History of Parkinson’s Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate
Abstract
:1. Cloning of Parkin Gene in a Short Period: Three Lucky Breaks
2. Why Abnormal Mitochondrial Accumulation Theory Has Been Supported for So Long: Three Turning Points
2.1. The First Turning Point—Year 2000
2.2. Genetic Interaction between Parkin and PINK1 Genes: Knowledge Gathered from Fruit Fly Models
2.3. The Second Turning Point—Year 2008
2.4. The Third Turning Point: “Parkin Dilemma”
3. Clinical and Pathological Aspects of Parkin (AR-JP, PARK2) and PINK1 (PARK6) Mutations
4. Studies Focusing on Parkin as a Redox Molecule Alongside E3 Ligases
5. Important and Noteworthy Key Points Derived from the Experiments
5.1. Understanding That Different Cell Lines Were Used to Produce Different Processes and Results
5.2. The Uncoupler CCCP Can Cause Unexpected Artifacts
5.3. Reducing Agents in the Loading Dye for WB Degrade Parkin Aggregates
5.4. Pitfalls Associated with Tagged Parkin Overexpression
6. Role of Parkin―Mitochondrial Oxidative Stress―Mitophagy―Cancer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsumine, H.; Yamamurab, Y.; Hattoria, N.; Kobayashia, T.; Kitadaa, T.; Yoritakaa, A.; Mizunoa, Y. A Microdeletion of D6S305 in a Family of Autosomal Recessive Juvenile Parkinsonism (PARK2). Genomics 1998, 49, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, Y.; Sobue, I.; Ando, K.; Iida, M.; Yanagi, T.; Kono, C. Paralysis agitans of early onset with marked diurnal fluctuation of symptoms. Neurology 1973, 23, 239. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, Y.; Arihiro, K.; Kohriyama, T.; Nakamura, S. Early-onset parkinsonism with diurnal fluctuation—Clinical and pathological studies. Rinsho Shinkeigaku 1993, 33, 491–496. (In Japanese) [Google Scholar] [PubMed]
- Shimura, H.; Hattori, N.; Kubo, S.-I.; Mizuno, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Iwai, K.; Chiba, T.; Tanaka, K.; et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000, 25, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.K.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science 2004, 304, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, M.J.; Ostaszewski, B.L.; Weihofen, A.; Schlossmacher, M.G.; Selkoe, D.J. Dopamine covalently modifies and functionally inactivates parkin. Nat. Med. 2005, 11, 1214–1221. [Google Scholar] [CrossRef]
- Clark, I.E.; Dodson, M.W.; Jiang, C.; Cao, J.H.; Huh, J.R.; Seol, J.H.; Yoo, S.J.; Hay, B.A.; Guo, M. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441, 1162–1166. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.B.; Lee, S.; Kim, Y.; Song, S.; Kim, S.; Bae, E.; Kim, J.; Shong, M.; Kim, J.-M.; et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441, 1157–1161. [Google Scholar] [CrossRef]
- Narendra, D.; Tanaka, A.; Suen, D.-F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.-F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biol. 2010, 8, e1000298. [Google Scholar] [CrossRef]
- Matsuda, N.; Sato, S.; Shiba, K.; Okatsu, K.; Saisho, K.; Gautier, C.A.; Sou, Y.-S.; Saiki, S.; Kawajiri, S.; Sato, F.; et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010, 189, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Yao, D.; Shi, Y.; Kabakoff, J.; Wu, W.; Reicher, J.; Ma, Y.; Moosmann, B.; Masliah, E.; Lipton, S.A.; et al. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol. Neurodegener. 2011, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Kitada, T.; Hikita, R.; Hirose, H. Parkin, Parkinson disease gene product, directly reduces hydrogen peroxide (mitochondrial oxidant), and forms dimerization reversibly. Int. J. Latest Res. Sci. Technol. 2016, 5, 1–3. [Google Scholar]
- Ardah, M.T.; Radwan, N.; Khan, E.; Kitada, T.; Haque, M.E. Parkin Precipitates on Mitochondria via Aggregation and Autoubiquitination. Int. J. Mol. Sci. 2023, 24, 9027. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Ohama, E.; Suzuki, S.; Horikawa, Y.; Ishikawa, A.; Morita, T.; Tsuji, S.; Ikuta, F. Familial juvenile parkinsonism: Clinical and pathologic study in a family. Neurology 1994, 44, 437. [Google Scholar] [CrossRef]
- Yamamura, Y.; Kohriyama, T.; Kawakami, H.; Kaseda, Y.; Kuzuhara, S.; Nakamura, S. Autosomal recessive early-onset parkinsonism with diurnal fluctuation (AR-EPDF)—Clinical characteristics. Rinsho Shinkeigaku 1996, 36, 944–950. (In Japanese) [Google Scholar] [PubMed]
