A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology
Abstract
:1. Introduction
2. General Mechanisms of Venous Thromboembolism
3. Risk Factors for Venous Thromboembolism
3.1. Male Sex
3.2. Diabetes
3.3. Smoking
3.4. Obesity
3.5. Factor V Leiden (FVL)
3.6. Prothrombin G20210A Gene Mutation (PGM)
3.7. Plasminogen Activator Inhibitor-1
3.8. Oral Contraceptives and Hormonal Replacement
3.9. Cancer
3.10. Long-Haul Flight
3.11. Antiphospholipid Syndrome (APS)
3.12. Residual Venous Thrombosis (RVT)
3.13. SARS-CoV2 Disease (COVID-19)
3.14. Trauma and Fractures
3.15. Trauma and Immobilization without Fractures
3.16. Major and Minor Surgery
3.17. Pregnancy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin converting enzyme |
aPL | Antiphospholipid antibodies |
APS | Antiphospholipid syndrome |
β2GPI | Beta-2 glycoprotein I |
BMI | Body mass index |
CAT | Cancer associated thrombosis |
CI | Confidence interval |
COVID19 | SARS-CoV2 disease |
CVT | Cerebral vein thrombosis |
DAMPs | Damage-Associated Molecular Patterns |
DNA | Desoxyribonucleic acid |
DVT | Deep vein thrombosis |
ERS | European Respiratory Society |
ESC | European society of cardiology |
FVL | Leiden factor V |
HR | Hazard ratio |
ICU | Intensive care unit |
IL | Interleukin |
LAC | Lupus anticoagulant |
MP | Microparticles |
NETs | Neutrophil extracellular traps |
NO | Nitric oxide |
NOS | nitrogen species |
OR | Odds ratio |
PAI | Plasminogen Activator Inhibitor-1 |
PAMPs | Pathogen Associated Molecular Patterns |
PE | Pulmonary embolism |
PGM | Prothrombin G20210A Gene Mutation |
PLT | Platelets |
PMNs | Polymorphonuclear neutrophils |
ROS | Reactive oxygen species |
RVT | Residual venous thrombosis |
TF | Tissue factor |
TLR | Toll like receptor |
VTE | Venous thromboembolism |
vWF | Von Willebrand factor |
WBC | White blood cells |
References
- Klemen, N.D.; Feingold, P.L.; Hashimoto, B.; Wang, M.; Kleyman, S.; Brackett, A.; Gross, C.P.; Pei, K.Y. Mortality risk associated with venous thromboembolism: A systematic review and Bayesian meta-analysis. Lancet Haematol. 2020, 7, e583–e593. [Google Scholar] [CrossRef] [PubMed]
- Naess, I.A.; Christiansen, S.C.; Romundstad, P.; Cannegieter, S.C.; Rosendaal, F.R.; Hammerstrøm, J. Incidence and mortality of venous thrombosis: A population-based study. J. Thromb. Haemost. 2007, 5, 692–699. [Google Scholar] [CrossRef]
- Dentali, F.; Ageno, W.; Pomero, F.; Fenoglio, L.; Squizzato, A.; Bonzini, M. Time trends and case fatality rate of in-hospital treated pulmonary embolism during 11 years of observation in Northwestern Italy. Thromb. Haemost. 2016, 115, 399–405. [Google Scholar] [PubMed]
- Bouee, S.; Emery, C.; Samson, A.; Gourmelen, J.; Bailly, C.; Cotte, F.E. Incidence of venous thromboembolism in France: A retrospective analysis of a national insurance claims database. Thromb. J. 2016, 14, 4. [Google Scholar] [CrossRef]
- Guijarro Merino, R.; Montes Santiago, J.; San Roman Teran, C.M. Epidemiology of venous thromboembolie disease in Spain. Med. Clin. 2008, 13, 2–9. [Google Scholar]
- De Miguel-Diez, J.; Jimenez-Garcia, R.; Jimenez, D.; Monreal, M.; Guijarro, R.; Otero, R.; Hernandez-Barrera, V.; Trujillo-Santos, J.; Lopez de Andres, A.; Carrasco-Garrido, P.; et al. Trends in hospital admissions for pulmonary embolism in Spain from 2002 to 2011. Eur. Respir. J. 2014, 44, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Ohlmeier, C.; Leverkus, F.; Kloss, S.; Basic, E.; Bless, H.H. Estimating the incidence of venous thromboembolism (VTE) using various types of routine data of the German healthcare system. Z. Evidenz Fortbild. Qual. Gesundh. 2018, 139, 46–52. [Google Scholar] [CrossRef] [PubMed]
