Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors
Abstract
:1. Introduction
2. SARS-CoV-2
2.1. siRNA as Potential Therapeutics
2.2. siRNA Inhibitors Targeting SARS-CoV-2 RNA
2.3. ASO as Potential Therapeutics
2.4. Antisense Oligonucleotide Modifications
2.5. ASO Inhibitors Targeting SARS-CoV-2 RNA
2.6. Small Molecules as Potential Therapeutics
2.7. Small Molecule Inhibitors Targeting SARS-CoV-2 RNA
2.8. The Other Methods
3. Influenza A Virus
3.1. siRNA Inhibitors Targeting Influenza A Virus RNA
3.2. ASO Inhibitors Targeting Influenza A Virus RNA
3.3. Small Molecule Inhibitors Targeting IAV RNA
3.4. The Other Methods
4. Conclusions
5. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gloster, A.T.; Lamnisos, D.; Lubenko, J.; Presti, G.; Squatrito, V.; Constantinou, M.; Nicolaou, C.; Papacostas, S.; Aydın, G.; Chong, Y.Y.; et al. Impact of COVID-19 pandemic on mental health: An international study. PLoS ONE 2020, 15, e0244809. [Google Scholar] [CrossRef] [PubMed]
- Baloch, S.; Baloch, M.A.; Zheng, T.; Pei, X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J. Exp. Med. 2020, 250, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Hajjar, S.; McIntosh, K. The first influenza pandemic of the 21st century. Ann. Saudi Med. 2010, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shapshak, P.; Chiappelli, F.; Somboonwit, C.; Sinnott, J. The influenza pandemic of 2009: Lessons and implications. Mol. Diagnosis Ther. 2011, 15, 72–79. [Google Scholar] [CrossRef]
- Franco-Paredes, C.; Hernandez-Ramos, I.; Del Rio, C.; Alexander, K.T.; Tapia-Conyer, R.; Santos-Preciado, J.I. H1N1 influenza pandemics: Comparing the events of 2009 in Mexico with those of 1976 and 1918–1919. Arch. Med. Res. 2009, 40, 669–672. [Google Scholar] [CrossRef]
- Rockman, S.; Brown, L. Pre-pandemic and pandemic influenza vaccines. Hum. Vaccin. 2010, 6, 792–801. [Google Scholar] [CrossRef] [Green Version]
- Hilleman, M.R. Realities and enigmas of human viral influenza: Pathogenesis, epidemiology and control. Vaccine 2002, 20, 3068–3087. [Google Scholar] [CrossRef]
- Potter, C.W. A history of influenza. J. Appl. Microbiol. 2001, 91, 572–579. [Google Scholar] [CrossRef]
- Cox, N.J.; Tamblyn, S.E.; Tam, T. Influenza pandemic planning. Vaccine 2003, 21, 1801–1803. [Google Scholar] [CrossRef]
- Kirtipal, N.; Bharadwaj, S.; Kang, S.G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet. Evol. 2020, 85, 104502. [Google Scholar] [CrossRef]
- Samji, T. Influenza A: Understanding the viral life cycle. Yale J. Biol. Med. 2009, 82, 153–159. [Google Scholar] [PubMed]
- Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annu. Rev. Virol. 2015, 2, 265–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020, 9, 1267. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26, D49–D53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiening, M.; Ochsenreiter, R.; Hellinger, H.J.; Rattei, T.; Hofacker, I.; Frishman, D. Conserved secondary structures in viral mRNAs. Viruses 2019, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Tao, Y.J. Structure and assembly of the influenza A virus ribonucleoprotein complex. FEBS Lett. 2013, 587, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Gultyaev, A.P.; Richard, M.; Spronken, M.I.; Olsthoorn, R.C.L.L.; Fouchier, R.A.M.M. Conserved structural RNA domains in regions coding for cleavage site motifs in hemagglutinin genes of influenza viruses. Virus Evol. 2019, 5, 125–129. [Google Scholar] [CrossRef] [Green Version]
- de Cesaris Araujo Tavares, R.; Mahadeshwar, G.; Wan, H.; Huston, N.C.; Pyle, A.M. The Global and Local Distribution of RNA Structure throughout the SARS-CoV-2 Genome. J. Virol. 2020, 95, e02190-20. [Google Scholar] [CrossRef]
- Andrews, R.J.; O’Leary, C.A.; Tompkins, V.S.; Peterson, J.M.; Haniff, H.S.; Williams, C.; Disney, M.D.; Moss, W.N. A map of the SARS-CoV-2 RNA structurome. NAR Genom. Bioinforma 2021, 3, lqab043. [Google Scholar] [CrossRef]
- Rangan, R.; Zheludev, I.N.; Hagey, R.J.; Pham, E.A.; Wayment-Steele, H.K.; Glenn, J.S.; Das, R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: A first look. RNA 2020, 26, 937–959. [Google Scholar] [CrossRef]
- Vandelli, A.; Monti, M.; Milanetti, E.; Armaos, A.; Rupert, J.; Zacco, E.; Bechara, E.; Delli Ponti, R.; Tartaglia, G.G. Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Res. 2020, 48, 11270–11283. [Google Scholar] [CrossRef] [PubMed]
- Manfredonia, I.; Nithin, C.; Ponce-Salvatierra, A.; Ghosh, P.; Wirecki, T.K.; Marinus, T.; Ogando, N.S.; Snijder, E.J.; van Hemert, M.J.; Bujnicki, J.M.; et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020, 48, 12436–12452. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Allan, M.; Malsick, L.; Khandwala, S.; Nyeo, S.; Sun, Y.; Guo, J.U.; Bathe, M.; Griffiths, A.; Rouskin, S. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 2022, 13, 1128. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, P.; Ju, X.; Rao, J.; Huang, W.; Ren, L.; Zhang, S.; Xiong, T.; Xu, K.; Zhou, X.; et al. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell 2021, 184, 1865–1883.e20. [Google Scholar] [CrossRef]
