Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems
Abstract
:1. Introduction
2. Results
2.1. Analysis of Sperm Chromatin Status
2.1.1. Chromatin Maturation
2.1.2. Chromatin Compaction
2.1.3. Chromatin Stability
2.1.4. Protamine Deficiency
2.2. Analysis of DNA Fragmentation
2.3. Correlation between Chromatin Status and DNA Fragmentation
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. Sperm Collection
4.4. Aniline Blue Staining
4.5. Diff-Quik Staining
4.6. Toluidine Blue Staining
4.7. Chromomycin A3 Staining
4.8. DNA Fragmentation Analysis
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andraszek, K.; Banaszewska, D.; Czubaszek, M.; Wójcik, E.; Szostek, M. Comparison of different chromatin staining techniques for bull sperm. Arch. Anim. Breed. 2014, 57, 13. [Google Scholar] [CrossRef]
- Oliva, R. Protamines and male infertility. Hum. Reprod. Update 2006, 12, 417–435. [Google Scholar] [CrossRef]
- Dogan, S.; Vargovic, P.; Oliveira, R.; Belser, L.E.; Kaya, A.; Moura, A.; Sutovsky, P.; Parrish, J.; Topper, E.; Memili, E. Sperm protamine-status correlates to the fertility of breeding bulls. Biol. Reprod. 2015, 92, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, T.R.D.S.; Assumpção, M.E.O.D. Sperm DNA fragmentation: Causes and identification. Zygote 2020, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Llavanera, M.; Mateo-Otero, Y.; Garcia-Bonavila, E.; Delgado-Bermúdez, A.; Yeste, M. Direct but not indirect methods correlate the percentages of sperm with altered chromatin to the intensity of chromatin damage. Front. Vet. Sci. 2021, 8, 972. [Google Scholar] [CrossRef]
- Hamilton, T.R.D.S.; Siqueira, A.F.P.; De Castro, L.S.; Mendes, C.M.; Delgado, J.C.; de Assis, P.M.; Mesquita, L.P.; Maiorka, P.C.; Nichi, M.; Goissis, M.D.; et al. Effect of heat stress on sperm DNA: Protamine assessment in ram spermatozoa and testicle. Oxid. Med. Cell. Longev. 2018, 2018, 5413056. [Google Scholar] [CrossRef]
- Simon, L.; Liu, L.; Murphy, K.; Ge, S.; Hotaling, J.; Aston, K.I.; Emery, B.; Carrell, D.T. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum. Reprod. 2014, 29, 904–917. [Google Scholar] [CrossRef]
- Virant-Klun, I.; Tomazevic, T.; Meden-Vrtovec, H. Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J. Assist. Reprod. Genet. 2002, 19, 319. [Google Scholar] [CrossRef]
- Gosálvez, J.; López-Fernández, C.; Fernández, J.L.; Gouraud, A.; Holt, W.V. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev. 2011, 78, 951–961. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Garcia-Bonavila, E.; Bonet, S.; Catalán, J.; Salas-Huetos, A.; Yeste, M. The TUNEL assay underestimates the incidence of DNA damage in pig sperm due to chromatin condensation. Theriogenology 2021, 174, 94–101. [Google Scholar] [CrossRef]
- DelBarco-Trillo, J.; García-Álvarez, O.; Soler, A.J.; Tourmente, M.; Garde, J.J.; Roldan, E.R.S. A cost for high levels of sperm competition in rodents: Increased sperm DNA fragmentation. Proc. R. Soc. B. 2016, 283, 20152708. [Google Scholar] [CrossRef] [PubMed]