- ISCFWT Day. Thrombosis: A major contributor to the global disease burden. J. Thromb. Haemost. 2014, 12, 1580–1590. [Google Scholar] [CrossRef]
- Martinez, C.; Cohen, A.T.; Bamber, L.; Rietbrock, S. Epidemiology of first and recurrent venous thromboembolism: A population-based cohort study in patients without active cancer. Thromb. Haemost. 2014, 112, 255–263. [Google Scholar]
- Severinsen, M.T.; Johnsen, S.P.; Tjonneland, A.; Overvad, K.; Dethlefsen, C.; Kristensen, S.R. Body height and sex-related differences in incidence of venous thromboembolism: A Danish follow-up study. Eur. J. Intern. Med. 2010, 21, 268–272. [Google Scholar] [CrossRef]
- Stein, P.D.; Kayali, F.; Olson, R.E.; Milford, C.E. Pulmonary thromboembolism in Asians/Pacific Islanders in the United States: Analysis of data from the National Hospital Discharge Survey and the United States Bureau of the Census. Am. J. Med. 2004, 116, 435–442. [Google Scholar] [CrossRef]
- Tagalakis, V.; Patenaude, V.; Kahn, S.R.; Suissa, S. Incidence of and mortality from venous thromboembolism in a real-world population: The Q-VTE Study Cohort. Am. J. Med. 2013, 126, 832.e13–832.e21. [Google Scholar] [CrossRef]
- Alotaibi, G.S.; Wu, C.; Senthilselvan, A.; McMurtry, M.S. Secular Trends in Incidence and Mortality of Acute Venous Thromboembolism: The AB-VTE Population-Based Study. Am. J. Med. 2016, 129, 879.e19–879.e25. [Google Scholar] [CrossRef]
- Barco, S.; Mahmoudpour, S.H.; Valerio, L.; Klok, F.A.; Münzel, T.; Middeldorp, S.; Ageno, W.; Cohen, A.T.; Hunt, B.J.; Konstantinides, S.V.; et al. Trends in mortality related to pulmonary embolism in the European Region, 2000–2015: Analysis of vital registration data from the WHO Mortality Database. Lancet Respir. Med. 2020, 8, 277–287. [Google Scholar] [CrossRef]
- Barco, S.; Woersching, A.L.; Spyropoulos, A.C.; Piovella, F.; Mahan, C.E. European Union-28: An annualised cost-of-illness model for venous thromboembolism. Thromb. Haemost. 2016, 115, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Nelson, R.E.; Nyarko, K.A.; Richardson, L.C.; Raskob, G.E. The economic burden of incident venous thromboembolism in the United States: A review of estimated attributable healthcare costs. Thromb. Res. 2016, 137, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.A., Jr.; Spencer, F.A. Risk factors for venous thromboembolism. Circulation 2003, 107, I6–I9. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Pandor, A.; Tonkins, M.; Goodacre, S.; Sworn, K.; Clowes, M.; Griffin, X.L.; Holland, M.; Hunt, B.J.; de Wit, K.; Horner, D.; et al. Risk assessment models for venous thromboembolism in hospitalised adult patients: A systematic review. BMJ Open 2021, 11, e045672. [Google Scholar] [CrossRef] [PubMed]
- Van Es, N.; di Nisio, M.; Cesarman, G.; Kleinjan, A.; Otten, H.M.; Mahe, I.; Wilts, I.T.; Twint, D.C.; Porreca, E.; Arrieta, O.; et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica 2017, 102, 1494–1501. [Google Scholar] [CrossRef]
- Saha, P.; Humphries, J.; Modarai, B.; Mattock, K.; Waltham, M.; Evans, C.E.; Ahmad, A.; Patel, A.S.; Premaratne, S.; Lyons, O.T.; et al. Leukocytes and the natural history of deep vein thrombosis: Current concepts and future directions. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 506–512. [Google Scholar] [CrossRef]
- Koupenova, M.; Kehrel, B.E.; Corkrey, H.A.; Freedman, J.E. Thrombosis and platelets: An update. Eur. Heart J. 2017, 38, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G. Beyond Virchow’s Triad: Does cardiovascular inflammation explain the recurrent nature of venous thromboembolism? Vasc. Med. 2015, 20, 102–104. [Google Scholar] [CrossRef]
