Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis
Abstract
:1. Introduction
2. Deuterium Content in Natural Waters
3. Identified Molecular and Physiological Effects of Deuterium
4. Physiological Effects of Altered D/H Gradient
5. Effect of D/H Shift on Cell Proliferation and Apoptosis
5.1. Cell Proliferation and Its Control
5.2. Implication of D/H Disbalance in Proliferation of Normal Cells
6. Effect of D/H Shift on Proliferation and Apoptosis of Tumor Cells
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehmann, W.D. A timeline of stable isotopes and mass spectrometry in the life sciences. Mass Spectrom Rev. 2017, 36, 58–85. [Google Scholar] [CrossRef]
- Kselíková, V.; Vítová, M.; Bišová, K. Deuterium and its impact on living organisms. Folia Microbiol. 2019, 64, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Krumbiegel, P. Large deuterium isotope effects and their use: A historical review. Isotopes Environ. Health Stud. 2011, 47, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kravtsov, A.; Kozin, S.; Basov, A.; Butina, E.; Baryshev, M.; Malyshko, V.; Moiseev, A.; Elkina, A.; Dzhimak, S. Reduction of Deuterium Level Supports Resistance of Neurons to Glucose Deprivation and Hypoxia: Study in Cultures of Neurons and on Animals. Molecules 2021, 27, 243. [Google Scholar] [CrossRef] [PubMed]
- Svidlov, A.A.; Drobotenko, M.I.; Basov, A.A.; Elkina, A.A.; Gerasimenko, E.O.; Malyshko, V.V.; Baryshev, M.G.; Dzhimak, S.S. Influence of the 2H/1H Isotope Composition of the Water Environment on the Probability of Denaturation Bubble Formation in a DNA Molecule. Phys. Wave Phen. 2021, 29, 180–185. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Rundel, P.W.; Nagy, K.A. Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol. 1986, 1, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Syroeshkin, A.V.; Antipova, N.V.; Zlatska, A.V.; Zlatskiy, I.A.; Skylska, M.D.; Grebennikova, T.V.; Goncharuk, V.V. The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J. Trace Elem. Med. Biol. 2018, 50, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Podlesak, D.W.; Bowen, G.J.; O’Grady, S.; Cerling, T.E.; Ehleringer, J.R. δ2H and δ18O of human body water: A GIS model to distinguish residents from non-residents in the contiguous USA. Isotopes Environ. Health Stud. 2012, 48, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, C.; Wang, F.; Chang, S.J.; Yao, J.; Blake, R.E. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4. Proc. Natl. Acad. Sci. USA 2016, 113, 5862–5867. [Google Scholar] [CrossRef] [PubMed]
- Al-Basheer, W.; Al-Jalal, A.; Gasmi, K. Isotopic composition of bottled water in Saudi Arabia. Isotopes Environ. Health Stud. 2018, 54, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Murillo, R.; Esquivel-Hernández, G.; Birkel, C.; Ortega, L. Isotopic composition and major ion concentrations of national and international bottled waters in Costa Rica. Data Brief. 2021, 38, 107277. [Google Scholar] [CrossRef]
- Ersek, V.; Sharples, J.; Thomas, W. Stable hydrogen and oxygen isotope abundance of major bottled water brands sold in the United Kingdom. Isotopes Environ. Health Stud. 2022, 58, 113–120. [Google Scholar] [CrossRef]
- Mant, M.; Nagel, A.; Prowse, T. Investigating Residential History Using Stable Hydrogen and Oxygen Isotopes of Human Hair and Drinking Water. J. Forensic Sci. 2016, 61, 884–891. [Google Scholar] [CrossRef]