- Balhorn, R. Sperm chromatin: An overview. In A Clinician’s Guide to Sperm DNA and Chromatin Damage; Zini, A., Agarwal, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–30. [Google Scholar] [CrossRef]
- Annunziato, A. DNA packaging: Nucleosomes and chromatin. Nat. Educ. 2008, 1, 26. [Google Scholar]
- Brewer, L.R.; Corzett, M.; Balhorn, R. Protamine-induced condensation and decondensation of the same DNA molecule. Science 1999, 286, 120–123. [Google Scholar] [CrossRef]
- Wykes, S.M.; Krawetz, S.A. Conservation of the PRM1 → PRM2 → TNP2 domain. DNA Seq. 2003, 14, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Manvelyan, M.; Hunstig, F.; Bhatt, S.; Mrasek, K.; Pellestor, F.; Weise, A.; Simonyan, I.; Aroutiounian, R.; Liehr, T. Chromosome distribution in human sperm—A 3D multicolor banding-study. Mol. Cytogenet. 2008, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- De Yebra, L.; Ballesca, J.L.; Vanrell, J.A.; Bassas, L.; Oliva, R. Complete selective absence of protamine P2 in humans. J. Biol. Chem. 1993, 268, 10553–10557. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Spiess, A.N.; Schuppe, H.C.; Steger, K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: A systematic review and meta-analysis. Andrology 2016, 4, 789–799. [Google Scholar] [CrossRef]
- Mengual, L.; Ballescà, J.L.; Ascaso, C.; Oliva, R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J. Androl. 2003, 24, 438–447. [Google Scholar] [CrossRef]
- Comizzoli, P.; Holt, W.V. Recent progress in spermatology contributing to the knowledge and conservation of rare and endangered species. Annu. Rev. Anim. Biosci. 2022, 10, 469–490. [Google Scholar] [CrossRef]
- Iranpour, F.G.; Nasr-Esfahani, M.H.; Valojerdi, M.R.; Taki Al-Taraihi, T.M. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J. Assist. Reprod. Genet. 2000, 17, 60–66. [Google Scholar] [CrossRef]
- Aitken, R.J.; De Iuliis, G.N.; Mclachlan, R.I. Biological and clinical significance of DNA damage in the male germ line. Int. J. Androl. 2009, 32, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Henkel, R.; Agarwal, A. Comparative analysis of tests used to assess sperm chromatin integrity and DNA fragmentation. Andrologia 2021, 53, e13718. [Google Scholar] [CrossRef]
- Dadoune, J.P.; Mayaux, M.J.; Guihard-Moscato, M.L. Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characteristics. Andrologia 1988, 20, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Chuan, S.S.; Patton, W.C.; Jacobson, J.D.; Corselli, J.; Chan, P.J. Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil. Steril. 2008, 90, 1999–2002. [Google Scholar] [CrossRef] [PubMed]
- Marchiani, S.; Tamburrino, L.; Benini, F.; Fanfani, L.; Dolce, R.; Rastrelli, G.; Maggi, M.; Pellegrini, S.; Baldi, E. Chromatin protamination and Catsper expression in spermatozoa predict clinical outcomes after assisted reproduction programs. Sci. Rep. 2017, 7, 15122. [Google Scholar] [CrossRef]
- Sellami, A.; Chakroun, N.; Ben Zarrouk, S.; Sellami, H.; Kebaili, S.; Rebai, T.; Keskes, L. Assessment of chromatin maturity in human spermatozoa: Useful aniline blue assay for routine diagnosis of male infertility. Adv. Urol. 2013, 2013, 578631. [Google Scholar] [CrossRef] [PubMed]