- Prandoni, P.; Noventa, F.; Ghirarduzzi, A.; Pengo, V.; Bernardi, E.; Pesavento, R.; Iotti, M.; Tormene, D.; Simioni, P.; Pagnan, A.; et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1626 patients. Haematologica 2007, 92, 199–205. [Google Scholar] [CrossRef]
- Blann, A.D.; Lip, G.Y. Virchowćs triad revisited: The importance of soluble coagulation factors, the endothelium, and platelets. Thromb. Res. 2001, 101, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T.; Esmon, N.L. The link between vascular features and thrombosis. Annu. Rev. Physiol. 2011, 73, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Invest. 2012, 122, 2331–2336. [Google Scholar] [CrossRef]
- Watson, S.P. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr. Pharm. Des. 2009, 15, 1358–1372. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, B.; Dwyer, K.; Enjyoji, K.; Robson, S.C. Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: Potential as therapeutic targets. Blood Cells Mol. Dis. 2006, 36, 217–222. [Google Scholar] [CrossRef]
- Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007, 7, 678–689. [Google Scholar] [CrossRef]
- Williams, M.R.; Azcutia, V.; Newton, G.; Alcaide, P.; Luscinskas, F.W. Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 2011, 32, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, A.S.; Martinod, K.; Seidman, M.A.; Wong, S.L.; Borissoff, J.I.; Piazza, G.; Libby, P.; Goldhaber, S.Z.; Mitchell, R.N.; Wagner, D.D.; et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J. Thromb. Haemost. 2014, 12, 860–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Wu, Y.; Xu, S.; Yin, Y.; Ageno, W.; de Stefano, V.; Zhao, Q.; Qi, X. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis. Thromb. J. 2022, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Cognasse, F.; Hamzeh, H.; Chavarin, P.; Acquart, S.; Genin, C.; Garraud, O. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell Biol. 2005, 83, 196–198. [Google Scholar] [CrossRef]
- Beutler, B.A. TLRs and innate immunity. Blood 2009, 113, 1399–1407. [Google Scholar] [CrossRef]
- Blasius, A.L.; Beutler, B. Intracellular toll-like receptors. Immunity 2010, 32, 305–315. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Heestermans, M.; Poenou, G.; Duchez, A.C.; Hamzeh-Cognasse, H.; Bertoletti, L.; Cognasse, F. Immunothrombosis and the Role of Platelets in Venous Thromboembolic Diseases. Int. J. Mol. Sci. 2022, 23, 13176. [Google Scholar] [CrossRef]
- Baglin, T.; Luddington, R.; Brown, K.; Baglin, C. High risk of recurrent venous thromboembolism in men. J. Thromb. Haemost. 2004, 2, 2152–2155. [Google Scholar] [CrossRef]
- Kyrle, P.A.; Minar, E.; Bialonczyk, C.; Hirschl, M.; Weltermann, A.; Eichinger, S. The risk of recurrent venous thromboembolism in men and women. N. Engl. J. Med. 2004, 350, 2558–2563. [Google Scholar] [CrossRef]
- Cosmi, B.; Legnani, C.; Tosetto, A.; Pengo, V.; Ghirarduzzi, A.; Testa, S.; Prisco, D.; Poli, D.; Tripodi, A.; Palareti, G.; et al. Sex, age and normal post-anticoagulation D-dimer as risk factors for recurrence after idiopathic venous thromboembolism in the Prolong study extension. J. Thromb. Haemost. 2010, 8, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Douketis, J.; Tosetto, A.; Marcucci, M.; Baglin, T.; Cosmi, B.; Cushman, M.; Kyrle, P.; Poli, D.; Tait, R.C.; Iorio, A.; et al. Risk of recurrence after venous thromboembolism in men and women: Patient level meta-analysis. BMJ 2011, 342, d813. [Google Scholar] [CrossRef] [Green Version]
- Roach, R.E.; Lijfering, W.M.; Tait, R.C.; Baglin, T.; Kyrle, P.A.; Cannegieter, S.C.; Rosendaal, F.R. Sex difference in the risk of recurrent venous thrombosis: A detailed analysis in four European cohorts. J. Thromb. Haemost. 2015, 13, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Olié, V.; Zhu, T.; Martinez, I.; Scarabin, P.Y.; Emmerich, J. Sex-specific risk factors for recurrent venous thromboembolism. Thromb. Res. 2012, 130, 16–20. [Google Scholar] [CrossRef]