- Yamamura, Y.; Kuzuhara, S.; Kondo, K.; Yanagi, T.; Uchida, M.; Matsumine, H.; Mizuno, Y. Clinical, pathologic and genetic studies on autosomal recessive early-onset parkinsonism with diurnal fluctuation. Park. Relat. Disord. 1998, 4, 65–72. [Google Scholar] [CrossRef]
- Koyano, F.; Okatsu, K.; Kosako, H.; Tamura, Y.; Go, E.; Kimura, M.; Kimura, Y.; Tsuchiya, H.; Yoshihara, H.; Hirokawa, T.; et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014, 510, 162–166. [Google Scholar] [CrossRef]
- Kitada, T.; Hikita, R.; Hirose, H. Parkinson’s disease gene product, Parkin, has alternative and reversible functions, both as an E3 ligase and a redox molecule. Int. J. Latest Res. Sci. Technol. 2016, 5, 20–22. [Google Scholar]
- Tokarew, J.M.; El-Kodsi, D.N.; Lengacher, N.A.; Fehr, T.K.; Nguyen, A.P.; Shutinoski, B.; O’nuallain, B.; Jin, M.; Khan, J.M.; Ng, A.C.H.; et al. Age-associated insolubility of parkin in human midbrain is linked to redox balance and sequestration of reactive dopamine metabolites. Acta Neuropathol. 2021, 141, 725–754. [Google Scholar] [CrossRef]
- Schneider, S.A.; Alcalay, R.N. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov. Disord. 2017, 32, 1504–1523. [Google Scholar] [CrossRef]
- Johansen, K.K.; Torp, S.H.; Farrer, M.J.; Gustavsson, E.K.; Aasly, J.O. A Case of Parkinson’s Disease with No Lewy Body Pathology due to a Homozygous Exon Deletion in Parkin. Case Rep. Neurol. Med. 2018, 2018, 6838965. [Google Scholar] [CrossRef] [PubMed]
- Valente, E.M.; Brancati, F.; Ferraris, A.; Graham, E.A.; Davis, M.B.; Breteler, M.M.; Gasser, T.; Bonifati, V.; Bentivoglio, A.R.; De Michele, G.; et al. PARK6-linked parkinsonism occurs in several European families. Ann. Neurol. 2002, 51, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, A.; Li, Y.; Yoshino, H.; Daida, K.; Ikeda, A.; Ogaki, K.; Fuse, A.; Mori, A.; Takanashi, M.; Nakahara, T.; et al. The identified clinical features of Parkinson’s disease in homo-, heterozygous and digenic variants of PINK1. Neurobiol. Aging 2021, 97, 146.e1–146.e13. [Google Scholar] [CrossRef] [PubMed]
- Nybø, C.J.; Gustavsson, E.K.; Farrer, M.J.; Aasly, J.O. Neuropathological findings in PINK1-associated Parkinson’s disease. Park. Relat. Disord. 2020, 78, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, C.; Loos, B.; Swart, C.; Kinnear, C.; Henning, F.; van der Merwe, L.; Pillay, K.; Muller, N.; Zaharie, D.; Engelbrecht, L.; et al. Mitochondrial impairment observed in fibroblasts from South African Parkinson’s disease patients with parkin mutations. Biochem. Biophys. Res. Commun. 2014, 447, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Serdaroglu, P.; Hanagasi, H.; Tasli, H.; Emre, M. Parkin expression in muscle from three patients with autosomal recessive Parkinson’s disease carrying parkin mutation. Acta Myol. 2005, 24, 2–5. [Google Scholar]
- Hanagasi, H.A.; Serdaroglu, P.; Ozansoy, M.; Basak, N.; Tasli, H.; Emre, M. Mitochondrial pathology in muscle of a patient with a novel parkin mutation. Int. J. Neurosci. 2009, 119, 1572–1583. [Google Scholar] [CrossRef]
- Palacino, J.J.; Sagi, D.; Goldberg, M.S.; Krauss, S.; Motz, C.; Wacker, M.; Klose, J.; Shen, J. Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice. J. Biol. Chem. 2004, 279, 18614–18622. [Google Scholar] [CrossRef]
- Rosen, K.M.; Veereshwarayya, V.; Moussa, C.E.-H.; Fu, Q.; Goldberg, M.S.; Schlossmacher, M.G.; Shen, J.; Querfurth, H.W. Parkin Protects against Mitochondrial Toxins and β-Amyloid Accumulation in Skeletal Muscle Cells. J. Biol. Chem. 2006, 281, 12809–12816. [Google Scholar] [CrossRef] [PubMed]
- Takanashi, M.; Mochizuki, H.; Yokomizo, K.; Hattori, N.; Mori, H.; Yamamura, Y.; Mizuno, Y. Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Park. Relat. Disord. 2001, 7, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.M.; Lazarou, M.; Wang, C.; Kane, L.A.; Narendra, D.P.; Youle, R.J. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010, 191, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Yamano, K.; Youle, R.J. PINK1 is degraded through the N-end rule pathway. Autophagy 2013, 9, 1758–1769. [Google Scholar] [CrossRef] [PubMed]
- Gautier, C.A.; Kitada, T.; Shen, J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA 2008, 105, 11364–11369. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Muqit, M.M.K.; Latchman, D.S. Induction of parkin expression in the presence of oxidative stress. Eur. J. Neurosci. 2006, 24, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Chaugule, V.K.; Burchell, L.; Barber, K.R.; Sidhu, A.; Leslie, S.J.; Shaw, G.S.; Walden, H. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 2011, 30, 2853–2867. [Google Scholar] [CrossRef]