- Banaszewska, D.; Andraszek, K.; Biesiada-Drzazga, B. Evaluation of sperm chromatin structure in boar semen. Bull Vet. Inst. Pulawy 2015, 59, 271–277. [Google Scholar] [CrossRef]
- Pourmasumi, S.; Khoradmehr, A.; Rahiminia, T.; Sabeti, P.; Talebi, A.R.; Ghasemzadeh, J. Evaluation of sperm chromatin integrity using aniline blue and toluidine blue staining in infertile and normozoospermic men. J. Reprod. Infertil. 2019, 20, 95–101, PMCID:PMC6486564. [Google Scholar] [PubMed]
- Sousa, A.P.M.; Tavares, R.S.; Velez De La Calle, J.F.; Figueiredo, H.; Almeida, V.; Almeida-Santos, T.; Ramalho-Santos, J. Dual use of Diff-Quik-like stains for the simultaneous evaluation of human sperm morphology and chromatin status. Hum. Reprod. 2009, 24, 28–36. [Google Scholar] [CrossRef]
- Tavares, R.S.; Silva, A.F.; Lourenço, B.; Almeida-Santos, T.; Sousa, A.P.; Ramalho-Santos, J. Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain indicates embryo quality and pregnancy outcomes following in vitro fertilization. Andrology 2013, 1, 830–837. [Google Scholar] [CrossRef]
- Windt, M.L.; de Beer, P.M.; Franken, D.R.; Rhemrev, J.; Menkveld, R.; Lombard, C.; Kruger, T.F. Sperm decondensation and semen parameters: Utilization of a simple staining technique for the evaluation of human sperm decondensation. Andrologia 2009, 26, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pourmasumi, S.; Nazari, A.; Fagheirelahee, N.; Sabeti, P. Cytochemical tests to investigate sperm DNA damage: Assessment and review. J. Family Med. Prim. Care 2019, 8, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.S.; Siqueira, A.F.P.; Hamilton, T.R.S.; Mendes, C.M.; Visintin, J.A.; Assumpção, M.E.O.D. Effect of bovine sperm chromatin integrity evaluated using three different methods on in vitro fertility. Theriogenology 2018, 107, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Bizzaro, D.; Manicardi, G.C.; Bianchi, P.G.; Bianchi, U.; Mariethoz, E.; Sakkas, D. In-situ competition between protamine and fluorochromes for sperm DNA. Mol. Hum. Reprod. 1998, 4, 127–132. [Google Scholar] [CrossRef]
- Lolis, D.; Georgiou, I.; Syrrou, M.; Zikopoulos, K.; Konstantelli, M.; Messinis, I. Chromomycin A3-staining as an indicator of protamine deficiency and fertilization. Int. J. Androl. 1996, 19, 23–27. [Google Scholar] [CrossRef]
- Nasr-Esfahani, M.H.; Razavi, S.; Mardani, M. Relation between different human sperm nuclear maturity tests and in vitro fertilization. J. Assist. Reprod. Genet. 2001, 18, 219–225. [Google Scholar] [CrossRef]
- Sabeti, P.; Amidi, F.; Kalantar, S.M.; Sedighi Gilani, M.A.; Pourmasumi, S.; Najafi, A.; Talebi, A.R. Evaluation of intracellular anion superoxide level, heat shock protein A2 and protamine positive spermatozoa percentages in teratoasthenozoospermia. Int. J. Reprod. Biomed. 2017, 15, 279–286. [Google Scholar] [CrossRef]
- Czubaszek, M.; Andraszek, K.; Banaszewska, D. Influence of the age of the individual on the stability of boar sperm genetic material. Theriogenology 2020, 147, 176–182. [Google Scholar] [CrossRef]