- Silverstein, M.D.; Heit, J.A.; Mohr, D.N.; Petterson, T.M.; O’Fallon, W.M.; Melton, L.J., 3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: A 25-year population-based study. Arch. Intern. Med. 1998, 158, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, I.E.; Konstantinides, S.V.; Piazza, G.; Goldhaber, S.Z.; Larsen, T.B.; Sogaard, M.; Nielsen, P.B. Risk of Recurrent Venous Thromboembolism in Selected Subgroups of Men: A Danish Nationwide Cohort Study. TH Open 2022, 6, e378–e386. [Google Scholar] [CrossRef]
- Bai, J.; Ding, X.; Du, X.; Zhao, X.; Wang, Z.; Ma, Z. Diabetes is associated with increased risk of venous thromboembolism: A systematic review and meta-analysis. Thromb. Res. 2015, 135, 90–95. [Google Scholar] [CrossRef]
- Piazza, G.; Goldhaber, S.Z.; Kroll, A.; Goldberg, R.J.; Emery, C.; Spencer, F.A. Venous thromboembolism in patients with diabetes mellitus. Am. J. Med. 2012, 125, 709–716. [Google Scholar] [CrossRef]
- Hermanides, J.; Cohn, D.M.; Devries, J.H.; Kamphuisen, P.W.; Huijgen, R.; Meijers, J.C.; Hoekstra, J.B.; Buller, H.R. Venous thrombosis is associated with hyperglycemia at diagnosis: A case-control study. J. Thromb. Haemost. 2009, 7, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.J.; Selvin, E.; Lutsey, P.L.; Nambi, V.; Cushman, M.; Folsom, A.R. Glycemia (hemoglobin A1c) and incident venous thromboembolism in the Atherosclerosis Risk in Communities cohort study. Vasc. Med. 2013, 18, 245–250. [Google Scholar] [CrossRef]
- Mathis, A.; Villiger, L.; Reiner, M.F.; Egloff, M.; Schmid, H.R.; Stivala, S.; Limacher, A.; Mean, M.; Aujesky, D.; Rodondi, N.; et al. Elevated HbA1c is not associated with recurrent venous thromboembolism in the elderly, but with all-cause mortality- the SWEETCO 65+ study. Sci. Rep. 2020, 10, 2495. [Google Scholar] [CrossRef] [PubMed]
- Charlier, S.H.R.; Meier, C.; Jick, S.S.; Meier, C.R.; Becker, C. Association between glycemic control and risk of venous thromboembolism in diabetic patients: A nested case-control study. Cardiovasc. Diabetol. 2022, 21, 2. [Google Scholar] [CrossRef]
- Gariani, K.; Mavrakanas, T.; Combescure, C.; Perrier, A.; Marti, C. Is diabetes mellitus a risk factor for venous thromboembolism? A systematic review and meta-analysis of case-control and cohort studies. Eur. J. Intern. Med. 2016, 28, 52–58. [Google Scholar] [CrossRef]
- Phasha, M.N.; Soma, P.; Bester, J.; Pretorius, E.; Phulukdaree, A. Factor XIII-A Val34Leu and Tyr204Phe variants influence clot kinetics in a cohort of South African type 2 diabetes mellitus patients. Gene 2022, 834, 146637. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.J. Diabetes mellitus as a prothrombotic condition. J. Intern. Med. 2007, 262, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Branchi, A.; Chantarangkul, V.; Clerici, M.; Merati, G.; Artoni, A.; Mannucci, P.M. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J. Thromb. Thrombolysis 2011, 31, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Gregson, J.; Kaptoge, S.; Bolton, T.; Pennells, L.; Willeit, P.; Burgess, S.; Bell, S.; Sweeting, M.; Rimm, E.B.; Kabrhel, C.; et al. Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiol. 2019, 4, 163–173. [Google Scholar] [CrossRef]
- Blondon, M.; Wiggins, K.L.; McKnight, B.; Psaty, B.M.; Rice, K.M.; Heckbert, S.R.; Smith, N.L. The association of smoking with venous thrombosis in women. A population-based, case-control study. Thromb. Haemost. 2013, 109, 891–896. [Google Scholar] [PubMed]
