Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer
Abstract
:1. Introduction
2. The Plasminogen Activation System
2.1. Plasminogen/Plasmin
2.2. Plasminogen Activators
2.3. Inhibitors
2.4. The uPA Receptor
3. ncRNAs in Posttranscriptional Regulation
ncRNAs in Cancer
4. ncRNAs in the Plasminogen Activation System
4.1. uPA
4.2. PAI-1
4.3. PAI-2
4.4. The uPAR
5. PA-Targeting ncRNAs as Cancer Biomarkers
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeVita, V.T.; Rosenberg, S.A. Two Hundred Years of Cancer Research. N. Engl. J. Med. 2012, 366, 2207–2214. [Google Scholar] [CrossRef]
- Shabalina, S.A.; Spiridonov, N.A. The Mammalian Transcriptome and the Function of Non-Coding DNA Sequences. Genome Biol. 2004, 5, 105. [Google Scholar] [CrossRef] [Green Version]
- Hombach, S.; Kretz, M. Non-Coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [CrossRef]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-Coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef]
- Bharadwaj, A.G.; Holloway, R.W.; Miller, V.A.; Waisman, D.M. Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers 2021, 13, 1838. [Google Scholar] [CrossRef] [PubMed]
- Montuori, N.; Ragno, P. Multiple Activities of a Multifaceted Receptor: Roles of Cleaved and Soluble UPAR. Front. Biosci. 2009, 14, 2494–2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijken, D.C.; Lijnen, H.R. New Insights into the Molecular Mechanisms of the Fibrinolytic System. J. Thromb. Haemost. 2009, 7, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.K.; Strickland, S. A Critical Role for Plasminogen in Inflammation. J. Exp. Med. 2020, 217, e20191865. [Google Scholar] [CrossRef] [Green Version]
- Gebbink, M.F.B.G. Tissue-Type Plasminogen Activator-Mediated Plasminogen Activation and Contact Activation, Implications in and beyond Haemostasis. J. Thromb. Haemost. 2011, 9, 174–181. [Google Scholar] [CrossRef]
- Carmeliet, P.; Bouché, A.; De Clercq, C.; Janssen, S.; Pollefeyt, S.; Wyns, S.; Mulligan, R.C.; Collen, D. Biological Effects of Disruption of the Tissue-Type Plasminogen Activator, Urokinase-Type Plasminogen Activator, and Plasminogen Activator Inhibitor-1 Genes in Mice. Ann. N. Y. Acad. Sci. 1995, 748, 367–381. [Google Scholar] [CrossRef]
- Vassalli, J.D.; Baccino, D.; Belin, D. A Cellular Binding Site for the Mr 55,000 Form of the Human Plasminogen Activator, Urokinase. J. Cell Biol. 1985, 100, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Carriero, M.V.; Franco, P.; Votta, G.; Longanesi-Cattani, I.; Vento, M.T.; Masucci, M.T.; Mancini, A.; Caputi, M.; Iaccarino, I.; Stoppelli, M.P. Regulation of Cell Migration and Invasion by Specific Modules of UPA: Mechanistic Insights and Specific Inhibitors. Curr. Drug Targets 2011, 12, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Rabbani, S.A. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications. Int. J. Mol. Sci. 2021, 22, 4358. [Google Scholar] [CrossRef]
- Seiffert, D.; Loskutoff, D.J. Evidence That Type 1 Plasminogen Activator Inhibitor Binds to the Somatomedin B Domain of Vitronectin. J. Biol. Chem. 1991, 266, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Bucci, J.C.; Peterson, C.B. Identification of a PAI-1-Binding Site within an Intrinsically Disordered Region of Vitronectin. Protein Sci. 2020, 29, 494–508. [Google Scholar] [CrossRef] [PubMed]