- Kazerooni, T.; Asadi, N.; Jadid, L.; Kazerooni, M.; Ghanadi, A.; Ghaffarpasand, F.; Kazerooni, Y.; Zolghadr, J. Evaluation of sperm’s chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J. Assist. Reprod. Genet. 2009, 26, 591–596. [Google Scholar] [CrossRef]
- Simon, L.; Murphy, K.; Shamsi, M.B.; Liu, L.; Emery, B.; Aston, K.I.; Hotaling, J.; Carrell, D.T. Paternal influence of sperm DNA integrity on early embryonic development. Hum. Reprod. 2014, 29, 2402–2412. [Google Scholar] [CrossRef]
- Fortes, M.R.S.; Satake, N.; Corbet, D.H.; Corbet, N.J.; Burns, B.M.; Moore, S.S.; Boe-Hansen, G.B. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology 2014, 2, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Kipper, B.H.; Trevizan, J.T.; Carreira, J.T.; Carvalho, I.R.; Mingoti, G.Z.; Beletti, M.E.; Perri, S.H.V.; Franciscato, D.A.; Pierucci, J.C.; Koivisto, M.B. Sperm morphometry and chromatin condensation in Nelore bulls of different ages and their effects on IVF. Theriogenology 2017, 87, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Simoes, R.; Feitosa, W.B.; Mendes, C.M.; Marques, M.G.; Nicacio, A.C.; de Barros, F.R.O.; Visintin, J.A.; Assumpção, M.E.O.D. Use of chromomycin A3 staining in bovine sperm cells for detection of protamine deficiency. Biotech. Histochem. 2009, 84, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Talebi, A.R.; Shahedi, A.; Moein, M.R.; Abbasi-Sarcheshmeh, A. Effects of tamoxifen on DNA integrity in mice. J. Reprod. Infertil. 2019, 20, 10–15, PMCID:PMC6386794. [Google Scholar] [PubMed]
- Mohammadzadeh, M.; Pourentezari, M.; Zare-Zardini, H.; Nabi, A.; Esmailabad, S.G.; Khodadadian, A.; Talebi, A.R. The effects of sesame oil and different doses of estradiol on testicular structure, sperm parameters, and chromatin integrity in old mice. Clin. Exp. Reprod. Med. 2021, 48, 34–42. [Google Scholar] [CrossRef]
- Ozkosem, B.; Feinstein, S.I.; Fisher, A.B.; O’Flaherty, C. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biol. 2015, 5, 15–23. [Google Scholar] [CrossRef]
- Merges, G.E.; Meier, J.; Schneider, S.; Kruse, A.; Fröbius, A.C.; Kirfel, G.; Steger, K.; Arévalo, L.; Schorle, H. Loss of Prm1 leads to defective chromatin protamination, impaired PRM2 processing, reduced sperm motility and subfertility in male mice. Development 2022, 149, dev200330. [Google Scholar] [CrossRef]
- Agudo-Rios, C.; Rogers, A.; King, I.; Bhagat, V.; Nguyen, L.M.T.; Córdova-Fletes, C.; Krapf, D.; Strauss III, J.F.; Arévalo, L.; Merges, G.E.; et al. SPAG17 mediates nuclear translocation of protamines during spermiogenesis. Front. Cell. Dev. Biol. 2023, in press. [CrossRef]
- Suarez, S.S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016, 363, 185–194. [Google Scholar] [CrossRef]
- Kölle, S. Sperm-oviduct interactions: Key factors for sperm survival and maintenance of sperm fertilizing capacity. Andrology 2022, 10, 837–843. [Google Scholar] [CrossRef]