- Enga, K.F.; Braekkan, S.K.; Hansen-Krone, I.J.; le Cessie, S.; Rosendaal, F.R.; Hansen, J.B. Cigarette smoking and the risk of venous thromboembolism: The Tromso Study. J. Thromb. Haemost. 2012, 10, 2068–2074. [Google Scholar] [CrossRef]
- Mi, Y.; Yan, S.; Lu, Y.; Liang, Y.; Li, C. Venous thromboembolism has the same risk factors as atherosclerosis: A PRISMA-compliant systemic review and meta-analysis. Medicine 2016, 95, e4495. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Liu, Z.H.; Yao, F.J.; Zeng, W.T.; Zheng, D.D.; Dong, Y.G.; Wu, S.H. Current and former smoking and risk for venous thromboembolism: A systematic review and meta-analysis. PLoS Med. 2013, 10, e1001515. [Google Scholar] [CrossRef]
- Nedeljkovic, Z.S.; Gokce, N.; Loscalzo, J. Mechanisms of oxidative stress and vascular dysfunction. Postgrad. Med. J. 2003, 79, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Borch, K.H.; Braekkan, S.K.; Mathiesen, E.B.; Njolstad, I.; Wilsgaard, T.; Stormer, J.; Hansen, J.B. Abdominal obesity is essential for the risk of venous thromboembolism in the metabolic syndrome: The Tromso study. J. Thromb. Haemost. 2009, 7, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Puurunen, M.K.; Gona, P.N.; Larson, M.G.; Murabito, J.M.; Magnani, J.W.; O’Donnell, C.J. Epidemiology of venous thromboembolism in the Framingham Heart Study. Thromb. Res. 2016, 145, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Darvall, K.A.; Sam, R.C.; Silverman, S.H.; Bradbury, A.W.; Adam, D.J. Obesity and thrombosis. Eur. J. Vasc. Endovasc. Surg. 2007, 33, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Schafer, K.; Konstantinides, S. Adipokines and thrombosis. Clin. Exp. Pharmacol. Physiol. 2011, 38, 864–871. [Google Scholar] [CrossRef]
- Wassink, A.M.; Olijhoek, J.K.; Visseren, F.L. The metabolic syndrome: Metabolic changes with vascular consequences. Eur. J. Clin. Invest. 2007, 37, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.H.; Scherer, P.E. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 2005, 96, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Bertina, R.M.; Koeleman, B.P.; Koster, T.; Rosendaal, F.R.; Dirven, R.J.; de Ronde, H.; van der Velden, P.A.; Reitsma, P.H. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994, 369, 64–67. [Google Scholar] [CrossRef]
- De Stefano, V.; Chiusolo, P.; Paciaroni, K.; Leone, G. Epidemiology of factor V Leiden: Clinical implications. Semin. Thromb. Hemost. 1998, 24, 367–379. [Google Scholar] [CrossRef]
- Stevens, S.M.; Woller, S.C.; Bauer, K.A.; Kasthuri, R.; Cushman, M.; Streiff, M.; Lim, W.; Douketis, J.D. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J. Thromb. Thrombolysis 2016, 41, 154–164. [Google Scholar] [CrossRef]
- Christiansen, S.C.; Cannegieter, S.C.; Koster, T.; Vandenbroucke, J.P.; Rosendaal, F.R. Thrombophilia, clinical factors, and recurrent venous thrombotic events. JAMA 2005, 293, 2352–2361. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.K.; Hankey, G.J.; Quinlan, D.J.; Eikelboom, J.W. Risk of recurrent venous thromboembolism in patients with common thrombophilia: A systematic review. Arch. Intern. Med. 2006, 166, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, L.; Li, Y.; Zhu, L.; Wang, C.; Liu, J.; Fang, S. Prevalence and geographical variation of Factor V Leiden in patients with cerebral venous thrombosis: A meta-analysis. PLoS ONE 2018, 13, e0203309. [Google Scholar] [CrossRef]
- Rehak, M.; Rehak, J.; Muller, M.; Faude, S.; Faude, F.; Siegemund, A.; Krcova, V.; Slavik, L.; Hasenclever, D.; Scholz, M.; et al. The prevalence of activated protein C (APC) resistance and factor V Leiden is significantly higher in patients with retinal vein occlusion without general risk factors. Case-control study and meta-analysis. Thromb. Haemost. 2008, 99, 925–929. [Google Scholar] [CrossRef]