- Fransen, M.; Lismont, C.; Walton, P. The Peroxisome-Mitochondria Connection: How and Why? Int. J. Mol. Sci. 2017, 18, 1126. [Google Scholar] [CrossRef] [PubMed]
- Pope, E.C.; Bird, D.K.; Rosing, M.T. Isotope composition and volume of Earth’s early oceans. Proc. Natl. Acad. Sci. USA 2012, 109, 4371–4376. [Google Scholar] [CrossRef]
- Berg, T.; Strand, D.H. ¹³C labelled internal standards-a solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A 2011, 1218, 9366–9374. [Google Scholar] [CrossRef] [PubMed]
- Blake, M.I.; Crespi, H.L.; Katz, J.J. Studies with deuterated drugs. J. Pharm. Sci. 1975, 64, 367–391. [Google Scholar] [CrossRef] [PubMed]
- Basov, A.; Drobotenko, M.; Svidlov, A.; Gerasimenko, E.; Malyshko, V.; Elkina, A.; Baryshev, M.; Dzhimak, S. Inequality in the Frequency of the Open States Occurrence Depends on Single 2H/1H Replacement in DNA. Molecules 2020, 25, 3753. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Baryshev, M.G. Content of deuterium in biological fluids and organs: Influence of deuterium depleted water on D/H gradient and the process of adaptation. Dokl. Biochem. Biophys. 2015, 465, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Cong, F.; Zhang, Y.; Sheng, H.; Ao, Z.; Zhang, S.; Wang, J. Deuterium-depleted water inhibits human lung carcinoma cell growth by apoptosis. Exp. Ther. Med. 2010, 1, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhimak, S.S.; Baryshev, M.G.; Basov, A.A.; Timakov, A.A. Influence of deuterium depleted water on freeze-dried tissue isotopic composition and morphofunctional body performance in rats of different generations. Biophysics 2014, 59, 614–619. (In Russian) [Google Scholar] [CrossRef]
- Krempels, K.; Somlyai, I.; Somlyai, G. A retrospective evaluation of the effects of deuterium depleted water consumption on 4 patients with brain metastases from lung cancer. Integr. Cancer Ther. 2008, 7, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Zlatskiy, I.; Pleteneva, T.; Skripnikov, A.; Grebennikova, T.; Maksimova, T.; Antipova, N.; Levitskaya, O.; Makarova, M.; Selivanenko, I.; Syroeshkin, A. Dependence of Biocatalysis on D/H Ratio: Possible Fundamental Differences for High-Level Biological Taxons. Molecules 2020, 25, 4173. [Google Scholar] [CrossRef] [PubMed]
- Hassanzade, A.; Mandegary, A.; Sharif, E.; Rasooli, R.; Mohammadnejad, R.; Masoumi-Ardekani, Y. Cyclooxygenase inhibitors combined with deuterium-enriched water augment cytotoxicity in A549 lung cancer cell line via activation of apoptosis and MAPK pathways. Iran J. Basic Med. Sci. 2018, 21, 508–516. [Google Scholar] [CrossRef]
- Yavari, K.; Kooshesh, L. Deuterium Depleted Water Inhibits the Proliferation of Human MCF7 Breast Cancer Cell Lines by Inducing Cell Cycle Arrest. Nutr. Cancer 2019, 71, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Den’ko, E.I. Influence of heavy water (D2O) on animal, plant and microorganism’s cells. Usp. Sovrem. Biol. 1970, 70, 41–49. [Google Scholar]
- Mosin, O.; Ignatov, I. Biological influence of deuterium on prokaryotic and eukaryotic cells. J. Med. Physiol. Biophys. 2014, 1, 52–72. [Google Scholar]
- Crespi, H.L.; Conard, S.M.; Uphaus, R.A.; Katz, J.J. Cultivation of microorganisms in heavy water. Ann. N. Y. Acad Sci. 1960, 84, 648–666. [Google Scholar] [CrossRef]
