Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx
Abstract
:1. Introduction
2. Results
2.1. FIR Exposure Reduced Pb-Induced Cytotoxicity in Renal Proximal Tubular Cells
2.2. FIR Exposure Decreased Intracellular Pb Concentrations
2.3. Mitigation of ROS Production, ATP Depletion, and Mitochondrial Dysfunction following FIR Exposure in the Presence of Pb Treatment
2.4. Investigating Mechanism of FIR-Induced Intracellular Pb Efflux Based on Increased Expressions of VGCCs and Subsequent Calcium Influx
2.5. FIR Ameliorated Pb-Induced Nephrotoxicity through Decreased Blood Pb Levels and Enhanced Pb Excretion in Wistar Rats
3. Discussion
4. Materials and Methods
4.1. FIR Exposure
4.2. Cell Culture and Pb Treatment
4.3. Cell Viability
4.4. Cell Apoptosis Analysis
4.5. Analysis of Mitochondrial Morphology
4.6. Seahorse XF24 Assay
4.7. Intracellular ROS Production
4.8. Intracellular Calcium ([Ca2+]i) and Lead ([Pb2+]i) Measurements
4.9. Analysis of Pb Concentrations via ICP-MS
4.10. Proteomic Analysis
4.11. Animals
4.12. Sample Collection In Vivo
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Staessen, J.A.; Amery, A.; Lauwerys, R.R. Impairment of Renal-Function with Increasing Blood Lead Concentrations—Reply. N. Engl. J. Med. 1992, 327, 1394–1395. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Rotnitsky, A.; Sparrow, D.; Weiss, S.; Wager, C.; Hu, H. A Longitudinal Study of Low-Level Lead Exposure and Impairment of Renal Function. JAMA 1996, 275, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.H.; Ha, X.Q.; Yang, Z.H.; Hui, L.; Yang, X.P. Oxidative Stress: A Possible Mechanism for Lead-Induced Apoptosis and Nephrotoxicity. Toxicol. Mech. Methods 2012, 22, 705–710. [Google Scholar] [CrossRef]
- Reyes, J.L.; Molina-Jijon, E.; Rodriguez-Munoz, R.; Bautista-Garcia, P.; Debray-Garcia, Y.; Namorado, M.D. Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity. Biomed Res. Int. 2013, 2013, 730789. [Google Scholar] [CrossRef]
- Oyagbemi, A.A.; Omobowale, T.O.; Akinrinde, A.S.; Saba, A.B.; Ogunpolu, B.S.; Daramola, O. Lack of Reversal of Oxidative Damage in Renal Tissues of Lead Acetate-Treated Rats. Environ. Toxicol. 2015, 30, 1235–1243. [Google Scholar] [CrossRef]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic-Induced Kidney Toxicity and Treatment Strategy: A Mini Review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef]
- Scott, B.; Lew, J. Chronic Exposure to Lead Causes Persistent Alterations in the Electric Membrane-Properties of Neurons in Cell-Culture. J. Neurobiol. 1985, 16, 425–433. [Google Scholar] [CrossRef]
- Dowd, T.L.; Rosen, J.F.; Mints, L.; Gundberg, C.M. The Effect of Pb2+ on the Structure and Hydroxyapatite Binding Properties of Osteocalcin. Biochim. Biophys. Acta Mol. Basis Dis. 2001, 1535, 153–163. [Google Scholar] [CrossRef]
- Radulescu, A.; Lundgren, S. A Pharmacokinetic Model of Lead Absorption and Calcium Competitive Dynamics. Sci. Rep. 2019, 9, 14225. [Google Scholar] [CrossRef]
- Simons, T.J.B. Lead-Calcium Interactions and Lead Toxicity. In Calcium Drug Actions; Springer: Berlin/Heidelberg, Germany, 1988; pp. 509–525. [Google Scholar]