- Sanders, W.; Fritch, E.J.; Madden, E.A.; Graham, R.L.; Vincent, H.A.; Heise, M.T.; Baric, R.S.; Moorman, N.J. Comparative analysis of coronavirus genomic RNA structure reveals conservation in SARS-like coronaviruses. bioRxiv 2020. [Google Scholar] [CrossRef]
- Yang, S.L.; DeFalco, L.; Anderson, D.E.; Zhang, Y.; Aw, J.; Lim, S.Y.; Lim, X.N.; Tan, K.Y.; Zhang, T.; Chawla, T.; et al. Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. Nat Commun. 2021, 12, 5113. [Google Scholar] [CrossRef]
- Soszynska-Jozwiak, M.; Ruszkowska, A.; Kierzek, R.; O’leary, C.A.; Moss, W.N.; Kierzek, E. Secondary Structure of Subgenomic RNA M of SARS-CoV-2. Viruses 2022, 14, 322. [Google Scholar] [CrossRef]
- Cao, C.; Cai, Z.; Xiao, X.; Rao, J.; Chen, J.; Hu, N.; Yang, M.; Xing, X.; Wang, Y.; Li, M.; et al. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat. Commun. 2021, 12, 3917. [Google Scholar] [CrossRef]
- Rangan, R.; Watkins, A.M.; Chacon, J.; Kretsch, R.; Kladwang, W.; Zheludev, I.N.; Townley, J.; Rynge, M.; Thain, G.; Das, R. De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures. Nucleic Acids Res. 2021, 49, 3092–3108. [Google Scholar] [CrossRef]
- Moss, W.N.; Priore, S.F.; Turner, D.H. Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA 2011, 17, 991–1011. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Dadonaite, B.; van Doremalen, N.; Suzuki, Y.; Barclay, W.S.; Pybus, O.G. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol. 2016, 13, 883–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, Y.; Pybus, O.G.; Itou, T.; Suzuki, Y. Conserved secondary structures predicted within the 5′ packaging signal region of influenza A virus PB2 segment. Meta Gene 2018, 15, 75–79. [Google Scholar] [CrossRef]
- Gultyaev, A.P.; Tsyganov-Bodounov, A.; Spronken, M.I.J.J.; Van Der Kooij, S.; Fouchier, R.A.M.M.; Olsthoorn, R.C.L.L.; Van Der Kooij, S.; Fouchier, R.A.M.M.; Olsthoorn, R.C.L.L. RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biol. 2014, 11, 942–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soszynska-Jozwiak, M.; Michalak, P.; Moss, W.N.; Kierzek, R.; Kierzek, E. A conserved secondary structural element in the coding region of the influenza a virus nucleoprotein (NP) mRNA is important for the regulation of viral proliferation. PLoS ONE 2015, 10, e0141132. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.M.; O’Leary, C.A.; Moss, W.N. In silico analysis of local RNA secondary structure in influenza virus A, B and C finds evidence of widespread ordered stability but little evidence of significant covariation. Sci. Rep. 2022, 12, 310. [Google Scholar] [CrossRef]
- Priore, S.F.; Kierzek, E.; Kierzek, R.; Baman, J.R.; Moss, W.N.; Dela-Moss, L.I.; Turner, D.H. Secondary structure of a conserved domain in the intron of influenza A NS1 mRNA. PLoS ONE 2013, 8, E3335–E3342. [Google Scholar] [CrossRef]
- Jiang, T.; Kennedy, S.D.; Moss, W.N.; Kierzek, E.; Turner, D.H. Secondary structure of a conserved domain in an intron of influenza A M1 mRNA. Biochemistry 2014, 53, 5236–5248. [Google Scholar] [CrossRef] [Green Version]
- Spronken, M.I.; van de Sandt, C.E.; de Jongh, E.P.; Vuong, O.; van der Vliet, S.; Bestebroer, T.M.; Olsthoorn, R.C.L.L.; Rimmelzwaan, G.F.; Fouchier, R.A.M.M.; Gultyaev, A.P. A compensatory mutagenesis study of a conserved hairpin in the M gene segment of influenza A virus shows its role in virus replication. RNA Biol. 2017, 14, 1606–1616. [Google Scholar] [CrossRef]
- Ilyinskii, P.O.; Schmidt, T.; Lukashev, D.; Meriin, A.B.; Thoidis, G.; Frishman, D.; Shneider, A.M. Importance of mRNA secondary structural elements for the expression of influenza virus genes. Omi. A J. Integr. Biol. 2009, 13, 421–430. [Google Scholar] [CrossRef]
- Jiang, T.; Nogales, A.; Baker, S.F.; Martinez-Sobrido, L.; Turner, D.H. Mutations designed by ensemble defect to misfold conserved RNA structures of influenza A segments 7 and 8 affect splicing and attenuate viral replication in cell culture. PLoS ONE 2016, 11, e0156906. [Google Scholar] [CrossRef]
- Michalak, P.; Soszynska-Jozwiak, M.; Biala, E.; Moss, W.N.; Kesy, J.; Szutkowska, B.; Lenartowicz, E.; Kierzek, R.; Kierzek, E. Secondary structure of the segment 5 genomic RNA of influenza A virus and its application for designing antisense oligonucleotides. Sci. Rep. 2019, 9, 3801. [Google Scholar] [CrossRef] [Green Version]
- Ruszkowska, A.; Lenartowicz, E.; Moss, W.N.; Kierzek, R.; Kierzek, E. Secondary structure model of the naked segment 7 influenza A virus genomic RNA. Biochem. J. 2016, 473, 4327–4348. [Google Scholar] [CrossRef] [PubMed]
