoma. J. Clin. Med. 2020, 9, 3122. [Google Scholar] [CrossRef] [PubMed]
- Di Cio, F.; Garaci, F.; Minosse, S.; Passamonti, L.; Martucci, A.; Lanzafame, S.; Di Giuliano, F.; Picchi, E.; Mancino, R.; Guerrisi, M.; et al. Disruption of structural brain networks in Primary Open Angle Glaucoma. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Montreal, QC, Canada, 20–24 July 2020. [Google Scholar] [CrossRef]
- Minosse, S.; Garaci, F.; Martucci, A.; Lanzafame, S.; Di Giuliano, F.; Picchi, E.; Cesareo, M.; Mancino, R.; Guerrisi, M.; Floris, R.; et al. Disruption of brain network organization in primary open angle glaucoma. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Berlin, Germany, 23–27 July 2019. [Google Scholar] [CrossRef]
- Di Ciò, F.; Garaci, F.; Minosse, S.; Passamonti, L.; Martucci, A.; Lanzafame, S.; Di Giuliano, F.; Picchi, E.; Cesareo, M.; Guerrisi, M.G.; et al. Reorganization of the structural connectome in primary open angle Glaucoma. Neuroimage Clin. 2020, 28, 102419. [Google Scholar] [CrossRef] [PubMed]
- Minosse, S.; Garaci, F.; Martucci, A.; Lanzafame, S.; Giuliano, F.D.; Picchi, E.; Cesareo, M.; Mancino, R.; Guerrisi, M.; Pistolese, C.A.; et al. Primary open angle glaucoma is associated with functional brain network reorganization. Front. Neurol. 2019, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Martucci, A.; Cesareo, M.; Toschi, N.; Garaci, F.; Bagetta, G.; Nucci, C. Brain networks reorganization and functional disability in glaucoma. Prog. Brain Res. 2020, 257, 65–76. [Google Scholar] [CrossRef]
- Beshir, S.A.; Aadithsoorya, A.M.; Parveen, A.; Goh, S.S.L.; Hussain, N.; Menon, V.B. Aducanumab Therapy to Treat Alzheimer’s Disease: A Narrative Review. Int. J. Alzheimers Dis. 2022, 2022, 9343514. [Google Scholar] [CrossRef]
- Michailidis, M.; Moraitou, D.; Tata, D.A.; Kalinderi, K.; Papamitsou, T.; Papaliagkas, V. Alzheimer’s Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer’s Disease and Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 2687. [Google Scholar] [CrossRef]
- Berlow, Y.A.; Wells, W.M.; Ellison, J.M.; Sung, Y.H.; Renshaw, P.F.; Harper, D.G. Neuropsychiatric correlates of white matter hyperintensities in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2010, 25, 780–788. [Google Scholar] [CrossRef]
- Chandra, A.; Dervenoulas, G.; Politis, M. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J. Neurol. 2019, 266, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Wymer, D.T.; Bhatia, V.K.; Duara, R.; Rajadhyaksha, C.D. Multimodality imaging of dementia: Clinical importance and role of integrated anatomic and molecular imaging. Radiographics 2020, 40, 200–222. [Google Scholar] [CrossRef]
- Mueller, S.G.; Schuff, N.; Weiner, M.W. Evaluation of treatment effects in Alzheimer’s and other neurodegenerative diseases by MRI and MRS. NMR Biomed. 2006, 19, 655–668. [Google Scholar] [CrossRef]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Belathur Suresh, M.; Fischl, B.; Salat, D.H. Factors influencing accuracy of cortical thickness in the diagnosis of Alzheimer’s disease. Hum. Brain Mapp. 2018, 39, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Leocadi, M.; Canu, E.; Calderaro, D.; Corbetta, D.; Filippi, M.; Agosta, F. An update on magnetic resonance imaging markers in AD. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420947986. [Google Scholar] [CrossRef]
- Miller-Thomas, M.M.; Sipe, A.L.; Benzinger, T.L.S.; McConathy, J.; Connolly, S.; Schwetye, K.E. Multimodality review of amyloid-related diseases of the central nervous system. Radiographics 2016, 36, 1147–1163. [Google Scholar] [CrossRef]
- Qian, L.; Liu, R.; Qin, R.; Zhao, H.; Xu, Y. The associated volumes of sub-cortical structures and cognitive domain in patients of Mild Cognitive Impairment. J. Clin. Neurosci. 2018, 56, 56–62. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O.; Betzel, R.F. Modular Brain Networks. Annu. Rev. Psychol. 2016, 67, 613–640. [Google Scholar] [CrossRef]
- Sporns, O. The human connectome: Origins and challenges. Neuroimage 2013, 80, 53–61. [Google Scholar] [CrossRef]