- Ferguson, C.; Kern, M.; Audesirk, G. Nanomolar Concentrations of Inorganic Lead Increase Ca2+ Efflux and Decrease Intracellular Free Ca2+ Ion Concentrations in Cultured Rat Hippocampal Neurons by a Calmodulin-Dependent Mechanism. Neurotoxicology 2000, 21, 365–378. [Google Scholar] [PubMed]
- Lin, C.C.; Chang, C.F.; Lai, M.Y.; Chen, T.W.; Lee, P.C.; Yang, W.C. Far-Infrared Therapy: A Novel Treatment to Improve Access Blood Flow and Unassisted Patency of Arteriovenous Fistula in Hemodialysis Patients. J. Am. Soc. Nephrol. 2007, 18, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Trerotola, S.O. Kdoqi Clinical Practice Guideline for Vascular Access 2019 Update: Kinder, Gentler, and More Important Than Ever. J. Vasc. Interv. Radiol. 2020, 31, 1156–1157. [Google Scholar] [CrossRef] [PubMed]
- Sobajima, M.; Nozawa, T.; Ihori, H.; Shida, T.; Ohori, T.; Suzuki, T.; Matsuki, A.; Yasumura, S.; Inoue, H. Repeated Sauna Therapy Improves Myocardial Perfusion in Patients with Chronically Occluded Coronary Artery-Related Ischemia. Int. J. Cardiol. 2013, 167, 237–243. [Google Scholar] [CrossRef]
- Lin, C.C.; Liu, X.M.; Peyton, K.; Wang, H.; Yang, W.C.; Lin, S.J.; Durante, W. Far Infrared Therapy Inhibits Vascular Endothelial Inflammation Via the Induction of Heme Oxygenase-1. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 739–745. [Google Scholar] [CrossRef]
- Chiu, H.W.; Chen, C.H.; Chang, J.N.; Chen, C.H.; Hsu, Y.H. Far-Infrared Promotes Burn Wound Healing by Suppressing Nlrp3 Inflammasome Caused by Enhanced Autophagy. J. Mol. Med. JMM 2016, 94, 809–819. [Google Scholar] [CrossRef]
- Tsai, W.C.; Chiang, W.H.; Wu, C.H.; Li, Y.C.; Campbell, M.; Huang, P.H.; Lin, M.W.; Lin, C.H.; Cheng, S.M.; Chang, P.C.; et al. Mir-548aq-3p Is a Novel Target of Far Infrared Radiation Which Predicts Coronary Artery Disease Endothelial Colony Forming Cell Responsiveness. Sci. Rep. 2020, 10, 6805. [Google Scholar] [CrossRef]
- Imamura, M.; Biro, S.; Kihara, T.; Yoshifuku, S.; Takasaki, K.; Otsuji, Y.; Minagoe, S.; Toyama, Y.; Tei, C.W. Repeated Thermal Therapy Improves Impaired Vascular Endothelial Function in Patients with Coronary Risk Factors. J. Am. Coll. Cardiol. 2001, 38, 1083–1088. [Google Scholar] [CrossRef]
- Chiang, I.N.; Pu, Y.S.; Huang, C.Y.; Young, T.H. Far Infrared Radiation Promotes Rabbit Renal Proximal Tubule Cell Proliferation and Functional Characteristics, and Protects against Cisplatin-Induced Nephrotoxicity. PLoS ONE 2017, 12, e0180872. [Google Scholar] [CrossRef]
- Chang, J.C.; Wu, S.L.; Hoel, F.; Cheng, Y.S.; Liu, K.H.; Hsieh, M.L.; Hoel, A.; Tronstad, K.J.; Yan, K.C.; Hsieh, C.L.; et al. Far-Infrared Radiation Protects Viability in a Cell Model of Spinocerebellar Ataxia by Preventing Polyq Protein Accumulation and Improving Mitochondrial Function. Sci. Rep. 2016, 6, 30436. [Google Scholar] [CrossRef]
- Hsu, Y.H.; Chen, Y.C.; Chen, Y.W.; Chiu, T.H.; Kuo, Y.T.; Chen, C.H. Far-Infrared Radiation Prevents Decline in Beta-Cell Mass and Function in Diabetic Mice Via the Mitochondria-Mediated Sirtuin1 Pathway. Metab. Clin. Exp. 2020, 104, 154143. [Google Scholar] [CrossRef] [PubMed]