- Czekay, R.-P.; Wilkins-Port, C.E.; Higgins, S.P.; Freytag, J.; Overstreet, J.M.; Klein, R.M.; Higgins, C.E.; Samarakoon, R.; Higgins, P.J. PAI-1: An Integrator of Cell Signaling and Migration. Int. J. Cell Biol. 2011, 2011, 562481. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.A.; Shaker, B.T.; Bajou, K. The Plasminogen-Activator Plasmin System in Physiological and Pathophysiological Angiogenesis. Int. J. Mol. Sci. 2021, 23, 337. [Google Scholar] [CrossRef]
- Croucher, D.R.; Saunders, D.N.; Lobov, S.; Ranson, M. Revisiting the Biological Roles of PAI2 (SERPINB2) in Cancer. Nat. Rev. Cancer 2008, 8, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Westrick, R.J.; Røjkjaer, L.P.; Yang, A.Y.; Roh, M.H.; Siebert, A.E.; Ginsburg, D. Deficiency of Plasminogen Activator Inhibitor-2 Results in Accelerated Tumor Growth. J. Thromb. Haemost. 2020, 18, 2968–2975. [Google Scholar] [CrossRef]
- Jin, T.; Kim, H.S.; Choi, S.K.; Hwang, E.H.; Woo, J.; Ryu, H.S.; Kim, K.; Moon, A.; Moon, W.K. MicroRNA-200c/141 Upregulates SerpinB2 to Promote Breast Cancer Cell Metastasis and Reduce Patient Survival. Oncotarget 2017, 8, 32769–32782. [Google Scholar] [CrossRef]
- Furuya, H.; Hayashi, K.; Shimizu, Y.; Kim, N.; Tsukikawa, Y.; Chen, R.; Sun, Y.; Chan, O.T.M.; Pagano, I.; Peres, R.; et al. Plasminogen Activator Inhibitor-2 (PAI-2) Overexpression Supports Bladder Cancer Development in PAI-1 Knockout Mice in N-Butyl-N- (4-Hydroxybutyl)-Nitrosamine-Induced Bladder Cancer Mouse Model. J. Transl. Med. 2020, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.; Behrendt, N.; Lund, L.R.; Danø, K.; Appella, E.; Blasi, F. Cloning and Expression of the Receptor for Human Urokinase Plasminogen Activator, a Central Molecule in Cell Surface, Plasmin Dependent Proteolysis. EMBO J. 1990, 9, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Gorrasi, A.; Petrone, A.M.; Li Santi, A.; Alfieri, M.; Montuori, N.; Ragno, P. New Pieces in the Puzzle of UPAR Role in Cell Migration Mechanisms. Cells 2020, 9, 2531. [Google Scholar] [CrossRef] [PubMed]
- Ellis, V.; Behrendt, N.; Danø, K. Plasminogen Activation by Receptor-Bound Urokinase. A Kinetic Study with Both Cell-Associated and Isolated Receptor. J. Biol. Chem. 1991, 266, 12752–12758. [Google Scholar] [CrossRef]
- Alfano, D.; Franco, P.; Stoppelli, M.P. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front. Cell Dev. Biol. 2022, 10, 818616. [Google Scholar] [CrossRef]
- Li Santi, A.; Napolitano, F.; Montuori, N.; Ragno, P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 4111. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Tay, Y.; Rinn, J.; Pandolfi, P.P. The Multilayered Complexity of CeRNA Crosstalk and Competition. Nature 2014, 505, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Cruz, A.; Baños-Jaime, B.; Díaz-Quintana, A.; De la Rosa, M.A.; Díaz-Moreno, I. Post-Translational Control of RNA-Binding Proteins and Disease-Related Dysregulation. Front. Mol. Biosci. 2021, 8, 658852. [Google Scholar] [CrossRef]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Cai, Y.; Xu, J. Circular RNAs: Biogenesis, Mechanism, and Function in Human Cancers. Int. J. Mol. Sci. 2019, 20, 3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Tian, Z.; Fan, W.; Ni, B. Circular RNA: A Novel Biomarker and Therapeutic Target for Human Cancers. Int. J. Med. Sci. 2019, 16, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Shi, L.; Luo, Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020, 7, 612393. [Google Scholar] [CrossRef]