- Minosse, S.; Garaci, F.; Martino, F.; Di Mauro, R.; Melis, M.; Di Giuliano, F.; Picchi, E.; Floris, R.; Guerrisi, M.; Di Girolamo, S.; et al. Global and local reorganization of brain network connectivity in sudden sensorineural hearing loss. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Montreal, QC, Canada, 20–24 July 2020. [Google Scholar] [CrossRef]
- Sperling, R. The potential of functional MRI as a biomarker in early Alzheimer’s disease. Neurobiol. Aging 2011, 32, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, T.; Muranaka, H.; Kaseda, Y.; Mimori, Y.; Tobimatsu, S. Understanding the pathophysiology of Alzheimer’s disease and mild cognitive impairment: A mini review on fMRI and ERP studies. Neurol. Res. Int. 2012, 2012, 719056. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Zhang, J. Donepezil’s effects on brain functions of patients with alzheimer disease: A regional homogeneity study based on resting-state functional magnetic resonance imaging. Clin. Neuropharmacol. 2019, 42, 42. [Google Scholar] [CrossRef]
- Penalba-Sánchez, L.; Oliveira-Silva, P.; Sumich, A.L.; Cifre, I. Increased functional connectivity patterns in mild Alzheimer’s disease: A rsfMRI study. Front. Aging Neurosci. 2023, 14, 1037347. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, S.; Sarraf, A.; DeSouza, D.D.; Anderson, J.A.E.; Kabia, M. OViTAD: Optimized Vision Transformer to Predict Various Stages of Alzheimer’s Disease Using Resting-State fMRI and Structural MRI Data. Brain Sci. 2023, 13, 260. [Google Scholar] [CrossRef]
- Zhang, H.; Song, R.; Wang, L.; Zhang, L.; Wang, D.; Wang, C.; Wang, C.; Zhang, W. Classification of Brain Disorders in rs-fMRI via Local-to-Global Graph Neural Networks. IEEE Trans. Med. Imaging 2023, 42, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Onur, O.A.; Richter, N.; Fassbender, R.; Gramespacher, H.; Befahr, Q.; von Reutern, B.; Dillen, K.; Jacobs, H.I.L.; Kukolja, J.; et al. Concordance of Intrinsic Brain Connectivity Measures Is Disrupted in Alzheimer’s Disease. Brain Connect. 2021, 13, 344–355. [Google Scholar] [CrossRef]
- Drake-Pérez, M.; Boto, J.; Fitsiori, A.; Lovblad, K.; Vargas, M.I. Clinical applications of diffusion weighted imaging in neuroradiology. Insights Imaging 2018, 9, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Gaddamanugu, S.; Shafaat, O.; Sotoudeh, H.; Sarrami, A.H.; Rezaei, A.; Saadatpour, Z.; Singhal, A. Clinical applications of diffusion-weighted sequence in brain imaging: Beyond stroke. Neuroradiology 2022, 64, 15–30. [Google Scholar] [CrossRef]
- Harrison, J.R.; Bhatia, S.; Tan, Z.X.; Mirza-Davies, A.; Benkert, H.; Tax, C.M.W.; Jones, D.K. Imaging Alzheimer’s genetic risk using diffusion MRI: A systematic review. Neuroimage Clin. 2020, 27, 102359. [Google Scholar] [CrossRef] [PubMed]
- Minosse, S.; Picchi, E.; Di Giuliano, F.; Di Cio, F.; Pistolese, C.A.; Sarmati, L.; Teti, E.; Andreoni, M.; Floris, R.; Guerrisi, M.; et al. Compartmental models for diffusion weighted MRI reveal widespread brain changes in HIV-infected patients. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Virtual Conference, 1–5 November 2021. [Google Scholar] [CrossRef]
- Minosse, S.; Marzi, S.; Piludu, F.; Vidiri, A. Correlation study between DKI and conventional DWI in brain and head and neck tumors. Magn. Reson. Imaging 2017, 42, 114–122. [Google Scholar] [CrossRef]
- Minosse, S.; Marzi, S.; Piludu, F.; Boellis, A.; Terrenato, I.; Pellini, R.; Covello, R.; Vidiri, A. Diffusion kurtosis imaging in head and neck cancer: A correlation study with dynamic contrast enhanced MRI. Phys. Medica 2020, 73, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Perea, R.D.; Rabin, J.S.; Fujiyoshi, M.G.; Neal, T.E.; Smith, E.E.; Van Dijk, K.R.A.; Hedden, T. Connectome-derived diffusion characteristics of the fornix in Alzheimer’s disease. Neuroimage Clin. 2018, 19, 331–342. [Google Scholar] [CrossRef]
- Martinez-Heras, E.; Grussu, F.; Prados, F.; Solana, E.; Llufriu, S. Diffusion-Weighted Imaging: Recent Advances and Applications. Semin. Ultrasound CT MRI 2021, 42, 490–506. [Google Scholar] [CrossRef]
- Parker, T.D.; Slattery, C.F.; Zhang, J.; Nicholas, J.M.; Paterson, R.W.; Foulkes, A.J.M.; Malone, I.B.; Thomas, D.L.; Modat, M.; Cash, D.M.; et al. Cortical microstructure in young onset Alzheimer’s disease using neurite orientation dispersion and density imaging. Hum. Brain Mapp. 2018, 39, 3005–3017. [Google Scholar] [CrossRef] [PubMed]