- Mahé, C.; Zlotkowska, A.M.; Reynaud, K.; Tsikis, G.; Mermillod, P.; Druart, X.; Schoen, J.; Saint-Dizier, M. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct†. Biol. Reprod. 2021, 105, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Tourmente, M.; Villar-Moya, P.; Varea-Sanchez, M.; Luque-Larena, J.J.; Rial, E.; Roldan, E.R.S. Performance of rodent spermatozoa over time is enhanced by increased ATP concentrations: The role of sperm competition. Biol. Reprod. 2015, 93, 64. [Google Scholar] [CrossRef] [PubMed]
- Beletti, M.E.; Mello, M.L.S. Comparison between the toluidine blue stain and the Feulgen reaction for evaluation of rabbit sperm chromatin condensation and their relationship with sperm morphology. Theriogenology 2004, 62, 398–402. [Google Scholar] [CrossRef]
- Flores, R.B.; Angrimani, D.S.R.; Rui, B.R.; Brito, M.M.; Abreu, R.A.; Vannucchi, C.I. The influence of benign prostatic hyperplasia on sperm morphological features and sperm DNA integrity in dogs. Reprod. Domest. Anim. 2017, 52, 310–315. [Google Scholar] [CrossRef]
- Krzanowska, H. Toluidine blue staining reveals changes in chromatin stabilization of mouse spermatozoa during epididymal maturation and penetration of ova. J. Reprod Fertil. 1982, 64, 97–101. [Google Scholar] [CrossRef]
- Anvari, M.; Talebi, A.R.; Mangoli, E.; Shahedi, A.; Ghasemi, M.R.; Pourentezari, M. Effects of acrylamide in the presence of vitamin E on sperm parameters, chromatin quality, and testosterone levels in mice. Clin. Exp. Reprod. Med. 2020, 47, 101–107. [Google Scholar] [CrossRef]
- Danafar, A.; Khoradmehr, A.; Hosseini Bondarabadi, M.; Mazaheri, F.; Tamadon, A.; Pourmasoumi, S.; Gholizadeh, L.; Moshrefi, M.; Halvaei, I.; Hosseini, A.; et al. Impairment of sperm efficiency in mice following short-term nano-titanium dioxide exposure: An experimental study. Int. J. Reprod. Biomed. 2021, 19, 1045–1058. [Google Scholar] [CrossRef]
- Ramesh, M.; Mojaverrostami, S.; Khadivi, F.; Rastegar, T.; Abbasi, Y.; Bashiri, Z. Protective effects of human amniotic membrane derived mesenchymal stem cells (hAMSCs) secreted factors on mouse spermatogenesis and sperm chromatin condensation following unilateral testicular torsion. Ann. Anat. 2023, 249, 152084. [Google Scholar] [CrossRef] [PubMed]
- Khordad, E.; Nikravesh, M.R.; Jalali, M.; Fazel, A.; Sankian, M.; Alipour, F. Evaluation of sperm chromatin/DNA integrity, morphology, and Catsper expression on diabetic C57BL/6 mice. Cell. Mol. Biol. 2022, 68, 8–18. [Google Scholar] [CrossRef]
- Sakkas, D.; Manicardi, G.; Bianchi, P.G.; Bizzaro, D.; Bianchi, U. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol. Reprod. 1995, 52, 1149–1155. [Google Scholar] [CrossRef]
- Mota, P.C.; Ramalho-Santos, J. Comparison between different markers for sperm quality in the cat: Diff-Quik as a simple optical technique to assess changes in the DNA of feline epididymal sperm. Theriogenology 2006, 65, 1360–1375. [Google Scholar] [CrossRef]
- Boe-Hansen, G.B.; Fortes, M.R.S.; Satake, N. Morphological defects, sperm DNA integrity, and protamination of bovine spermatozoa. Andrology 2018, 6, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.J.; Orzylowska, E.M.; Corselli, J.U.; Jacobson, J.D.; Wei, A.K. A simple sperm DNA toroid integrity test and risk of miscarriage. Biomed. Res. Int. 2015, 2015, 780983. [Google Scholar] [CrossRef] [PubMed]