- Aprile, M.; Costa, V.; Cimmino, A.; Calin, G.A. Emerging Role of Oncogenic Long Noncoding RNA as Cancer Biomarkers. Int. J. Cancer 2022. [Google Scholar] [CrossRef]
- Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. MiRNA: A Promising Therapeutic Target in Cancer. Int. J. Mol. Sci. 2022, 23, 11502. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, F.; Xue, J.; Ji, C.; Qu, Y.; Pan, Y. Long Non-Coding RNA TRPM2-AS Regulates MicroRNA MiR-138-5p and PLAU (Plasminogen Activator, Urokinase) to Promote the Progression of Gastric Adenocarcinoma. Bioengineered 2021, 12, 9753–9765. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, Z.; Gao, M.; Yu, H.; Sheng, H.; Huang, J. MicroRNA-193a-3p Suppresses the Colorectal Cancer Cell Proliferation and Progression through Downregulating the PLAU Expression. Cancer Manag. Res. 2019, 11, 5353–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, A.; Conde, I.; Abeni, E.; Arici, B.; Grossi, I.; Specchia, C.; Portolani, N.; Barlati, S.; De Petro, G. Effects of MiR-193a and Sorafenib on Hepatocellular Carcinoma Cells. Mol. Cancer 2013, 12, 162. [Google Scholar] [CrossRef]
- Salvi, A.; Sabelli, C.; Moncini, S.; Venturin, M.; Arici, B.; Riva, P.; Portolani, N.; Giulini, S.M.; De Petro, G.; Barlati, S. MicroRNA-23b Mediates Urokinase and c-Met Downmodulation and a Decreased Migration of Human Hepatocellular Carcinoma Cells. FEBS J. 2009, 276, 2966–2982. [Google Scholar] [CrossRef]
- Hu, H.; Li, S.; Liu, J.; Ni, B. MicroRNA-193b Modulates Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer Cells. Acta Biochim. Biophys Sin. 2012, 44, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-F.; Yan, P.-J.; Shao, Z.-M. Downregulation of MiR-193b Contributes to Enhance Urokinase-Type Plasminogen Activator (UPA) Expression and Tumor Progression and Invasion in Human Breast Cancer. Oncogene 2009, 28, 3937–3948. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Jiang, X.H.; Zhang, J.T.; Sun, T.T.; Dong, J.D.; Sanders, A.J.; Diao, R.Y.; Wang, Y.; Fok, K.L.; Tsang, L.L.; et al. CFTR Suppresses Tumor Progression through MiR-193b Targeting Urokinase Plasminogen Activator (UPA) in Prostate Cancer. Oncogene 2013, 32, 2282–2291.e1-7. [Google Scholar] [CrossRef]
- Meng, D.; Lei, M.; Han, Y.; Zhao, D.; Zhang, X.; Yang, Y.; Liu, R. MicroRNA-645 Targets Urokinase Plasminogen Activator and Decreases the Invasive Growth of MDA-MB-231 Triple-Negative Breast Cancer Cells. Onco Targets Ther. 2018, 11, 7733–7743. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhu, H.-Y.; Bai, W.-D.; Su, L.-L.; Liu, J.-Q.; Cai, W.-X.; Zhao, B.; Gao, J.-X.; Han, S.-C.; Li, J.; et al. MiR-10a and MiR-181c Regulate Collagen Type I Generation in Hypertrophic Scars by Targeting PAI-1 and UPA. FEBS Lett. 2015, 589, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tian, L.; Ma, P.; Sun, Q.; Zhang, K.; Wang, G.; Liu, H.; Xu, B. Potential Role of Differentially Expressed LncRNAs in the Pathogenesis of Oral Squamous Cell Carcinoma. Arch. Oral. Biol. 2015, 60, 1581–1587. [Google Scholar] [CrossRef]