- Lenartowicz, E.; Kesy, J.; Ruszkowska, A.; Soszynska-Jozwiak, M.; Michalak, P.; Moss, W.N.; Turner, D.H.; Kierzek, R.; Kierzek, E. Self-folding of naked segment 8 genomic RNA of influenza a virus. PLoS ONE 2016, 11, e0148281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, P.; Piasecka, J.; Szutkowska, B.; Kierzek, R.; Biala, E.; Moss, W.N.; Kierzek, E. Conserved structural motifs of two distant iav subtypes in genomic segment 5 rna. Viruses 2021, 13, 525. [Google Scholar] [CrossRef] [PubMed]
- Soszynska-Jozwiak, M.; Pszczola, M.; Piasecka, J.; Peterson, J.M.; Moss, W.N.; Taras-Goslinska, K.; Kierzek, R.; Kierzek, E. Universal and strain specific structure features of segment 8 genomic RNA of influenza A virus-application of 4-thiouridine photocrosslinking. J. Biol. Chem. 2021, 297, 101245. [Google Scholar] [CrossRef] [PubMed]
- Soszynska-Jozwiak, M.; Michalak, P.; Moss, W.N.; Kierzek, R.; Kesy, J.; Kierzek, E. Influenza virus segment 5 (+)RNA - Secondary structure and new targets for antiviral strategies. Sci. Rep. 2017, 7, 15041. [Google Scholar] [CrossRef] [Green Version]
- Szutkowska, B.; Wieczorek, K.; Kierzek, R.; Zmora, P.; Peterson, J.M.; Moss, W.N.; Mathews, D.H.; Kierzek, E. Secondary Structure of Influenza A Virus Genomic Segment 8 RNA Folded in a Cellular Environment. Int. J. Mol. Sci. 2022, 23, 2452. [Google Scholar] [CrossRef]
- Simon, L.M.; Morandi, E.; Luganini, A.; Gribaudo, G.; Martinez-Sobrido, L.; Turner, D.H.; Oliviero, S.; Incarnato, D. In vivo analysis of influenza A mRNA secondary structures identifies critical regulatory motifs. Nucleic Acids Res. 2019, 47, 7003–7017. [Google Scholar] [CrossRef] [Green Version]
- Dadonaite, B.; Gilbertson, B.; Knight, M.L.; Trifkovic, S.; Rockman, S.; Laederach, A.; Brown, L.E.; Fodor, E.; Bauer, D.L.V. V The structure of the influenza A virus genome. Nat. Microbiol. 2019, 4, 1781–1789. [Google Scholar] [CrossRef]
- Shirvani, F.; Babaie, D.; Karimi, A.M. COVID-19 and Influenza: Differences, Similarities, and Coinfection. Arch. Pediatr. Infect. Dis. 2022, 10. [Google Scholar] [CrossRef]
- Bai, L.; Zhao, Y.; Dong, J.; Liang, S.; Guo, M.; Liu, X.; Wang, X.; Huang, Z.; Sun, X.; Zhang, Z.; et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res. 2021, 31, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Soufi, G.J.; Iravani, S. Potential inhibitors of SARS-CoV-2: Recent advances. J. Drug Target. 2021, 29, 349–364. [Google Scholar] [CrossRef]
- Gong, J.; Fang, H.; Li, M.; Liu, Y.Y.; Yang, K.; Liu, Y.Y.; Xu, W. Potential Targets and Their Relevant Inhibitors in Anti-influenza Fields. Curr. Med. Chem. 2009, 16, 3716–3739. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.; Wang, W.; Song, Z.; Hu, Y.; Tao, Z.; Tian, J.; Pei, Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardenbrook, N.J.; Zhang, P. A structural view of the SARS-CoV-2 virus and its assembly. Curr. Opin. Virol. 2022, 52, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Tidu, A.; Eriani, G.; Martin, F. Secondary structure of the SARS-CoV-2 5′-UTR. RNA Biol. 2021, 18, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Olsthoorn, R.C.L. Group-specific structural features of the 5′-proximal sequences of coronavirus genomic RNAs. Virology 2010, 401, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, L.; Millership, J.J.; Kang, H.; Leibowitz, J.L.; Giedroc, D.P. A U-turn motif-containing stem-loop in the coronavirus 5′ untranslated region plays a functional role in replication. RNA 2007, 13, 763–780. [Google Scholar] [CrossRef] [Green Version]
- Arya, R.; Kumari, S.; Pandey, B.; Mistry, H.; Bihani, S.C.; Das, A.; Prashar, V.; Gupta, G.D.; Panicker, L.; Kumar, M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 2021, 433, 166725. [Google Scholar] [CrossRef]
- Guan, B.-J.; Wu, H.-Y.; Brian, D.A. An Optimal cis -Replication Stem-Loop IV in the 5′ Untranslated Region of the Mouse Coronavirus Genome Extends 16 Nucleotides into Open Reading Frame 1. J. Virol. 2011, 85, 5593–5605. [Google Scholar] [CrossRef]
- Guan, B.-J.; Su, Y.-P.; Wu, H.-Y.; Brian, D.A. Genetic Evidence of a Long-Range RNA-RNA Interaction between the Genomic 5′ Untranslated Region and the Nonstructural Protein 1 Coding Region in Murine and Bovine Coronaviruses. J. Virol. 2012, 86, 4631–4643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Liu, P.; Wudeck, E.V.; Giedroc, D.P.; Leibowitz, J.L. Shape analysis of the rna secondary structure of the mouse hepatitis virus 5′ untranslated region and n-terminal nsp1 coding sequences. Virology 2015, 475, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Qiu, J.; Aryal, S.; Hackett, J.L.; Wang, J. The RNA architecture of the SARS-CoV-2 3′-untranslated region. Viruses 2020, 12, 1473. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Tang, Z.; Zhao, J.; Wang, J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front. Chem. 2021, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Leibowitz, J.L. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res. 2015, 206, 120–133. [Google Scholar] [CrossRef]