- De Stefano, V.; Martinelli, I. Splanchnic vein thrombosis: Clinical presentation, risk factors and treatment. Intern. Emerg. Med. 2010, 5, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Heit, J.A.; Sobell, J.L.; Li, H.; Sommer, S.S. The incidence of venous thromboembolism among Factor V Leiden carriers: A community-based cohort study. J. Thromb. Haemost. 2005, 3, 305–311. [Google Scholar] [CrossRef]
- Simone, B.; De Stefano, V.; Leoncini, E.; Zacho, J.; Martinelli, I.; Emmerich, J.; Rossi, E.; Folsom, A.R.; Almawi, W.Y.; Scarabin, P.Y.; et al. Risk of venous thromboembolism associated with single and combined effects of Factor V Leiden, Prothrombin 20210A and Methylenetethraydrofolate reductase C677T: A meta-analysis involving over 11,000 cases and 21,000 controls. Eur. J. Epidemiol. 2013, 28, 621–647. [Google Scholar] [CrossRef]
- Poort, S.R.; Rosendaal, F.R.; Reitsma, P.H.; Bertina, R.M. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996, 88, 3698–3703. [Google Scholar] [CrossRef]
- Martinelli, I.; Bucciarelli, P.; Mannucci, P.M. Thrombotic risk factors: Basic pathophysiology. Crit. Care Med. 2010, 38, S3–S9. [Google Scholar] [CrossRef]
- Rosendaal, F.R.; Doggen, C.J.; Zivelin, A.; Arruda, V.R.; Aiach, M.; Siscovick, D.S.; Hillarp, A.; Watzke, H.H.; Bernardi, F.; Cumming, A.M.; et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb. Haemost. 1998, 79, 706–708. [Google Scholar] [PubMed]
- Gonzalez, J.V.; Barboza, A.G.; Vazquez, F.J.; Gandara, E. Prevalence and Geographical Variation of Prothrombin G20210A Mutation in Patients with Cerebral Vein Thrombosis: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0151607. [Google Scholar] [CrossRef] [Green Version]
- Segal, J.B.; Brotman, D.J.; Necochea, A.J.; Emadi, A.; Samal, L.; Wilson, L.M.; Crim, M.T.; Bass, E.B. Predictive value of factor V Leiden and prothrombin G20210A in adults with venous thromboembolism and in family members of those with a mutation: A systematic review. JAMA 2009, 301, 2472–2485. [Google Scholar] [CrossRef]
- Tsantes, A.E.; Nikolopoulos, G.K.; Bagos, P.G.; Bonovas, S.; Kopterides, P.; Vaiopoulos, G. The effect of the plasminogen activator inhibitor-1 4G/5G polymorphism on the thrombotic risk. Thromb. Res. 2008, 122, 736–742. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, Y.; Li, X.; Peng, X.; Peng, N.; Song, J.; Xu, M. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism—A meta-analysis and systematic review. Vasa 2020, 49, 141–146. [Google Scholar] [CrossRef]
- Folsom, A.R.; Cushman, M.; Heckbert, S.R.; Rosamond, W.D.; Aleksic, N. Prospective study of fibrinolytic markers and venous thromboembolism. J. Clin. Epidemiol. 2003, 56, 598–603. [Google Scholar] [CrossRef]
- Abou-Ismail, M.Y.; Citla Sridhar, D.; Nayak, L. Estrogen and thrombosis: A bench to bedside review. Thromb. Res. 2020, 192, 40–51. [Google Scholar] [CrossRef] [PubMed]
- De Bastos, M.; Stegeman, B.H.; Rosendaal, F.R.; van Hylckama Vlieg, A.; Helmerhorst, F.M.; Stijnen, T.; Dekkers, O.M. Combined oral contraceptives: Venous thrombosis. Cochrane Database Syst. Rev. 2014, 3, CD010813. [Google Scholar] [CrossRef] [PubMed]
- Rovinski, D.; Ramos, R.B.; Fighera, T.M.; Casanova, G.K.; Spritzer, P.M. Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: A systematic review and meta-analysis. Thromb. Res. 2018, 168, 83–95. [Google Scholar] [CrossRef]
- Amoozegar, F.; Ronksley, P.E.; Sauve, R.; Menon, B.K. Hormonal contraceptives and cerebral venous thrombosis risk: A systematic review and meta-analysis. Front. Neurol. 2015, 6, 7. [Google Scholar] [CrossRef]