- Li, S.; Wei, X.; He, J.; Tian, X.; Yuan, S.; Sun, L. Plasminogen Activator Inhibitor-1 in Cancer Research. Biomed. Pharmacother. 2018, 105, 83–94. [Google Scholar] [CrossRef]
- Villadsen, S.B.; Bramsen, J.B.; Ostenfeld, M.S.; Wiklund, E.D.; Fristrup, N.; Gao, S.; Hansen, T.B.; Jensen, T.I.; Borre, M.; Ørntoft, T.F.; et al. The MiR-143/-145 Cluster Regulates Plasminogen Activator Inhibitor-1 in Bladder Cancer. Br. J. Cancer 2012, 106, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Cai, Y.; Hu, X.; Mo, M.; Zhao, C.; He, W.; Li, Y. Long Noncoding RNA MAFG-AS1 Facilitates Bladder Cancer Tumorigenesis via Regulation of MiR-143-3p/SERPINE1 Axis. Transl. Cancer Res. 2020, 9, 7214–7226. [Google Scholar] [CrossRef]
- Hirahata, M.; Osaki, M.; Kanda, Y.; Sugimoto, Y.; Yoshioka, Y.; Kosaka, N.; Takeshita, F.; Fujiwara, T.; Kawai, A.; Ito, H.; et al. PAI-1, a Target Gene of MiR-143, Regulates Invasion and Metastasis by Upregulating MMP-13 Expression of Human Osteosarcoma. Cancer Med. 2016, 5, 892–902. [Google Scholar] [CrossRef] [Green Version]
- Zhu, E.-D.; Li, N.; Li, B.-S.; Li, W.; Zhang, W.-J.; Mao, X.-H.; Guo, G.; Zou, Q.-M.; Xiao, B. MiR-30b, Down-Regulated in Gastric Cancer, Promotes Apoptosis and Suppresses Tumor Growth by Targeting Plasminogen Activator Inhibitor-1. PLoS ONE 2014, 9, e106049. [Google Scholar] [CrossRef]
- He, W.; Zhang, D.; Li, D.; Zhu, D.; Geng, Y.; Wang, Q.; He, J.; Wu, J. Knockdown of Long Non-Coding RNA LINC00200 Inhibits Gastric Cancer Progression by Regulating MiR-143-3p/SERPINE1 Axis. Dig. Dis. Sci. 2021, 66, 3404–3414. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, J.-X.; Chen, Y.; Shen, X.-D.; Su, C.; Guo, Y.-J.; Wang, P.-H.; Shi, C.-C.; Lei, M.; Cao, Y.-O.; et al. LncRNA NKX2-1-AS1 Promotes Tumor Progression and Angiogenesis via Upregulation of SERPINE1 Expression and Activation of the VEGFR-2 Signaling Pathway in Gastric Cancer. Mol. Oncol. 2021, 15, 1234–1255. [Google Scholar] [CrossRef]
- Wan, J.; Deng, D.; Wang, X.; Wang, X.; Jiang, S.; Cui, R. LINC00491 as a New Molecular Marker Can Promote the Proliferation, Migration and Invasion of Colon Adenocarcinoma Cells. Onco Targets Ther. 2019, 12, 6471–6480. [Google Scholar] [CrossRef] [Green Version]
- Borjigin, N.; Ohno, S.; Wu, W.; Tanaka, M.; Suzuki, R.; Fujita, K.; Takanashi, M.; Oikawa, K.; Goto, T.; Motoi, T.; et al. TLS-CHOP Represses MiR-486 Expression, Inducing Upregulation of a Metastasis Regulator PAI-1 in Human Myxoid Liposarcoma. Biochem. Biophys Res. Commun. 2012, 427, 355–360. [Google Scholar] [CrossRef]
- Lin, X.; Lin, B.; Chen, X.; Zhang, B.; Xiao, X.; Shi, J.; Lin, J.; Chen, X. PAI-1/PIAS3/Stat3/MiR-34a Forms a Positive Feedback Loop to Promote EMT-Mediated Metastasis through Stat3 Signaling in Non-Small Cell Lung Cancer. Biochem Biophys Res. Commun. 2017, 493, 1464–1470. [Google Scholar] [CrossRef]
- Mizrahi, A.; Barzilai, A.; Gur-Wahnon, D.; Ben-Dov, I.Z.; Glassberg, S.; Meningher, T.; Elharar, E.; Masalha, M.; Jacob-Hirsch, J.; Tabibian-Keissar, H.; et al. Alterations of MicroRNAs throughout the Malignant Evolution of Cutaneous Squamous Cell Carcinoma: The Role of MiR-497 in Epithelial to Mesenchymal Transition of Keratinocytes. Oncogene 2018, 37, 218–230. [Google Scholar] [CrossRef]