- Stammler, S.N.; Cao, S.; Chen, S.J.; Giedroc, D.P. A conserved RNA pseudoknot in a putative molecular switch domain of the 3′-untranslated region of coronaviruses is only marginally stable. Rna 2011, 17, 1747–1759. [Google Scholar] [CrossRef] [Green Version]
- Huston, N.C.; Wan, H.; Strine, M.S.; de Cesaris Araujo Tavares, R.; Wilen, C.B.; Pyle, A.M. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol. Cell 2021, 81, 584–598.e5. [Google Scholar] [CrossRef]
- Wacker, A.; Weigand, J.E.; Akabayov, S.R.; Altincekic, N.; Bains, J.K.; Banijamali, E.; Binas, O.; Castillo-Martinez, J.; Cetiner, E.; Ceylan, B.; et al. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. 2020, 48, 12415–12435. [Google Scholar] [CrossRef]
- Williams, G.D.; Chang, R.-Y.; Brian, D.A. A Phylogenetically Conserved Hairpin-Type 3′ Untranslated Region Pseudoknot Functions in Coronavirus RNA Replication. J. Virol. 1999, 73, 8349–8355. [Google Scholar] [CrossRef] [Green Version]
- Ziv, O.; Price, J.; Shalamova, L.; Kamenova, T.; Goodfellow, I.; Weber, F.; Miska, E.A. The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2. Mol. Cell 2020, 80, 1067–1077.e5. [Google Scholar] [CrossRef]
- Mathews, D.H.; Disney, M.D.; Childs, J.L.; Schroeder, S.J.; Zuker, M.; Turner, D.H. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 2004, 101, 7287–7292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plant, E.P.; Dinman, J.D. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Front. Biosci. 2008, 13, 4873–4881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Grunewald, M.; Perlman, S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol. Biol. 2020, 2203, 1–29. [Google Scholar] [PubMed]
- Kelly, J.A.; Woodside, M.T.; Dinman, J.D. Programmed −1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021, 554, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.A.; Olson, A.N.; Neupane, K.; Munshi, S.; Emeterio, J.S.; Pollack, L.; Woodside, M.T.; Dinman, J.D. Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J. Biol. Chem. 2020, 295, 10741–10748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zheludev, I.N.; Hagey, R.J.; Haslecker, R.; Hou, Y.J.; Kretsch, R.; Pintilie, G.D.; Rangan, R.; Kladwang, W.; Li, S.; et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 2021, 28, 747–754. [Google Scholar] [CrossRef]
- Bhatt, P.R.; Scaiola, A.; Loughran, G.; Leibundgut, M.; Kratzel, A.; Meurs, R.; Dreos, R.; O’Connor, K.M.; McMillan, A.; Bode, J.W.; et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 2021, 372, 1306–1313. [Google Scholar] [CrossRef]
- Omar, S.I.; Zhao, M.; Sekar, R.V.; Moghadam, S.A.; Tuszynski, J.A.; Woodside, M.T. Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers. PLoS Comput. Biol. 2021, 17, e1008603. [Google Scholar] [CrossRef]
- Wilson, R.; Doudna, J.A. Molecular mechanisms of RNA interference A BIOLOGICAL VIEW OF RNA INTERFERENCE • Small regulatory RNAs in cellular function and dysfunction HHS Public Access. Annu. Rev. Biophys. 2013, 42, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Zamore, P.D.; Haley, B. Ribo-gnome: The big world of small RNAs. Science 2005, 309, 1519–1524. [Google Scholar] [CrossRef]
- Tan, F.L.; Yin, J.Q. RNAi, a new therapeutic strategy against viral infection. Cell Res. 2004, 14, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Ahn, J.; Jee, Y.; Seo, S.; Jeon, E.J.; Jeon, E.S.; Joo, C.H.; Kim, Y.K.; Lee, H. Universal and mutation-resistant anti-enteroviral activity: Potency of small interfering RNA complementary to the conserved cis-acting replication element within the enterovirus coding region. J. Gen. Virol. 2007, 88, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.; Davis, A.; Supramaniam, A.; Acharya, D.; Kelly, G.; Tayyar, Y.; West, N.; Zhang, P.; McMillan, C.L.D.; Soemardy, C.; et al. A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Mol. Ther. 2021, 29, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lee, J.Y.; Woo, J.Z.; Xu, L.; Nguyenla, X.; Yamashiro, L.H.; Ji, F.; Biering, S.B.; Van Dis, E.; Gonzalez, F.; et al. An intranasal ASO therapeutic targeting SARS-CoV-2. Nat. Commun. 2022, 13, 4503. [Google Scholar] [CrossRef]
- Li, C.; Callahan, A.J.; Simon, M.D.; Totaro, K.A.; Mijalis, A.J.; Phadke, K.S.; Zhang, G.; Hartrampf, N.; Schissel, C.K.; Zhou, M.; et al. Fully automated fast-flow synthesis of antisense phosphorodiamidate morpholino oligomers. Nat. Commun. 2021, 12, 4396. [Google Scholar] [CrossRef] [PubMed]