- Nur Karakus, F.; Bulgurcuoglu Kuran, S.; Solakoglu, S. Effect of curcumin on sperm parameters after the cryopreservation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 267, 161–166. [Google Scholar] [CrossRef]
- Belloc, S.; Benkhalifa, M.; Junca, A.M.; Dumont, M.; Bacrie, P.C.; Ménézo, Y. Paternal age and sperm DNA decay: Discrepancy between chromomycin and aniline blue staining. Reprod. Biomed. Online 2009, 19, 264–269. [Google Scholar] [CrossRef]
- Pérez-Cerezales, S.; Miranda, A.; Gutiérrez-Adán, A. Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis. Asian J. Androl. 2012, 14, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Sansegundo, E.; Tourmente, M.; Roldan, E.R.S. Energy metabolism and hyperactivation of spermatozoa from three mouse species under capacitating conditions. Cells 2022, 11, 220. [Google Scholar] [CrossRef]
- Kritaniya, D.; Yadav, S.; Swain, D.K.; Reddy, A.V.; Dhariya, R.; Yadav, B.; Anand, M.; Nigam, R. Freezing-thawing induces deprotamination, cryocapacitation-associated changes; DNA fragmentation; and reduced progesterone sensitivity in buck spermatozoa. Anim. Reprod. Sci. 2020, 223, 106628. [Google Scholar] [CrossRef]
- Tavalaee, M.; Razavi, S.; Nasr-Esfahani, M.H. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil. Steril. 2009, 91, 1119–1126. [Google Scholar] [CrossRef]
- Khezri, A.; Narud, B.; Stenseth, E.B.; Johannisson, A.; Myromslien, F.D.; Gaustad, A.H.; Wilson, R.C.; Lyle, R.; Morrell, J.M.; Kommisrud, E.; et al. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics 2019, 20, 897. [Google Scholar] [CrossRef]
- Franken, D.R.; Franken, C.J.; De La Guerre, H.; De Villiers, A. Normal sperm morphology and chromatin packaging: Comparison between aniline blue and chromomycin A3 staining. Andrologia 1999, 31, 361–366. [Google Scholar] [CrossRef] [PubMed]
Species | Percentage of Stained Cells at | |||
---|---|---|---|---|
0 h | 3 h | Δ3 h–0 h | ||
M. musculus | 0.55 ± 0.23 | 1.45 ± 0.42 | 0.90 ± 0.39 | |
M. spretus | 0.55 ± 0.36 | 0.90 ± 0.32 | 0.35 ± 0.52 | |
M. spicilegus | 0.00 ± 0.00 | 0.65 ± 0.26 | 0.65 ± 0.26 |
Species | Percentage of Stained Cells at | ||
---|---|---|---|
0 h | 3 h | Δ3 h–0 h | |
M. musculus | 1.15 ± 0.06 a | 2.25 ± 0.14 a | 1.10 ± 0.19 |
M. spretus | 0.70 ± 0.20 a | 1.95 ± 0.59 a | 1.25 ± 0.50 |
M. spicilegus | 0.50 ± 0.16 a | 1.75 ± 0.47 a | 1.25 ± 0.36 |
Completely Stained (%) | Partially Stained (%) | Total Staining (%) | Total Staining | ||||
---|---|---|---|---|---|---|---|
Species | 0 h | 3 h | 0 h | 3 h | 0 h | 3 h | Δ3 h–0 h |
M. musculus | 0.95 ± 0.20 | 1.40 ± 0.47 | 0.10 ± 0.06 | 0.40 ± 0.29 | 1.05 ± 0.18 | 1.80 ± 0.70 | 0.75 ± 0.68 |
M. spretus | 1.15 ± 0.36 | 1.80 ± 0.24 | 0.05 ± 0.05 | 0.25 ± 0.19 | 1.20 ± 0.40 | 2.05 ± 0.34 | 0.85 ± 0.56 |
M. spicilegus | 0.35 ± 0.17 | 1.35 ± 0.33 | 0.05 ± 0.05 | 0.60 ± 0.15 | 0.40 ± 0.19 a | 1.95 ± 0.40 a | 1.55 ± 0.35 |