- Botla, S.K.; Savant, S.; Jandaghi, P.; Bauer, A.S.; Mücke, O.; Moskalev, E.A.; Neoptolemos, J.P.; Costello, E.; Greenhalf, W.; Scarpa, A.; et al. Early Epigenetic Downregulation of MicroRNA-192 Expression Promotes Pancreatic Cancer Progression. Cancer Res. 2016, 76, 4149–4159. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.-J.; Walsh, M.P.; Yan, I.K.; Takahashi, K.; Fields, A.; Patel, T. Functional Modulation of Gene Expression by Ultraconserved Long Non-Coding RNA TUC338 during Growth of Human Hepatocellular Carcinoma. iScience 2018, 2, 210–220. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, S.; Wang, Y.; Zhu, Z.; Cao, Y.; Yang, S.; Mai, R.; Zheng, Y. Identification of a Novel Circular RNA CircZNF652/MiR-486-5p/SERPINE1 Signaling Cascade That Regulates Cancer Aggressiveness in Glioblastoma (GBM). Bioengineered 2022, 13, 1411–1423. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.; Chen, D.; Yuwen, D.; Zhang, J.; Wei, X.; Han, X.; Guan, X. SOX2-OT Induced by PAI-1 Promotes Triple-Negative Breast Cancer Cells Metastasis by Sponging MiR-942-5p and Activating PI3K/Akt Signaling. Cell Mol. Life Sci. 2022, 79, 59. [Google Scholar] [CrossRef]
- Lee, J.A.; Cochran, B.J.; Lobov, S.; Ranson, M. Forty Years Later and the Role of Plasminogen Activator Inhibitor Type 2/SERPINB2 Is Still an Enigma. Semin. Thromb. Hemost 2011, 37, 395–407. [Google Scholar] [CrossRef]
- Tierney, M.J.; Medcalf, R.L. Plasminogen Activator Inhibitor Type 2 Contains mRNA Instability Elements within Exon 4 of the Coding Region: Sequence Homology to Coding Region Instability Determinants in Other mRNAs. J. Biol. Chem. 2001, 276, 13675–13684. [Google Scholar] [CrossRef] [Green Version]
- Utaijaratrasmi, P.; Vaeteewoottacharn, K.; Tsunematsu, T.; Jamjantra, P.; Wongkham, S.; Pairojkul, C.; Khuntikeo, N.; Ishimaru, N.; Sirivatanauksorn, Y.; Pongpaibul, A.; et al. The MicroRNA-15a-PAI-2 Axis in Cholangiocarcinoma-Associated Fibroblasts Promotes Migration of Cancer Cells. Mol. Cancer 2018, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Montuori, N.; Mattiello, A.; Mancini, A.; Santoli, M.; Taglialatela, P.; Caputi, M.; Rossi, G.; Ragno, P. Urokinase-Type Plasminogen Activator up-Regulates the Expression of Its Cellular Receptor through a Post-Transcriptional Mechanism. FEBS Lett. 2001, 508, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Montuori, N.; Rossi, G.; Ragno, P. Post-Transcriptional Regulation of Gene Expression in the Plasminogen Activation System. Biol. Chem. 2002, 383, 47–53. [Google Scholar] [CrossRef]
- Montuori, N.; Mattiello, A.; Mancini, A.; Taglialatela, P.; Caputi, M.; Rossi, G.; Ragno, P. Urokinase-Mediated Posttranscriptional Regulation of Urokinase-Receptor Expression in Non Small Cell Lung Carcinoma. Int. J. Cancer 2003, 105, 353–360. [Google Scholar] [CrossRef]
- Nagamine, Y.; Medcalf, R.L.; Muñoz-Cánoves, P. Transcriptional and Posttranscriptional Regulation of the Plasminogen Activator System. Thromb. Haemost. 2005, 93, 661–675. [Google Scholar] [CrossRef]
- Alfano, D.; Gorrasi, A.; Li Santi, A.; Ricci, P.; Montuori, N.; Selleri, C.; Ragno, P. Urokinase Receptor and CXCR4 Are Regulated by Common MicroRNAs in Leukaemia Cells. J. Cell. Mol. Med. 2015, 19, 2262–2272. [Google Scholar] [CrossRef]