- Kutyshenko, V.P.; Iurkevich, D.I. Effect of heavy water on metabolism of a symbiotic organism. Biophysics 2003, 48, 690–700. (In Russian) [Google Scholar]
- Kosenkov, A.V.; Lobyshev, V.I.; Gulyaev, M.V.; Yusubalieva, G.M.; Baklaushev, V.P. The reversible effect of deuteration on tissue fluid and biopolymers in normal and tumor tissues of mice. Biophysics 2018, 63, 820–824. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Fedulova, L.V.; Didikin, A.S.; Bikov, I.M.; Arcybasheva, O.M.; Naumov, G.N.; Baryshev, M.G. Correction of Metabolic Processes in Rats during Chronic Endotoxicosis using Isotope (D/H) Exchange Reactions. Biol. Bull. 2015, 5, 440–448. [Google Scholar] [CrossRef]
- Bild, W.; Stefanescu, I.; Haulica, I.; Lupuşoru, C.; Titescu, G.; Iliescu, R.; Nastasa, V. Research concerning the radioprotective and immunostimulating effects of deuterium-depleted water. Rom. J. Physiol. 1999, 36, 205–218. [Google Scholar]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Yaglov, V.V. Response of Pituitary-Thyroid Axis to a Short-Term Shift in Deuterium Content in the Body. Bull. Exp. Biol. Med. 2021, 171, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Timokhina, E.P.; Yaglova, N.V.; Obernikhin, S.S.; Yaglov, V.V. Changes in thyroid morphology and function produced by the shift in deuterium/protium balance in the organism. Russ. J. Biol. Phys. Chem. 2022, 7, 310–313. [Google Scholar] [CrossRef]
- Laissue, J.A.; Stoner, R.D. Deuterium isotope effects on lymphoid tissues and humoral antibody responses in mice. Virchows Arch. A Pathol. Anat. Histopathol. 1979, 383, 149–166. [Google Scholar] [CrossRef]
- Dong, Q.; Li, F. Cell cycle control of kinetochore assembly. Nucleus 2022, 13, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Schade, A.E.; Branigan, T.B.; Müller, G.A.; DeCaprio, J.A. Coordinating gene expression during the cell cycle. Trends Biochem. Sci. 2022, 47, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhuang, C.L.; Hu, P. Regulation of muscle stem cell fate. Cell Regen. 2022, 11, 40. [Google Scholar] [CrossRef]
- Yaglov, V.V.; Yaglova, N.V. Cell theory as a methodology for studying cell biology. Clin. Exp. Morphol. 2016, 3, 4–8. [Google Scholar]
- Yam, C.Q.; Lim, H.H.; Surana, U. DNA damage checkpoint execution and the rules of its disengagement. Front. Cell. Dev. Biol. 2022, 10, 1020643. [Google Scholar] [CrossRef]
- Klaasen, S.J.; Kops, G.J.P.L. Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis. Cells 2022, 22, 3564. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.J.; Novák, B. Time-keeping and decision-making in the cell cycle. Interface Focus 2022, 12, 20210075. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, R.; Lindon, C. Regulating the regulator: A survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol. 2022, 12, 220134. [Google Scholar] [CrossRef] [PubMed]
- Jamasbi, E.; Hamelian, M.; Hossain, M.A.; Varmira, K. The cell cycle, cancer development and therapy. Mol. Biol. Rep. 2022, 49, 10875–10883. [Google Scholar] [CrossRef]
- McAinsh, A.D.; Marston, A.L. The Four Causes: The Functional Architecture of Centromeres and Kinetochores. Annu. Rev. Genet. 2022, 56, 279–314. [Google Scholar] [CrossRef]
- Kishimoto, T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018, 94, 180–203. [Google Scholar] [CrossRef]
- Kipryushina, Y.O.; Yakovlev, K.V. Maternal control of early patterning in sea urchin embryos. Differentiation 2020, 113, 28–37. [Google Scholar] [CrossRef]