- Ziegelberger, G.; International Commission on Non-Ionizing Radiation Protection. Icnirp Statement on Far Infrared Radiation Exposure. Health Phys. 2006, 91, 630–645. [Google Scholar]
- Lin, C.C.; Chung, M.Y.; Yang, W.C.; Lin, S.J.; Lee, P.C. Length Polymorphisms of Heme Oxygenase-1 Determine the Effect of Far-Infrared Therapy on the Function of Arteriovenous Fistula in Hemodialysis Patients: A Novel Physicogenomic Study. Nephrol. Dial. Transplant. 2013, 28, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Halgamuge, M.N.; Perssont, B.R.R.; Salford, L.G.; Mendis, P.; Eberhardt, J. Comparison between Two Models for Interactions between Electric and Magnetic Fields and Proteins in Cell Membranes. Environ. Eng. Sci. 2009, 26, 1473–1480. [Google Scholar] [CrossRef]
- Luo, M.Y.; Song, K.; Zhang, X.; Lee, I. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium. Chin. Phys. Lett. 2009, 26, 017102. [Google Scholar]
- Brighton, C.T.; Wang, W.; Seldes, R.; Zhang, G.H.; Pollack, S.R. Signal Transduction in Electrically Stimulated Bone Cells. J. Bone Jt. Surg. Am. Vol. 2001, 83a, 1514–1523. [Google Scholar] [CrossRef]
- Li, Y.M.; Chang, C.; Zhu, Z.; Sun, L.; Fan, C.H. Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. J. Am. Chem. Soc. 2021, 143, 4311–4318. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.; Cho, D.H.; Park, Y.M.; Kang, D.H.; Jo, I. Far-Infrared Radiation Acutely Increases Nitric Oxide Production by Increasing Ca2+ Mobilization and Ca2+/Calmodulin-Dependent Protein Kinase Ii-Mediated Phosphorylation of Endothelial Nitric Oxide Synthase at Serine 1179. Biochem. Biophys. Res. Commun. 2013, 436, 601–606. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.Y.; Dong, J.X.; Xiao, Q.; Zhao, J.; Jiang, F.L. Toxicity of Pb2+ on Rat Liver Mitochondria Induced by Oxidative Stress and Mitochondrial Permeability Transition. Toxicol. Res. 2017, 6, 822–830. [Google Scholar] [CrossRef]
- Ghorbe, F.; Boujelbene, M.; Makni-Ayadi, F.; Guermazi, F.; Kammoun, A.; Murat, J.; Croute, F.; Soleilhavoup, J.P.; El-Feki, A. Effect of Chronic Lead Exposure on Kidney Function in Male and Female Rats: Determination of a Lead Exposure Biomarker. Arch. Physiol. Biochem. 2001, 109, 457–463. [Google Scholar] [CrossRef]
- Ohira, S. Far-Infrared Irradiation Can Improve Blood Flow and Patency of Arteriovenous Fistulas in Hemodialysis Patients. Nat. Clin. Pract. Nephrol. 2007, 3, 422–423. [Google Scholar] [CrossRef]
- Lin, C.C.; Yang, W.C.; Chen, M.C.; Liu, W.S.; Yang, C.Y.; Lee, P.C. Effect of Far Infrared Therapy on Arteriovenous Fistula Maturation: An Open-Label Randomized Controlled Trial. Am. J. Kidney Dis. 2013, 62, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; Yang, W.C.; Lin, C.C. An Update of the Effect of Far Infrared Therapy on Arteriovenous Access in End-Stage Renal Disease Patients. J. Vasc. Access 2016, 17, 293–298. [Google Scholar] [CrossRef]
- Chang, C.N.; Niu, C.Y.; Tan, A.C.; Chan, C.H.; Chen, C.F.; Chen, T.H.; Li, S.Y.; Chen, Y.T.; Chen, F.Y.; Li, W.S.; et al. The Effect of Far-Infrared Therapy on the Peritoneal Expression of Glucose Degradation Products in Diabetic Patients on Peritoneal Dialysis. Int. J. Mol. Sci. 2021, 22, 3732. [Google Scholar] [CrossRef]