- Yue, J.; Wang, P.; Hong, Q.; Liao, Q.; Yan, L.; Xu, W.; Chen, X.; Zheng, Q.; Zhang, L.; Huang, D. MicroRNA-335-5p Plays Dual Roles in Periapical Lesions by Complex Regulation Pathways. J. Endod. 2017, 43, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Wach, S.; Brandl, M.; Borchardt, H.; Weigelt, K.; Lukat, S.; Nolte, E.; Al-Janabi, O.; Hart, M.; Grässer, F.; Giedl, J.; et al. Exploring the MIR143-UPAR Axis for the Inhibition of Human Prostate Cancer Cells In Vitro and In Vivo. Mol. Nucleic Acids 2019, 16, 272–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Yan, W.; Wang, Y.; Sun, G.; Luo, H.; Zhang, J.; Wang, X.; You, Y.; Yang, Z.; Liu, N. MicroRNA-10b Induces Glioma Cell Invasion by Modulating MMP-14 and UPAR Expression via HOXD10. Brain Res. 2011, 1389, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Tupone, M.G.; D’Aguanno, S.; Di Martile, M.; Valentini, E.; Desideri, M.; Trisciuoglio, D.; Donzelli, S.; Sacconi, A.; Buglioni, S.; Ercolani, C.; et al. MicroRNA-378a-5p Is a Novel Positive Regulator of Melanoma Progression. Oncogenesis 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Falkenberg, N.; Anastasov, N.; Schaub, A.; Radulovic, V.; Schmitt, M.; Magdolen, V.; Aubele, M. Secreted UPAR Isoform 2 (UPAR7b) Is a Novel Direct Target of MiR-221. Oncotarget 2015, 6, 8103–8114. [Google Scholar] [CrossRef] [Green Version]
- Li Santi, A.; Gorrasi, A.; Alfieri, M.; Montuori, N.; Ragno, P. A Novel Oncogenic Role for Urokinase Receptor in Leukemia Cells: Molecular Sponge for Oncosuppressor MicroRNAs. Oncotarget 2018, 9, 27823–27834. [Google Scholar] [CrossRef]
- Alfieri, M.; Li Santi, A.; Meo, L.; Giudice, V.; Selleri, C.; Ragno, P. Identification of UPAR Variants Acting as CeRNAs in Leukaemia Cells. Cancers 2022, 14, 1980. [Google Scholar] [CrossRef]
- Manganelli, M.; Grossi, I.; Ferracin, M.; Guerriero, P.; Negrini, M.; Ghidini, M.; Senti, C.; Ratti, M.; Pizzo, C.; Passalacqua, R.; et al. Longitudinal Circulating Levels of MiR-23b-3p, MiR-126-3p and LncRNA GAS5 in HCC Patients Treated with Sorafenib. Biomedicines 2021, 9, 813. [Google Scholar] [CrossRef]
- Xun, J.; Du, L.; Gao, R.; Shen, L.; Wang, D.; Kang, L.; Chen, C.; Zhang, Z.; Zhang, Y.; Yue, S.; et al. Cancer-Derived Exosomal MiR-138-5p Modulates Polarization of Tumor-Associated Macrophages through Inhibition of KDM6B. Theranostics 2021, 11, 6847–6859. [Google Scholar] [CrossRef]
- Cho, W.-C.; Kim, M.; Park, J.W.; Jeong, S.-Y.; Ku, J.-L. Exosomal MiR-193a and Let-7g Accelerate Cancer Progression on Primary Colorectal Cancer and Paired Peritoneal Metastatic Cancer. Transl. Oncol. 2021, 14, 101000. [Google Scholar] [CrossRef]
- Todorova, V.K.; Byrum, S.D.; Gies, A.J.; Haynie, C.; Smith, H.; Reyna, N.S.; Makhoul, I. Circulating Exosomal MicroRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer. Curr. Oncol. 2022, 29, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yu, L.; Lin, X.; Zheng, Q.; Zhang, S.; Chen, D.; Pan, X.; Huang, Y. Combination of Serum MiRNAs with Serum Exosomal MiRNAs in Early Diagnosis for Non-Small-Cell Lung Cancer. Cancer Manag. Res. 2020, 12, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.-S.; Wang, Y.-J.; Zhang, G.-X.; Zhang, W.-T. Potential Diagnostic Value of MiRNAs in Peripheral Blood for Osteosarcoma: A Meta-Analysis. J. Bone Oncol. 2020, 23, 100307. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Xu, F.; Wang, Y.; Leng, D. Detection Significance of MiR-3662, MiR-146a, and MiR-1290 in Serum Exosomes of Breast Cancer Patients. J. Cancer Res. 2021, 17, 749–755. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Guo, X.; Guo, Q.; Xiang, C.; Zhang, Z.; Xing, Y.; Xi, T.; Zheng, L. The CCR2 3′UTR Functions as a Competing Endogenous RNA to Inhibit Breast Cancer Metastasis. J. Cell Sci. 2017, 130, 3399–3413. [Google Scholar] [CrossRef] [PubMed]