- Rosenke, K.; Leventhal, S.; Moulton, H.M.; Hatlevig, S.; Hawman, D.; Feldmann, H.; Stein, D.A. Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers. J. Antimicrob. Chemother. 2021, 76, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Hagey, R.J.; Elazar, M.; Pham, E.A.; Tian, S.; Ben-Avi, L.; Bernardin-Souibgui, C.; Yee, M.F.; Moreira, F.R.; Rabinovitch, M.V.; Meganck, R.M.; et al. Programmable antivirals targeting critical conserved viral RNA secondary structures from influenza A virus and SARS-CoV-2. Nat. Med. 2022, 28, 1944–1955. [Google Scholar] [CrossRef]
- Niktab, I.; Haghparast, M.; Beigi, M.H.; Megraw, T.L.; Kiani, A.; Ghaedi, K. Design of advanced siRNA therapeutics for the treatment of COVID-19. Meta Gene 2021, 29, 100910. [Google Scholar] [CrossRef]
- Li, C.; Callahan, A.J.; Phadke, K.S.; Bellaire, B.; Farquhar, C.E.; Zhang, G.; Schissel, C.K.; Mijalis, A.J.; Hartrampf, N.; Loas, A.; et al. Automated Flow Synthesis of Peptide-PNA Conjugates. ACS Cent. Sci. 2022, 8, 205–213. [Google Scholar] [CrossRef]
- Haniff, H.S.; Tong, Y.; Liu, X.; Chen, J.L.; Suresh, B.M.; Andrews, R.J.; Peterson, J.M.; O’Leary, C.A.; Benhamou, R.I.; Moss, W.N.; et al. Targeting the SARS-COV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RiboTAC) degraders. ACS Cent. Sci. 2020, 6, 1713–1721. [Google Scholar] [CrossRef]
- Sreeramulu, S.; Richter, C.; Berg, H.; Wirtz Martin, M.A.; Ceylan, B.; Matzel, T.; Adam, J.; Altincekic, N.; Azzaoui, K.; Bains, J.K.; et al. Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS-CoV-2 Genome. Angew. Chem.-Int. Ed. 2021, 60, 19191–19200. [Google Scholar] [CrossRef] [PubMed]
- Zafferani, M.; Haddad, C.; Luo, L.; Davila-Calderon, J.; Chiu, L.Y.; Mugisha, C.S.; Monaghan, A.G.; Kennedy, A.A.; Yesselman, J.D.; Gifford, R.J.; et al. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. Sci. Adv. 2021, 7, eabl6096. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Qin, G.; Niu, J.; Wang, Z.; Wang, C.; Ren, J.; Qu, X. Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19? Angew. Chem.-Int. Ed. 2021, 60, 432–438. [Google Scholar] [CrossRef]
- Sun, Y.; Abriola, L.; Niederer, R.O.; Pedersen, S.F.; Alfajaro, M.M.; Monteiro, V.S.; Wilen, C.B.; Ho, Y.C.; Gilbert, W.V.; Surovtseva, Y.V.; et al. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Proc. Natl. Acad. Sci. USA 2021, 118, e2023051118. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tao, H.; Shen, S.; Miao, Z.; Li, L.; Jia, Y.; Zhang, H.; Bai, X.; Fu, X. A drug screening toolkit based on the –1 ribosomal frameshifting of SARS-CoV-2. Heliyon 2020, 6, e04793. [Google Scholar] [CrossRef]
- Su, X.; Ma, W.; Feng, D.; Cheng, B.; Wang, Q.; Guo, Z.; Zhou, D.; Tang, X. Efficient Inhibition of SARS-CoV-2 Using Chimeric Antisense Oligonucleotides through RNase L Activation. Angew. Chem. Int. Ed. Engl. 2021, 60, 21662–21667. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, G.; Li, Y.; Jin, Y.; Dale, R.; Sun, L.Q.; Wang, M. Inhibition of highly pathogenic avian H5N1 influenza virus replication by RNA oligonucleotides targeting NS1 gene. Biochem. Biophys. Res. Commun. 2008, 365, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, J.; Lenartowicz, E.; Soszynska-Jozwiak, M.; Szutkowska, B.; Kierzek, R.; Kierzek, E. RNA Secondary Structure Motifs of the Influenza A Virus as Targets for siRNA-Mediated RNA Interference. Mol. Ther.-Nucleic Acids 2020, 19, 627–642. [Google Scholar] [CrossRef]
- Lenartowicz, E.; Nogales, A.; Kierzek, E.; Kierzek, R.; Martínez-Sobrido, L.; Turner, D.H. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication. Nucleic Acid Ther. 2016, 26, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Duan, M.; Zhou, Z.; Lin, R.X.; Yang, J.; Xia, X.Z.; Wang, S.Q. In vitro and in vivo protection against the highly pathogenic H5N1 influenza virus by an antisense phosphorothioate oligonucleotide. Antivir. Ther. 2008, 13, 109–114. [Google Scholar] [CrossRef]
- Giannecchini, S.; Clausi, V.; Nosi, D.; Azzi, A. Oligonucleotides derived from the packaging signal at the 5′ end of the viral PB2 segment specifically inhibit influenza virus in vitro. Arch. Virol. 2009, 154, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Bottini, A.; Kim, M.; Bardaro, M.F.; Zhang, Z.; Pellecchia, M.; Choi, B.S.; Varani, G. A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication. Chem. Commun. 2014, 50, 368–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottini, A.; De, S.K.; Wu, B.; Tang, C.; Varani, G.; Pellecchia, M. Targeting Influenza A Virus RNA Promoter. Chem. Biol. Drug Des. 2015, 86, 663–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesy, J.; Patil, K.M.; Kumar, S.R.; Shu, Z.; Yong, H.Y.; Zimmermann, L.; Ong, A.A.L.; Toh, D.F.K.; Krishna, M.S.; Yang, L.; et al. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjug. Chem. 2019, 30, 931–943. [Google Scholar] [CrossRef]