- Inoue, S.; Takemoto, M.; Chishaki, A.; Ide, T.; Nishizaka, M.; Miyazono, M.; Sawatari, H.; Sunagawa, K. Leg Heating Using Far Infra-Red Radiation in Patients with Chronic Heart Failure Acutely Improves the Hemodynamics, Vascular Endothelial Function, and Oxidative Stress. Intern. Med. 2012, 51, 2263–2270. [Google Scholar] [CrossRef]
- Lin, C.C.; Yang, W.C. Prognostic Factors Influencing the Patency of Hemodialysis Vascular Access: Literature Review and Novel Therapeutic Modality by Far Infrared Therapy. J. Chin. Med. Assoc. 2009, 72, 109–116. [Google Scholar] [CrossRef]
- Hsu, Y.H.; Chen, Y.W.; Cheng, C.Y.; Lee, S.L.; Chiu, T.H.; Chen, C.H. Detecting the Limits of the Biological Effects of Far-Infrared Radiation on Epithelial Cells. Sci. Rep. 2019, 9, 11586. [Google Scholar] [CrossRef]
- Panagopoulos, D.J.; Karabarbounis, A.; Margaritis, L.H. Mechanism for Action of Electromagnetic Fields on Cells. Biochem. Biophys. Res. Commun. 2002, 298, 95–102. [Google Scholar] [CrossRef]
- Kim, K.E.; Park, S.K.; Nam, S.Y.; Han, T.J.; Cho, I.Y. Potential Therapeutic Mechanism of Extremely Low-Frequency High-Voltage Electric Fields in Cells. Technol. Health Care 2016, 24, 415–427. [Google Scholar] [CrossRef]
- Burks, S.R.; Lorsung, R.M.; Nagle, M.E.; Tu, T.W.; Frank, J.A. Focused Ultrasound Activates Voltage-Gated Calcium Channels through Depolarizing Trpc1 Sodium Currents in Kidney and Skeletal Muscle. Theranostics 2019, 9, 5517–5531. [Google Scholar] [CrossRef]
- Kim, H.; Oh, S.Y.; Choi, Y.M.; Park, J.H.; Kim, H.S.; Jo, I. Transient Receptor Potential Vanilloid 2 Mediates the Inhibitory Effect of Far-Infrared Irradiation on Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Stem Cell Res. 2021, 53, 102291. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.M.; Greka, A. Calcium-Permeable Ion Channels in the Kidney. Am. J. Physiol. Ren. Physiol. 2016, 310, F1157–F1167. [Google Scholar] [CrossRef] [PubMed]
- La Rovere, R.M.L.; Roest, G.; Bultynck, G.; Parys, J.B. Intracellular Ca2+ Signaling and Ca2+ Microdomains in the Control of Cell Survival, Apoptosis and Autophagy. Cell Calcium 2016, 60, 74–87. [Google Scholar] [CrossRef]
- Cho, D.H.; Lee, H.J.; Lee, J.Y.; Park, J.H.; Jo, I. Far-Infrared Irradiation Inhibits Breast Cancer Cell Proliferation Independently of DNA Damage through Increased Nuclear Ca2+/Calmodulin Binding Modulated-Activation of Checkpoint Kinase 2. J. Photochem. Photobiol. B Biol. 2021, 219, 112188. [Google Scholar] [CrossRef] [PubMed]
- Matović, V.; Buha, A.; Ðukić-Ćosić, D.; Bulat, Z. Insight into the Oxidative Stress Induced by Lead and/or Cadmium in Blood, Liver and Kidneys. Food Chem. Toxicol. 2015, 78, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Loikkanen, J.; Naarala, J.; Vahakangas, K.H.; Savolainen, K.M. Effect of Glutamate and Extracellular Calcium on Uptake of Inorganic Lead (Pb2+) in Immortalized Mouse Hypothalamic Gt1-7 Neuronal Cells. Toxicol. Lett. 2006, 160, 227–232. [Google Scholar] [CrossRef]