- Eischer, L.; Eichinger, S.; Kyrle, P.A. The risk of recurrence in women with venous thromboembolism while using estrogens: A prospective cohort study. J. Thromb. Haemost. 2014, 12, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Godsland, I.F.; Winkler, U.; Lidegaard, O.; Crook, D. Occlusive vascular diseases in oral contraceptive users: Epidemiology, pathology and mechanisms. Drugs 2000, 60, 721–869. [Google Scholar] [CrossRef]
- Kluft, C.; Lansink, M. Effect of oral contraceptives on haemostasis variables. Thromb. Haemost. 1997, 78, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Fawer, R.; Dettling, A.; Weihs, D.; Welti, H.; Schelling, J.L. Effect of the menstrual cycle, oral contraception and pregnancy on forearm blood flow, venous distensibility and clotting factors. Eur. J. Clin. Pharmacol. 1978, 13, 251–257. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Bauersachs, R.; Brenner, B.; Campanini, M.; Cohen, A.; Connors, J.M.; Fontanella, A.; Gussoni, G.; Huisman, M.V.; et al. Apixaban versus Dalteparin for the Treatment of Acute Venous Thromboembolism in Patients with Cancer: The Caravaggio Study. Thromb. Haemost. 2018, 118, 1668–1678. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef]
- Horsted, F.; West, J.; Grainge, M.J. Risk of venous thromboembolism in patients with cancer: A systematic review and meta-analysis. PLoS Med. 2012, 9, e1001275. [Google Scholar] [CrossRef]
- Gussoni, G.; Frasson, S.; la Regina, M.; di Micco, P.; Monreal, M.; Investigators, R. Three-month mortality rate and clinical predictors in patients with venous thromboembolism and cancer. Findings from the RIETE registry. Thromb. Res. 2013, 131, 24–30. [Google Scholar] [CrossRef]
- Blom, J.W.; Vanderschoot, J.P.; Oostindier, M.J.; Osanto, S.; van der Meer, F.J.; Rosendaal, F.R. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: Results of a record linkage study. J. Thromb. Haemost. 2006, 4, 529–535. [Google Scholar] [CrossRef]
- Imberti, D.; Agnelli, G.; Ageno, W.; Moia, M.; Palareti, G.; Pistelli, R.; Rossi, R.; Verso, M. Clinical characteristics and management of cancer-associated acute venous thromboembolism: Findings from the MASTER Registry. Haematologica 2008, 93, 273–278. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Alkindi, S.; Dennison, D.; Pathare, A. Arterial and venous thrombotic complications with thalidomide in multiple myeloma. Arch. Med. Res. 2008, 39, 257–258. [Google Scholar] [CrossRef]
- Hirsh, J. Risk of thrombosis with lenalidomide and its prevention with aspirin. Chest 2007, 131, 275–277. [Google Scholar] [CrossRef]
- Roopkumar, J.; Swaidani, S.; Kim, A.S.; Thapa, B.; Gervaso, L.; Hobbs, B.P.; Wei, W.; Alban, T.J.; Funchain, P.; Kundu, S.; et al. Increased Incidence of Venous Thromboembolism with Cancer Immunotherapy. Med 2021, 2, 423–434. [Google Scholar] [CrossRef]
- Kilickap, S.; Abali, H.; Celik, I. Bevacizumab, bleeding, thrombosis, and warfarin. J. Clin. Oncol. 2003, 21, 3542. [Google Scholar] [CrossRef] [PubMed]
- Seng, S.; Liu, Z.; Chiu, S.K.; Proverbs-Singh, T.; Sonpavde, G.; Choueiri, T.K.; Tsao, C.K.; Yu, M.; Hahn, N.M.; Oh, W.K.; et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: A systematic review and meta-analysis. J. Clin. Oncol. 2012, 30, 4416–4426. [Google Scholar] [CrossRef] [PubMed]
- Nalluri, S.R.; Chu, D.; Keresztes, R.; Zhu, X.; Wu, S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis. JAMA 2008, 300, 2277–2285. [Google Scholar] [CrossRef]
- Trujillo-Santos, J.; Prandoni, P.; Rivron-Guillot, K.; Roman, P.; Sanchez, R.; Tiberio, G.; Monreal, M.; Investigators, R. Clinical outcome in patients with venous thromboembolism and hidden cancer: Findings from the RIETE Registry. J. Thromb. Haemost. 2008, 6, 251–255. [Google Scholar] [CrossRef]