Species | Parameter | 0 h | 3 h | Δ3 h–0 h |
---|---|---|---|---|
M. musculus | %tDFI | 1.38 ± 0.14 a,1,2 | 1.89 ± 0.19 a,1,2 | 0.51 ± 0.22 |
%HDS | 3.77 ± 0.51 | 6.98 ± 1.45 | 3.21 ± 1.24 | |
M. spretus | %tDFI | 0.56 ± 0.06 1 | 0.76 ± 0.17 1 | 0.19 ± 0.12 |
%HDS | 2.60 ± 0.25 | 7.84 ± 2.14 | 5.24 ± 2.07 | |
M. spicilegus | %tDFI | 0.35 ± 0.03 2 | 0.41 ± 0.05 2 | 0.06 ± 0.05 |
%HDS | 2.76 ± 0.48 | 6.86 ± 2.58 | 4.11 ± 2.24 |
Species | Parameter | tDFI | HDS | ||||
---|---|---|---|---|---|---|---|
0 h | 3 h | Δ3 h–0 h | 0 h | 3 h | Δ3 h–0 h | ||
All species | AB | 0.2925 (0.290) | 0.3679 (0.177) | 0.1002 (0.722) | 0.2562 (0.357) | 0.5450 (0.036) | 0.6345 (0.011) |
DQ | 0.6163 (0.014) | 0.2625 (0.345) | 0.0486 (0.864) | 0.6412 (0.010) | 0.5670 (0.028) | 0.6132 (0.015) | |
CMA3 | 0.2918 (0.291) | 0.0382 (0.892) | −0.0833 (0.768) | 0.3284 (0.232) | 0.5927 (0.020) | 0.4381 (0.102) | |
M. musculus | AB | 0.2858 (0.641) | −0.2360 (0.702) | −0.0253 (0.968) | 0.5228 (0.366) | 0.7169 (0.173) | 0.7819 (0.118) |
DQ | 0.4016 (0.503) | 0.6120 (0.273) | 0.4455 (0.452) | 0.4116 (0.491) | −0.0899 (0.886) | −0.0478 (0.939) | |
CMA3 | 0.5115 (0.378) | 0.4793 (0.412) | 0.3814 (0.526) | 0.4551 (0.441) | 0.9148 (0.030) | 0.8926 (0.042) | |
M. spretus | AB | −0.3486 (0.565) | 0.1641 (0.792) | −0.0292 (0.963) | 0.0717 (0.909) | 0.8115 (0.095) | 0.9833 (0.003) |
DQ | 0.0602 (0.923) | 0.2023 (0.744) | −0.0995 (0.874) | 0.5443 (0.343) | 0.5308 (0.357) | 0.6044 (0.280) | |
CMA3 | −0.0890 (0.887) | 0.0645 (0.918) | −0.510 (0.379) | 0.4174 (0.485) | 0.4768 (0.417) | 0.5130 (0.377) | |
M. spicilegus | AB | - | −0.1220 (0.845) | 0.4029 (0.501) | - | 0.4940 (0.398) | 0.4454 (0.452) |
DQ | −0.8715 (0.054) | −0.2552 (0.679) | 0.3730 (0.536) | 0.7893 (0.112) | 0.8107 (0.096) | 0.8480 (0.070) | |
CMA3 | −0.5783 (0.307) | −0.3926 (0.513) | −0.3614 (0.550) | 0.5568 (0.330) | 0.5962 (0.289) | 0.1483 (0.812) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudo-Rios, C.; Sanchez-Rodriguez, A.; Idrovo, I.I.D.; Laborda-Gomariz, J.Á.; Soler, A.J.; Teves, M.E.; Roldan, E.R.S. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int. J. Mol. Sci. 2023, 24, 15954. https://doi.org/10.3390/ijms242115954
Agudo-Rios C, Sanchez-Rodriguez A, Idrovo IID, Laborda-Gomariz JÁ, Soler AJ, Teves ME, Roldan ERS. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. International Journal of Molecular Sciences. 2023; 24(21):15954. https://doi.org/10.3390/ijms242115954
Chicago/Turabian StyleAgudo-Rios, Clara, Ana Sanchez-Rodriguez, Ingrid I. D. Idrovo, Juan Ángel Laborda-Gomariz, Ana J. Soler, Maria E. Teves, and Eduardo R. S. Roldan. 2023. "Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems" International Journal of Molecular Sciences 24, no. 21: 15954. https://doi.org/10.3390/ijms242115954
APA StyleAgudo-Rios, C., Sanchez-Rodriguez, A., Idrovo, I. I. D., Laborda-Gomariz, J. Á., Soler, A. J., Teves, M. E., & Roldan, E. R. S. (2023). Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. International Journal of Molecular Sciences, 24(21), 15954. https://doi.org/10.3390/ijms242115954