- Czapik, T.; Piasecka, J.; Kierzek, R.; Kierzek, E. Structural variants and modifications of hammerhead ribozymes targeting influenza A virus conserved structural motifs. Mol. Ther.-Nucleic Acids 2022, 29, 64–74. [Google Scholar] [CrossRef]
- Tarn, W.Y.; Cheng, Y.; Ko, S.H.; Huang, L.M. Antisense oligonucleotide-based therapy of viral infections. Pharmaceutics 2021, 13, 2015. [Google Scholar] [CrossRef]
- Piyush, R.; Rajarshi, K.; Chatterjee, A.; Khan, R.; Ray, S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020, 6, e05007. [Google Scholar] [CrossRef]
- Quemener, A.M.; Galibert, M.D. Antisense oligonucleotide: A promising therapeutic option to beat COVID-19. Wiley Interdiscip. Rev. RNA 2021, 13, e1703. [Google Scholar] [CrossRef]
- Lulla, V.; Wandel, M.P.; Bandyra, K.J.; Ulferts, R.; Wu, M.; Dendooven, T.; Yang, X.; Doyle, N.; Oerum, S.; Beale, R.; et al. Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. J. Virol. 2021, 95, e0066321. [Google Scholar] [CrossRef]
- Warner, K.D.; Hajdin, C.E.; Weeks, K.M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 2018, 17, 547–558. [Google Scholar] [CrossRef]
- Siddiquee, S. A Review of Peptide Nucleic Acid. Adv. Tech. Biol. Med. 2015, 3, 131. [Google Scholar] [CrossRef]
- Arranz, R.; Coloma, R.; Chichón, F.J.; Conesa, J.J.; Carrascosa, J.L.; Valpuesta, J.M.; Ortín, J.; Martín-Benito, J. The structure of native influenza virion ribonucleoproteins. Science 2012, 338, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Dou, D.; Revol, R.; Östbye, H.; Wang, H.; Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 2018, 9, 1581. [Google Scholar] [CrossRef] [PubMed]
- Eisfeld, A.J.; Neumann, G.; Kawaoka, Y. At the centre: Influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 2015, 13, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferhadian, D.; Contrant, M.; Printz-Schweigert, A.; Smyth, R.P.; Paillart, J.C.; Marquet, R. Structural and functional motifs in influenza virus RNAs. Front. Microbiol. 2018, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fodor, E.; Pritlove, D.C.; Brownlee, G.G. The influenza virus panhandle is involved in the initiation of transcription. J. Virol. 1994, 68, 4092–4096. [Google Scholar] [CrossRef] [Green Version]
- Fodor, E.; Pritlove, D.C.; Brownlee, G.G. Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. J. Virol. 1995, 69, 4012–4019. [Google Scholar] [CrossRef] [Green Version]
- Pflug, A.; Lukarska, M.; Resa-Infante, P.; Reich, S.; Cusack, S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res. 2017, 234, 103–117. [Google Scholar] [CrossRef]
- Pflug, A.; Guilligay, D.; Reich, S.; Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 2014, 516, 355–360. [Google Scholar] [CrossRef]
- Kauffmann, A.D.; Kennedy, S.D.; Moss, W.N.; Kierzek, E.; Kierzek, R.; Turner, D.H. Nuclear magnetic resonance reveals a two hairpin equilibrium near the 3′-splice site of influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA 2022, 28, 508–522. [Google Scholar] [CrossRef]
- Chen, J.L.; Kennedy, S.D.; Turner, D.H. Structural features of a 3′ splice site in influenza A. Biochemistry 2015, 54, 3269–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, W.N.; Dela-Moss, L.I.; Priore, S.F.; Turner, D.H. The influenza A segment 7 mRNA 3′ splice site pseudoknot/hairpin family. RNA Biol. 2012, 9, 1305–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquenet, S.; Ropers, D.; Bilodeau, P.S.; Damier, L.; Mougin, A.; Stoltzfus, C.M.; Branlant, C. Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3′ splice site and its cis-regulatory element: Possible involvement in RNA splicing. Nucleic Acids Res. 2001, 29, 464–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.N.; Singh, R.N.; Androphy, E.J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2007, 35, 371–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muro, A.F.; Caputi, M.; Pariyarath, R.; Pagani, F.; Buratti, E.; Baralle, F.E. Regulation of Fibronectin EDA Exon Alternative Splicing: Possible Role of RNA Secondary Structure for Enhancer Display. Mol. Cell. Biol. 1999, 19, 2657–2671. [Google Scholar] [CrossRef] [Green Version]
- Domenjoud, L.; Gallinaro, H.; Kister, L.; Meyer, S.; Jacob, M. Identification of a specific exon sequence that is a major determinant in the selection between a natural and a cryptic 5′ splice site. Mol. Cell. Biol. 1991, 11, 4581–4590. [Google Scholar] [CrossRef]
- Moss, W.N.; Dela-Moss, L.I.; Kierzek, E.; Kierzek, R.; Priore, S.F.; Turner, D.H. The 3′ splice site of influenza A segment 7 mRNA can exist in two conformations: A pseudoknot and a hairpin. PLoS ONE 2012, 7, e38323. [Google Scholar] [CrossRef]