miRNA | Expression | Target | Cancer Type | Sample | Reference |
---|---|---|---|---|---|
miR-138-5p | ↓ | uPA | Gastric Adenocarcinoma | Tissues | [38] |
miR-193a-3p | ↓ | uPA | Colorectal Cancer | Cell lines | [39] |
miR-193a | ↓ | uPA | Hepatocellular Carcinoma | Tissues | [40] |
miR-193b | ↓ ↓ | uPA | Non-Small Cell Lung Cancer Breast Cancer | Tissues Cell lines | [42] [43] |
miR-23b | ↓ | uPA | Hepatocellular Carcinoma | Cell lines | [41] |
miR-645 | N.R. | uPA | Triple-negative Breast Cancer | Cell lines | [45] |
miR-181c miR-10a | ↑ ↓ | uPA PAI-1 | Hypertrophic Scars | Primary cell cultures Primary cell cultures | [46] |
miR-143 miR-145 | ↓ ↓ | PAI-1 | Bladder Cancer | Tissues Tissues | [49] |
miR-143 | ↓ | PAI-1 | Osteosarcoma | Tissues | [51] |
miR-30b | ↓ | PAI-1 | Gastric Adenocarcinoma | Cell lines; tissues | [52] |
miR-486 | ↓ | PAI-1 | Myxoid Liposarcoma | Tissues | [56] |
miR-34a | ↓ | PAI-1 | Non-Small Cell Lung Cancer | Tissues | [57] |
miR-497 | ↓ | PAI-1 | Cutaneous Squamous Cell Carcinoma | Tissues | [58] |
miR-192 | ↓ | PAI-1 | Pancreatic Ductal Adenocarcinoma | Tissues | [59] |
miR-15a | ↓ | PAI-2 | Cholangiocarcinoma | Cell lines; tissues | [65] |
miR-146a miR-335 miR-622 | ↓ ↓ ↓ | uPAR | Acute Myeloid Leukemia | Cell lines; tissues Cell lines; tissues Cell lines | [70] |
miR-143 | ↓ | uPAR | Prostate Cancer | Tissues | [72] |
miR-221/-222 | ↑ | uPAR isoform 2 | Triple-negative Breast Cancer | Cell lines | [75] |
ncRNA | Expression | miRNAs | Target | Cancer Type | Sample | References |
---|---|---|---|---|---|---|
TRPM2-AS | ↑ | miR-138-5p | uPA | Gastric Adenocarcinoma | Cell lines; tissues | [38] |
LINC00200 | ↑ | miR-143-3p | PAI-1 | Gastric Carcinoma | Cell lines; tissues | [53] |
NKX2-1-AS1 | ↑ | miR-145-5p | PAI-1 | Gastric Carcinoma | Cell lines; tissues | [54] |
MAFG-AS1 | ↑ | miR-143-3p | PAI-1 | Bladder Cancer | Cell lines; tissues | [50] |
LINC00491 | ↑ | miR-145 | PAI-1 | Colon Adenocarcinoma | Cell lines | [55] |
circZNF652 | ↑ | miR-486 | PAI-1 | Glioblastoma | Cell lines; tissues | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfieri, M.; Meo, L.; Ragno, P. Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. Int. J. Mol. Sci. 2023, 24, 962. https://doi.org/10.3390/ijms24020962
Alfieri M, Meo L, Ragno P. Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. International Journal of Molecular Sciences. 2023; 24(2):962. https://doi.org/10.3390/ijms24020962
Chicago/Turabian StyleAlfieri, Mariaevelina, Luigia Meo, and Pia Ragno. 2023. "Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer" International Journal of Molecular Sciences 24, no. 2: 962. https://doi.org/10.3390/ijms24020962
APA StyleAlfieri, M., Meo, L., & Ragno, P. (2023). Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. International Journal of Molecular Sciences, 24(2), 962. https://doi.org/10.3390/ijms24020962