- Slattery, C.F.; Zhang, J.; Paterson, R.W.; Foulkes, A.J.M.; Carton, A.; Macpherson, K.; Mancini, L.; Thomas, D.L.; Modat, M.; Toussaint, N.; et al. ApoE influences regional white-matter axonal density loss in Alzheimer’s disease. Neurobiol. Aging 2017, 57, 8–17. [Google Scholar] [CrossRef]
- Tian, J.; Raghavan, S.; Reid, R.I.; Przybelski, S.A.; Lesnick, T.G.; Gebre, R.K.; Graff-Radford, J.; Schwarz, C.G.; Lowe, V.J.; Kantarci, K.; et al. White Matter Degeneration Pathways Associated With Tau Deposition in Alzheimer Disease. Neurology 2023, 100, e2269–e2278. [Google Scholar] [CrossRef]
- Wen, Q.; Mustafi, S.M.; Li, J.; Risacher, S.L.; Tallman, E.; Brown, S.A.; West, J.D.; Harezlak, J.; Farlow, M.R.; Unverzagt, F.W.; et al. White matter alterations in early-stage Alzheimer’s disease: A tract-specific study. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2019, 11, 576–587. [Google Scholar] [CrossRef]
- Sen, S.; Saxena, R.; Tripathi, M.; Vibha, D.; Dhiman, R. Neurodegeneration in Alzheimer’s disease and glaucoma: Overlaps and missing links. Eye 2020, 34, 1546–1553. [Google Scholar] [CrossRef]
- Ghiso, J.A. Alzheimer’s disease and glaucoma: Mechanistic similarities and differences. J. Glaucoma 2013, 22, S36. [Google Scholar] [CrossRef]
- Sivak, J.M. The aging eye: Common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Investig Ophthalmol. Vis. Sci. 2013, 54, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Hanafiah, M.; Johari, B.; Ab Mumin, N.; Musa, A.A.; Hanafiah, H. MRI findings suggestive of Alzheimer’s disease in patients with primary open angle glaucoma–a single sequence analysis using rapid 3D T1 spoiled gradient echo. Br. J. Radiol. 2022, 95, 20210857. [Google Scholar] [CrossRef]
- Koedam, E.L.G.E.; Lehmann, M.; Van Der Flier, W.M.; Scheltens, P.; Pijnenburg, Y.A.L.; Fox, N.; Barkhof, F.; Wattjes, M.P. Visual assessment of posterior atrophy development of a MRI rating scale. Eur. Radiol. 2011, 21, 2618–2625. [Google Scholar] [CrossRef]
- Kuang, G.; Salowe, R.; O’Brien, J. Genetic Factors Implicated in the Investigation of Possible Connections between Alzheimer’s Disease and Primary Open Angle Glaucoma. Genes 2023, 14, 338. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Torres, S.; He, W.; Thorp, J.; Seddighi, S.; Mullany, S.; Hammond, C.J.; Hysi, P.G.; Pasquale, L.R.; Khawaja, A.P.; Hewitt, A.W.; et al. Disentangling the genetic overlap and causal relationships between primary open-angle glaucoma, brain morphology and four major neurodegenerative disorders. EBioMedicine 2023, 92, 104615. [Google Scholar] [CrossRef] [PubMed]
- Bogolepova, A.N.; Makhnovich, E.V.; Kovalenko, E.A.; Osinovskaya, N.A.; Beregov, M.M.; Zhuravleva, A.N. Modern possibilities of early diagnosis of Alzheimer’s disease in patients with primary open-angle glaucoma. Zhurnal Nevrol. I Psikhiatrii Im SS Korsakova 2023, 123, 121–128. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Ran, A.R.; Wang, S.; Chan, V.T.T.; Sham, K.; Hilal, S.; Venketasubramanian, N.; Cheng, C.Y.; Sabanayagam, C.; Tham, Y.C.; et al. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: A retrospective, multicentre case-control study. Lancet Digit. Health 2022, 4, e806–e815. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martucci, A.; Di Giuliano, F.; Minosse, S.; Pocobelli, G.; Nucci, C.; Garaci, F. MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 14932. https://doi.org/10.3390/ijms241914932
Martucci A, Di Giuliano F, Minosse S, Pocobelli G, Nucci C, Garaci F. MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer’s Disease. International Journal of Molecular Sciences. 2023; 24(19):14932. https://doi.org/10.3390/ijms241914932
Chicago/Turabian StyleMartucci, Alessio, Francesca Di Giuliano, Silvia Minosse, Giulio Pocobelli, Carlo Nucci, and Francesco Garaci. 2023. "MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer’s Disease" International Journal of Molecular Sciences 24, no. 19: 14932. https://doi.org/10.3390/ijms241914932
APA StyleMartucci, A., Di Giuliano, F., Minosse, S., Pocobelli, G., Nucci, C., & Garaci, F. (2023). MRI and Clinical Biomarkers Overlap between Glaucoma and Alzheimer’s Disease. International Journal of Molecular Sciences, 24(19), 14932. https://doi.org/10.3390/ijms241914932