- Yao, J.; He, C.; Zhao, W.; Hu, N.; Long, D. Circadian clock and cell cycle: Cancer and chronotherapy. Acta Histochem. 2021, 123, 151816. [Google Scholar] [CrossRef]
- Greenberg, A.; Simon, I. S Phase Duration Is Determined by Local Rate and Global Organization of Replication. Biology 2022, 11, 718. [Google Scholar] [CrossRef]
- Gross, P.R.; Spindel, W. Mitotic arrest by deuterium oxide. Science 1960, 131, 37–38. [Google Scholar] [CrossRef]
- Chakrabarti, G.; Kim, S.; Gupta, M.L.; Barton, J.S.; Himes, R.H. Stabilization of tubulin by deuterium oxide. Biochemistry 1999, 38, 3067–3072. [Google Scholar] [CrossRef]
- Panda, D.; Chakrabarti, G.; Hudson, J.; Pigg, K.; Miller, H.P.; Wilson, L.; Himes, R.H. Suppression of microtubule dynamic instability and treadmilling by deuterium oxide. Biochemistry 2000, 39, 5075–5081. [Google Scholar] [CrossRef] [PubMed]
- Zlatska, A.; Gordiienko, I.; Vasyliev, R.; Zubov, D.; Gubar, O.; Rodnichenko, A.; Syroeshkin, A.; Zlatskiy, I. In Vitro Study of Deuterium Effect on Biological Properties of Human Cultured Adipose-Derived Stem Cells. Sci. World J. 2018, 2018, 5454367. [Google Scholar] [CrossRef]
- Bild, W.; Năstasă, V.; Haulică, I. In vivo and in vitro research on the biological effects of deuterium-depleted water: 1. Influence of deuterium-depleted water on cultured cell growth. Rom. J. Physiol. 2004, 41, 53–67. [Google Scholar] [PubMed]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Nazimova, S.V.; Yaglov, V.V. Reactive Alterations in Thymic Lymphocytopoiesis to Short-Term Decrease in Deuterium Content in the Body. Bull. Exp. Biol. Med. 2022, 173, 494–496. [Google Scholar] [CrossRef]
- Riccardi, D.; Yang, S.; Cui, Q. Proton transfer function of carbonic anhydrase: Insights from QM/MM simulations. Biochim. Biophys. Acta 2010, 1804, 342–351. [Google Scholar] [CrossRef]
- Basov, A.; Fedulova, L.; Vasilevskaya, E.; Dzhimak, S. Possible Mechanisms of Biological Effects Observed in Living Systems during 2H/1H Isotope Fractionation and Deuterium Interactions with Other Biogenic Isotopes. Molecules 2019, 24, 4101. [Google Scholar] [CrossRef]
- Nikitin, D.I.; Oranskaya, M.N.; Lobyshev, V.I. Specificity of bacterial response to variations of the isotopic composition of water. Biophysics 2003, 48, 636–640. [Google Scholar]
- Lisicin, A.B.; Didikin, A.S.; Fedulova, L.V. Influence of deuterium depleted water on the organism of laboratory animals in various functional conditions of nonspecific protective systems. Biophysics 2014, 59, 620–627. [Google Scholar] [CrossRef]
- Toroptsev, I.V.; Rodimov, B.N.; Marshunina, A.M.; Yafarova, I.; Sadovnikova, V.; Lobina, I. Biological Role of Heavy Water in Living Organisms; Questions of Radiobiology and Hematology; Publishing House of Tomsk University: Tomsk, Russia, 1966; Volume 2, pp. 8–118. (In Russian) [Google Scholar]
- Golovneva, I.T.; Tolmacheva, G.S.; Zubaliy, A.M. The Influence of Heavy Water on the Proliferation of Chicken Embryo Cells; Saratov Regional Public Organization Center for Forced Migrants “Saratov Source”: Saratov, Russia, 2021; pp. 585–592. [Google Scholar]