- Gultyaev, A.P.; Heus, H.A.; Olsthoorn, R.C.L. An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics 2007, 23, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Gultyaev, A.P.; Spronken, M.I.; Richard, M.; Schrauwen, E.J.A.; Olsthoorn, R.C.L.; Fouchier, R.A.M. Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Piasecka, J.; Jarmolowicz, A.; Kierzek, E. Organization of the influenza a virus genomic rna in the viral replication cycle—Structure, interactions, and implications for the emergence of new strains. Pathogens 2020, 9, 951. [Google Scholar] [CrossRef]
- Zhang, W.; yu Wang, C.; tao Yang, S.; Qin, C.; lin Hu, J.; zhu Xia, X. Inhibition of highly pathogenic avian influenza virus H5N1 replication by the small interfering RNA targeting polymerase A gene. Biochem. Biophys. Res. Commun. 2009, 390, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.; Bouvier, D.; Crépin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009, 458, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Bartlam, M.; Lou, Z.; Chen, S.; Zhou, J.; He, X.; Lv, Z.; Ge, R.; Li, X.; Deng, T.; et al. Crystal structure of an avian influenza polymerase PA N reveals an endonuclease active site. Nature 2009, 458, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Österlund, P.; Westenius, V.; Guo, D.; Poranen, M.M.; Bamford, D.H.; Julkunen, I. Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J. Virol. 2019, 93, e01916-18. [Google Scholar] [CrossRef] [Green Version]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Snead, N.M.; Wu, X.; Li, A.; Cui, Q.; Sakurai, K.; Burnett, J.C.; Rossi, J.J. Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Res. 2013, 41, 6209–6221. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Wang, J.; Wei, S.; Li, C.; Zhou, K.; Hu, J.; Ye, X.; Yan, J.; Liu, W.; Gao, G.F.; et al. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. Mol. Ther.-Nucleic Acids 2018, 10, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Liu, H.; Gao, S.; Jiang, W.; Huang, W. Cellular MicroRNAs Inhibit Replication of the H1N1 Influenza A Virus in Infected Cells. J. Virol. 2010, 84, 8849–8860. [Google Scholar] [CrossRef] [Green Version]
- Szabat, M.; Lorent, D.; Czapik, T.; Tomaszewska, M.; Kierzek, E.; Kierzek, R. Rna secondary structure as a first step for rational design of the oligonucleotides towards inhibition of influenza a virus replication. Pathogens 2020, 9, 925. [Google Scholar] [CrossRef]
- Kustin, T.; Stern, A. Biased Mutation and Selection in RNA Viruses. Mol. Biol. Evol. 2021, 38, 575–588. [Google Scholar] [CrossRef]
- Mahajan, S.; Choudhary, S.; Kumar, P.; Tomar, S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorganic Med. Chem. 2021, 46, 116356. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cen, S. Roles of lncRNAs in influenza virus infection. Emerg. Microbes Infect. 2020, 9, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Baraldi, C.; Sopetto, G.B.; Finozzi, D.; Gentile, C.; Gentile, M.D.; Marconi, R.; Paladino, D.; Raoss, A.; Riedmiller, I.; et al. SARS-CoV-2 and the Host Cell: A Tale of Interactions. Front. Virol. 2022, 1, 815388. [Google Scholar] [CrossRef]
- McCollum, C.R.; Courtney, C.M.; O’Connor, N.J.; Aunins, T.R.; Ding, Y.; Jordan, T.X.; Rogers, K.L.; Brindley, S.; Brown, J.M.; Nagpal, P.; et al. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater. Sci. Eng. 2022, 8, 3087–3106. [Google Scholar] [CrossRef]
- Böttcher-Friebertshäuser, E.; Stein, D.A.; Klenk, H.-D.; Garten, W. Inhibition of Influenza Virus Infection in Human Airway Cell Cultures by an Antisense Peptide-Conjugated Morpholino Oligomer Targeting the Hemagglutinin-Activating Protease TMPRSS2. J. Virol. 2011, 85, 1554–1562. [Google Scholar] [CrossRef]
SARS-CoV-2 | |||||
Name | Region (nt) | Target | Effect * | Type of Inhibitor | Reference |
5′-ASO#26 | 677–692 | 5′ UTR | inhibition: reduced by 90–95% of viral mRNA level (qRT-PCR) | ASO | [84] |
TRS-PMO | 70–75 | 5′ UTR TRS loop | inhibition: reduced by 20% of viral RNA level (qRT-PCR) | ASO | [85] |
5′END-1 5′END-2 TRS-1 TRS-2 AUG | 1–24 5–29 59–82 53–77 251–275 | 5′UTR TRS loop | inhibitions: Ct increase (qRT-PCR) | ASO | [86] |
ASO-ORF1ab-6449 ASO-ORF1ab-9456 ASO-N-29502 | 6449–6498 9456–9525 29,502–29,541 | ORF1ab N gene | inhibitions: reduced by 40–50% of viral RNA level (qRT-PCR) | ASO | [24] |
LNA-12.8 LNA-14.3 | 28,743–28,759 260–275 | N gene 5′UTR/ORF1ab | inhibition: reduced by 3.0, 3.2 log10 virus titer (plaque assay); reduced by 2.9–5.0 log10 (LNA-12.8) of virus titer in the Syrian hamster lungs | ASO | [87] |
siRNA mix | 23,054–23,076 8487–8505 2–20 25,529–25,548 27,000–27,019 26,359–26,378 | S gene ORF1ab ORF1ab M gene E gene | inhibition: Ct increase (qRT-PCR) | siRNA | [88] |
siUTR3 siModUTR3 siHel1 siUC7 | 10–30 10–30 17,830–17,850 15,836–15,856 | 5′ UTR helicase gene | inhibition: reduced by 75–100%, 25–100%, 75%, 83% of viral titer (plaque assay); reduced by 1–1.6 log10 (siUC7), 1–1.6 log10 (siHel1) mice lung titer | siRNA | [83] |