- Yang, D.M.; Fu, T.F.; Lin, C.S.; Chiu, T.Y.; Huang, C.C.; Huang, H.Y.; Chung, M.W.; Lin, Y.S.; Manurung, R.V.; Phan, N.N.N.; et al. High-Performance Fret Biosensors for Single-Cell and in Vivo Lead Detection. Biosens. Bioelectron. 2020, 168, 112571. [Google Scholar] [CrossRef]
- Simons, T.J.B.; Pocock, G. Lead Enters Bovine Adrenal-Medullary Cells through Calcium Channels. J. Neurochem. 1987, 48, 383–389. [Google Scholar] [CrossRef]
- Tomsig, J.L.; Suszkiw, J.B. Permeation of Pb-2+ through Calcium Channels—Fura-2 Measurements of Voltage-Sensitive and Dihydropyridine-Sensitive Pb-2+ Entry in Isolated Bovine Chromaffin Cells. Biochim. Biophys. Acta 1991, 1069, 197–200. [Google Scholar] [CrossRef]
- Peng, S.Q.; Hajela, R.K.; Atchison, W.D. Characteristics of Block by Pb2+ of Function of Human Neuronal L-, N-, and R-Type Ca2+ Channels Transiently Expressed in Human Embryonic Kidney 293 Cells. Mol. Pharmacol. 2002, 62, 1418–1430. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Teng, H.C.; Cheng, S.Y.; Wang, C.T.; Chiou, S.H.; Kao, L.S.; Kao, F.J.; Chiou, A.; Yang, D.M. Orai1-Stim1 Formed Store-Operated Ca2+ Channels (Socs) as the Molecular Components Needed for Pb2+ Entry in Living Cells. Toxicol. Appl. Pharmacol. 2008, 227, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.Y.; Teng, H.C.; Huang, P.C.; Kao, F.J.; Yang, D.M. Dominant Role of Orai1 with Stim1 on the Cytosolic Entry and Cytotoxicity of Lead Ions. Toxicol. Sci. 2009, 110, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Kerper, L.E.; Hinkle, P.M. Cellular Uptake of Lead Is Activated by Depletion of Intracellular Calcium Stores. J. Biol. Chem. 1997, 272, 8346–8352. [Google Scholar] [CrossRef]
- Legare, M.E.; Barhoumi, R.; Hebert, E.; Bratton, G.R.; Burghardt, R.C.; Tiffany-Castiglioni, E. Analysis of Pb2+ Entry into Cultured Astroglia. Toxicol. Sci. 1998, 46, 90–100. [Google Scholar]
- Ajoy, R.; Lo, Y.C.; Ho, M.H.; Chen, Y.Y.; Wang, Y.; Chen, Y.H.; Chiu, J.Y.; Changou, C.A.; Hsiung, Y.C.; Chen, H.M.; et al. Ccl5 Promotion of Bioenergy Metabolism Is Crucial for Hippocampal Synapse Complex and Memory Formation. Mol. Psychiatry 2021, 26, 6451–6468. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, C.-M.; Then, C.-K.; Kuo, Y.-M.; Lin, Y.-K.; Shen, S.-C. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int. J. Mol. Sci. 2023, 24, 15828. https://doi.org/10.3390/ijms242115828
Ko C-M, Then C-K, Kuo Y-M, Lin Y-K, Shen S-C. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. International Journal of Molecular Sciences. 2023; 24(21):15828. https://doi.org/10.3390/ijms242115828
Chicago/Turabian StyleKo, Chin-Meng, Chee-Kin Then, Yu-Ming Kuo, Yen-Kuang Lin, and Shing-Chuan Shen. 2023. "Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx" International Journal of Molecular Sciences 24, no. 21: 15828. https://doi.org/10.3390/ijms242115828
APA StyleKo, C. -M., Then, C. -K., Kuo, Y. -M., Lin, Y. -K., & Shen, S. -C. (2023). Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. International Journal of Molecular Sciences, 24(21), 15828. https://doi.org/10.3390/ijms242115828