- Basov, A.A.; Bykov, I.M.; Dzhimak, S.S.; Shashkov, D.I.; Malyshko, V.V.; Moiseev, A.V.; Popov, K.A.; Baryshev, M.G. Influence of linseed oil and deiterium depleted water on isotopic D/H composition and functional antioxidant defense of the hepatobiliary system in rabbits with carbon tetrachloride intoxication. Vopr Pitan. 2016, 85, 30–38. (In Russian) [Google Scholar]
- Wang, H.; Zhu, B.; Liu, C.; Fang, W.; Yang, H. Deuterium-depleted water selectively inhibits nasopharyngeal carcinoma cell proliferation in vitro. J. South. Med. Univ. 2012, 32, 1394–1399. (In Chinese) [Google Scholar] [CrossRef]
- Soleyman-Jahi, S.; Zendehdel, K.; Akbarzadeh, K.; Haddadi, M.; Amanpour, S.; Muhammadnejad, S. In vitro assessment of antineoplastic effects of deuterium depleted water. Asian Pac. J. Cancer Prev. 2014, 15, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, B.B.; Kulak, G.Y.; Yanardag, R.; Yarat, A. Short term deuterium depletion in drinking water reduced tumor induced oxidative stress in mice liver. Pathol. Res. Pract. 2022, 240, 154186. [Google Scholar] [CrossRef]
- Kotyk, A.; Dvořáková, M.; Koryta, J. Deuterons cannot replace protons in active transport processes in yeast. FEBS Lett. 1990, 264, 203–205. [Google Scholar] [CrossRef]
- Mooienaar, W.H. Ingezonden. Annu. Rev. Physiol. 1986, 48, 363–376. [Google Scholar] [CrossRef]
- Hagag, N.; Lacal, J.C.; Graber, M.; Aaronson, S.; Viola, M.V. Microinjection of ras p21 induces a rapid rise in intracellular pH. Mol Cell Biol. 1987, 7, 1984–1988. [Google Scholar] [CrossRef]
- Zhang, X.; Gaetani, M.; Chernobrovkin, A.; Zubarev, R.A. Anticancer Effect of Deuterium Depleted Water-Redox Disbalance Leads to Oxidative Stress. Mol. Cell Proteom. 2019, 18, 2373–2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyöngyi, Z.; Budán, F.; Szabó, I.; Ember, I.; Kiss, I.; Krempels, K.; Somlyai, I.; Somlyai, G. Deuterium depleted water effects on survival of lung cancer patients and expression of Kras, Bcl2, and Myc genes in mouse lung. Nutr Cancer 2013, 65, 240–246. [Google Scholar] [CrossRef]
- Kovács, B.Z.; Puskás, L.G.; Nagy, L.I.; Papp, A.; Gyöngyi, Z.; Fórizs, I.; Czuppon, G.; Somlyai, I.; Somlyai, G. Blocking the Increase of Intracellular Deuterium Concentration Prevents the Expression of Cancer-Related Genes, Tumor Development, and Tumor Recurrence in Cancer Patients. Cancer Control 2022, 29, 10732748211068963. [Google Scholar] [CrossRef]
- Tedeschi, P.M.; Markert, E.K.; Gounder, M.; Lin, H.; Dvorzhinski, D.; Dolfi, S.C.; Chan, L.L.; Qiu, J.; DiPaola, R.S.; Hirshfield, K.M.; et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013, 4, e877. [Google Scholar] [CrossRef]
- Parma, B.; Wurdak, H.; Ceppi, P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat. 2022, 65, 100888. [Google Scholar] [CrossRef] [PubMed]
- Onikanni, S.A.; Lawal, B.; Oyinloye, B.E.; Ajiboye, B.O.; Ulziijargal, S.; Wang, C.H.; Emran, T.B.; Simal-Gandara, J. Mitochondrial defects in pancreatic beta-cell dysfunction and neurodegenerative diseases: Pathogenesis and therapeutic applications. Life Sci. 2022, 27, 121247. [Google Scholar] [CrossRef] [PubMed]
- Martins Pinto, M.; Paumard, P.; Bouchez, C.; Ransac, S.; Duvezin-Caubet, S.; Mazat, J.P.; Rigoulet, M.; Devin, A. The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes? Biochim. Biophys. Acta Bioenerg. 2023, 1864, 148931. [Google Scholar] [CrossRef]