5′UTR-1 5′UTR-3 AUG | 21–39 248–265 254–271 | 5′ UTR TRS loop 5′ UTR | inhibition: reduced by 99–100% (IC50 = 0.8 µM), 75% (IC50 = 6.8 µM) and 23% of viral RNA level (qRT-PCR) | PPNA | [89] |
C5 | 13,433–13,457 | AH, ORF1a | decreased frameshifting efficiency of construct: reduced by 25% of viral RNA level (RT-qPCR) | SM | [90] |
D01 | 13,475–13,542 29,619–29,870 | PK in ORF1b 3_SL3base in ORF10/3′UTR | binding to target: Kd = 6.0 (fluorescence-based titration) | SM | [91] |
DMA-132 DMA-135 DMA-155 | 7–33 77–136 183–227 302–343 | SL1 in 5′UTR SL4 in 5′UTR SL5A in 5′UTR SL6 in ORF1a | reduced by 50%, 50%, and 90% of reporter construct expression (dual-luciferase reporter assay) | SM | [92] |
PDP | 28,903–28,917 | RG-1 G4 in gene N | reduced by 40–90% of protein expression of reporter construct (flow cytometry, IVT assay) | SM | [93] |
merafloxacin | 13,475–13,540 | PK in ORF1b | inhibition: EC50 = 2.6 μM (plaque assay) | SM | [94] [77] |
(-)-Huperzine A ivacaftor | 13,433–13,540 | -1 PRF in ORF1a/ORF1b | reduction in –1 PRF: lowering by 96% of luciferase level (PRF luciferase assay) | SM | [95] |
S4 ASO-4A2-5 S5 ASO-4A2-5 S6 ASO-4A2-5 | 23,032–23,046 23,080–23,094 23,270–23,284 | S gene | reduction in expression: lowering by 87%, 73%, 69% of luciferase level (luciferase reporter assay) | chimera | [96] |
Influenza A Virus | |||||
Name | Region (nt) | Target | Effect * | Type of inhibitor | Reference |
ps-PA496 | 163- 178 | segment 3 (+) RNA | inhibition: 78-fold lower viral titer (immunofluorescence assay); decrease by 0.83 log10 TCID50/g of viral titer in mice lungs | siRNA | [97] |
682 682′ | 682–700 | segment 5 (+) RNA | inhibition: reduced by 85.6%, 78.0% of viral RNA copy number (qRT-PCR) | siRNA | [98] |
613 613′ 613-sF1 613-sF2 | 613–631 | segment 5 (+) RNA | inhibition: reduced by 84.5%, 85.3%, 88.3%, and 88.4% of viral RNA copy number (qRT-PCR) | siRNA | [98] |
68-11L 404-14L 187-14L | 63–73 398–411 181–194 | segment 8 (−) RNA | inhibition: 20-fold, 25-fold, and 16-fold decrease in virus titer (immunofocus assay) | ASO | [99] |
474-21M 883-11L 1253-13M | 465–485 878–888 1248–1260 | segment 5 (−) RNA | inhibition: reduced by 64%, 88%, and 48% of viral RNA copy number (qRT-PCR) | ASO | [41] |
727A 3A 2A 400A 615A 640A | 722–732 1141–1156 1146–1156 398–405 609–621 628–644 | segment 5 (+) RNA | inhibition: reduced by 87%, 79%, 72%, 71%, 70%, and 64% of viral RNA copy number (qRT-PCR) | ASO | [46] |
IV-AS | 1–13 | 5′-terminal conserved region of the eight influenza (−) RNA | inhibition: EC50 = 2.42–3.95 µM (CPE assay); decrease by 4.49 log10 TCID50/g of viral titer in mice lungs | ASO | [100] |
5-15b | 2279–2294 | 5′ end of the segment 1 (−) RNA | inhibition: reduction by 3.4 log10 of viral titer (TCID50/mL) | ASO | [101] |
LNA9 LNA8 LNA7 | 73–88 | segment 1 (−) RNA | inhibition: reduction by 4.5, 3.5, and 3.8 log10 of virus titer (plaque assay); reduced by >2.5 log10 (LNA89) of virus titer in the mice lungs (CCID/mL) | ASO | [87] |
DPQ | 1–15/1′14′ | panhandle in 5′UTR/3′UTR (−) RNA | inhibition: EC50 = 71.6–275.5 µM (CPE assay) | SM | [102] |
DPQ analog 7 DPQ analog 10 | 1–15/1′14′ | panhandle in 5′UTR/3′UTR (−) RNA | reduction in expression: IC50 = 33.89 µM IC50 = 34.18 µM (reporter assay) | SM | [103] |
IR-1b | 1–15/1′14′ | panhandle in 5′UTR/3′UTR (−) RNA | inhibition: reduction by 70% of viral RNA copies (qRT-PCR) | dbPNA | [104] |
RZ6A RZ6C | 615–704 | segment 5 (+) RNA | inhibition: reduction by 37.4% and 30.2% of relative viral RNA level (qRT-PCR) | ribozyme | [105] |
sh613RZ6A sh613RZ6C | 615–704 | segment 5 (+) RNA | inhibition: reduction by 85.9% and 80.0% of relative viral RNA level (qRT-PCR) | chimeric shRNA ribozyme construct | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczesniak, I.; Baliga-Gil, A.; Jarmolowicz, A.; Soszynska-Jozwiak, M.; Kierzek, E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. Int. J. Mol. Sci. 2023, 24, 1232. https://doi.org/10.3390/ijms24021232
Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. International Journal of Molecular Sciences. 2023; 24(2):1232. https://doi.org/10.3390/ijms24021232
Chicago/Turabian StyleSzczesniak, Izabela, Agnieszka Baliga-Gil, Aleksandra Jarmolowicz, Marta Soszynska-Jozwiak, and Elzbieta Kierzek. 2023. "Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors" International Journal of Molecular Sciences 24, no. 2: 1232. https://doi.org/10.3390/ijms24021232
APA StyleSzczesniak, I., Baliga-Gil, A., Jarmolowicz, A., Soszynska-Jozwiak, M., & Kierzek, E. (2023). Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. International Journal of Molecular Sciences, 24(2), 1232. https://doi.org/10.3390/ijms24021232