- Burchell, L.; Chaugule, V.K.; Walden, H. Small, N-Terminal Tags Activate Parkin E3 Ubiquitin Ligase Activity by Disrupting Its Autoinhibited Conformation. PLoS ONE 2012, 7, e34748. [Google Scholar] [CrossRef]
- Denison, S.R.; Callahan, G.; Becker, N.A.; Phillips, L.A.; Smith, D.I. Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosom. Cancer 2003, 38, 40–52. [Google Scholar] [CrossRef]
- Cesari, R.; Martin, E.S.; Calin, G.A.; Pentimalli, F.; Bichi, R.; McAdams, H.; Trapasso, F.; Drusco, A.; Shimizu, M.; Masciullo, V.; et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27. Proc. Natl. Acad. Sci. USA 2003, 100, 5956–5961. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Hu, W.; Feng, Z. Parkinson’s disease-associated protein Parkin: An unusual player in cancer. Cancer Commun. 2018, 38, 40. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B. Teaching the basics of repurposing mitochondria-targeted drugs: From Parkinson’s disease to cancer and back to Parkinson’s disease. Redox Biol. 2020, 36, 101665. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, T.V.; Gogvadze, V.; Zhivotovsky, B. Mitophagy in carcinogenesis and cancer treatment. Discov. Oncol. 2021, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Chiu, D.K.-C.; Tse, A.P.-W.; Law, C.-T.; Xu, I.M.-J.; Lee, D.; Chen, M.; Lai, R.K.-H.; Yuen, V.W.-H.; Cheu, J.W.-S.; Ho, D.W.-H.; et al. Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death Dis. 2019, 10, 934. [Google Scholar] [CrossRef]
Year | Summary of Research Findings | Source | References |
---|---|---|---|
1973 | The first AR-JP family with a characteristic clinical picture was reported. | Yamamura Y et al., 1973 | [3] |
1993 | The first brain pathology of AR-JP was reported, and nigral neuronal loss without Lewy bodies was observed. | Yamamura Y et al., 1993 | [4] |
1997 | The AR-JP gene parkin was cloned, and the genetic information was formally registered in the GenBank. | GenBank accession #AB009973 | [2] |
1998 | The discovery of the parkin gene and its various mutations were published. | Kitada T et al., 1998 | [2] |
2000 | Parkin protein is recognized as an E3 ubiquitin ligase in the ubiquitin-proteasome system. | Shimura H et al., 2000 | [5] |
2004 | Another autosomal recessive PD gene, PINK1, was identified. | Valente ME et al., 2004 | [6] |
2005 | Dopamine covalently modifies Parkin in living dopaminergic cells, a process that increases Parkin insolubility and inactivates its E3 function. | LaVoie MJ et al., 2005 | [7] |
2006 | Drosophila lacking PINK1 gene showed similar phenotypes, but the overexpression of Parkin restored the defective symptoms caused by the loss of PINK1. | Clark IE et al., 2006 | [8] |
Park J et al., 2006 | [9] | ||
2008 | Parkin localizes to defective mitochondria with lowered membrane potential, leading to autophagy called mitophagy. | Narendra D et al., 2008 | [10] |
2010 | Parkin is recruited by PINK1 on defective mitochondria, ubiquitinating outer membrane proteins and inducing mitophagy. | Narendra D et al., 2010 | [11] |
Matsuda N et al., 2010 | [12] | ||
2011 | Oxidation of the cysteine-rich region of Parkin reduces its E3 ligase activity and contributes to protein aggregation. | Meng F et al., 2011 | [13] |
2016 | The Parkin protein reacts directly with and eliminates hydrogen peroxide. | Kitada T et al., 2016a | [14] |
2023 | Parkin reacts with hydrogen peroxide that leaks from mitochondria, causing self-aggregation and auto-ubiquitination on mitochondria. | Ardah MT et al., 2023 | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitada, T.; Ardah, M.T.; Haque, M.E. History of Parkinson’s Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate. Int. J. Mol. Sci. 2023, 24, 16734. https://doi.org/10.3390/ijms242316734
Kitada T, Ardah MT, Haque ME. History of Parkinson’s Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate. International Journal of Molecular Sciences. 2023; 24(23):16734. https://doi.org/10.3390/ijms242316734
Chicago/Turabian StyleKitada, Tohru, Mustafa T. Ardah, and M. Emdadul Haque. 2023. "History of Parkinson’s Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate" International Journal of Molecular Sciences 24, no. 23: 16734. https://doi.org/10.3390/ijms242316734
APA StyleKitada, T., Ardah, M. T., & Haque, M. E. (2023). History of Parkinson’s Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate. International Journal of Molecular Sciences, 24(23), 16734. https://doi.org/10.3390/ijms242316734