- Boros, L.G.; Meuillet, E.J.; Somlyai, I.; Jancsó, G.; Jákli, G.; Krempels, K.; Puskás, L.G.; Nagy, I.L.; Molnár, M.; Laderoute, K.R.; et al. Fumarate hydratase and deuterium depletion control oncogenesis via NADPH-dependent reductive synthesis: Mitochondrial matrix water, DNA deuteration and epigenetic events. Cancer Res. 2014, 74, 1426. [Google Scholar] [CrossRef]
- Boros, L.G.; D’Agostino, D.P.; Katz, H.E.; Roth, J.P.; Meuillet, E.J.; Somlyai, G. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle. Med. Hypotheses 2016, 87, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Somlyai, G.; Debrődi, M.; Somlyai, I.; Abonyi, O.; Boros, L.G. Pre-clinical and clinical data confirm the anticancer effect of Deuterium depletion. Eur. J. Integr. Med. 2016, 8, 28. [Google Scholar] [CrossRef]
- Kalkur, R.S.; Ballast, A.C.; Triplett, A.R.; Spendier, K. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells. PeerJ 2014, 2, e553. [Google Scholar] [CrossRef] [Green Version]
- Uemura, T.; Moritake, K.; Akiyama, Y.; Kimura, Y.; Shingu, T.; Yamasaki, T. Experimental validation of deuterium oxide-mediated antitumoral activity as it relates to apoptosis in murine malignant astrocytoma cells. J. Neurosurg. 2002, 96, 900–908. [Google Scholar] [CrossRef]
- Salomonsson, L.; Brändén, G.; Brzezinski, P. Deuterium isotope effect of proton pumping in cytochrome c oxidase. Biochim. Biophys. Acta 2008, 1777, 343–350. [Google Scholar] [CrossRef]
- Olgun, A. Biological effects of deuteronation: ATP synthase as an example. Theor. Biol. Med. Model. 2007, 22, 4–9. [Google Scholar] [CrossRef]
- Kampmeyer, C.; Johansen, J.V.; Holmberg, C.; Karlson, M.; Gersing, S.K.; Bordallo, H.N.; Kragelund, B.B.; Lerche, M.H.; Jourdain, I.; Winther, J.R.; et al. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth. Biol. 2020, 9, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Levin, D.E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2005, 69, 262–291. [Google Scholar] [CrossRef] [PubMed]
- Infante, E.; Etienne-Manneville, S. Intermediate filaments: Integration of cell mechanical properties during migration. Front. Cell Dev. Biol. 2022, 10, 951816. [Google Scholar] [CrossRef] [PubMed]
- Yadunandanan, N.N.; Samuel, V.; Ramesh, L.; Marib, A.; David, D.T.; Sundararaman, A. Actin cytoskeleton in angiogenesis. Biol. Open. 2022, 11, bio058899. [Google Scholar] [CrossRef]
- Pradhan, R.; Urbieta-Ortiz, V.A.; Kumar, S.; Mathew, R.; Ríos-Barrera, L.D. Shaping subcellular tubes through vesicle trafficking: Common and distinct pathways. Semin. Cell Dev. Biol. 2023, 133, 74–82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaglova, N.V.; Timokhina, E.P.; Obernikhin, S.S.; Yaglov, V.V. Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. Int. J. Mol. Sci. 2023, 24, 3107. https://doi.org/10.3390/ijms24043107
Yaglova NV, Timokhina EP, Obernikhin SS, Yaglov VV. Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. International Journal of Molecular Sciences. 2023; 24(4):3107. https://doi.org/10.3390/ijms24043107
Chicago/Turabian StyleYaglova, Nataliya V., Ekaterina P. Timokhina, Sergey S. Obernikhin, and Valentin V. Yaglov. 2023. "Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis" International Journal of Molecular Sciences 24, no. 4: 3107. https://doi.org/10.3390/ijms24043107
APA StyleYaglova, N. V., Timokhina, E. P., Obernikhin, S. S., & Yaglov, V. V. (2023). Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. International Journal of Molecular Sciences, 24(4), 3107. https://doi.org/10.3390/ijms24043107