- Prandoni, P.; Lensing, A.W.; Piccioli, A.; Bernardi, E.; Simioni, P.; Girolami, B.; Marchiori, A.; Sabbion, P.; Prins, M.H.; Noventa, F.; et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002, 100, 3484–3488. [Google Scholar] [CrossRef]
- Mulder, F.I.; Horvath-Puho, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Buller, H.R.; Sorensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Khorana, A.A. Cancer, clots and consensus: New understanding of an old problem. J. Clin. Oncol. 2009, 27, 4821–4826. [Google Scholar] [CrossRef]
- Hisada, Y.; Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017, 130, 1499–1506. [Google Scholar] [CrossRef]
- Blix, K.; Jensvoll, H.; Braekkan, S.K.; Hansen, J.B. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism—The Tromso study. PLoS ONE 2013, 8, e73447. [Google Scholar] [CrossRef] [PubMed]
- Simanek, R.; Vormittag, R.; Ay, C.; Alguel, G.; Dunkler, D.; Schwarzinger, I.; Steger, G.; Jaeger, U.; Zielinski, C.; Pabinger, I.; et al. High platelet count associated with venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). J. Thromb. Haemost. 2010, 8, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Lyman, G.H. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005, 104, 2822–2829. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Pabinger, I.; Posch, F. Flamethrowers: Blood cells and cancer thrombosis risk. Hematol. Am. Soc. Hematol. Educ. Program 2014, 2014, 410–417. [Google Scholar] [CrossRef]
- Langer, F.; Bokemeyer, C. Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hamostaseologie 2012, 32, 95–104. [Google Scholar]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007, 110, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Dalal, M.; Lin, J.; Connolly, G.C. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer 2013, 119, 648–655. [Google Scholar] [CrossRef]
- White, R.H.; Zhou, H.; Murin, S.; Harvey, D. Effect of ethnicity and gender on the incidence of venous thromboembolism in a diverse population in California in 1996. Thromb. Haemost. 2005, 93, 298–305. [Google Scholar]
- Şabanoğlu, C. The secret enemy during a flight: Economy class syndrome. Anatol. J. Cardiol. 2021, 25, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Philbrick, J.T.; Shumate, R.; Siadaty, M.S.; Becker, D.M. Air travel and venous thromboembolism: A systematic review. J. Gen. Intern. Med. 2007, 22, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.; Parisini, E.; Mozaffarian, D. Meta-analysis: Travel and risk for venous thromboembolism. Ann. Intern. Med. 2009, 151, 180–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannegieter, S.C. Travel-related thrombosis. Best Pract. Res. Clin. Haematol. 2012, 25, 345–350. [Google Scholar] [CrossRef]
- Cannegieter, S.C.; Doggen, C.J.; van Houwelingen, H.C.; Rosendaal, F.R. Travel-related venous thrombosis: Results from a large population-based case control study (MEGA study). PLoS Med. 2006, 3, e307. [Google Scholar] [CrossRef]
- Brar, R.; Saha, P.K. In-flight announcements and messages on safety leaflets may be useful to reduce the risk of deep vein thrombosis (DVT) during long distance air travel. Travel Med. Infect. Dis. 2020, 33, 101515. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, I.; Taioli, E.; Battaglioli, T.; Podda, G.M.; Passamonti, S.M.; Pedotti, P.; Mannucci, P.M. Risk of venous thromboembolism after air travel: Interaction with thrombophilia and oral contraceptives. Arch. Intern. Med. 2003, 163, 2771–2774. [Google Scholar] [CrossRef]
- Parkin, L.; Bell, M.L.; Herbison, G.P.; Paul, C.; Skegg, D.C. Air travel and fatal pulmonary embolism. Thromb. Haemost. 2006, 95, 807–814. [Google Scholar] [PubMed]
- MacCallum, P.K.; Ashby, D.; Hennessy, E.M.; Letley, L.; Martin, J.; Mt-Isa, S.; Vickers, M.R.; Whyte, K. Cumulative flying time and risk of venous thromboembolism. Br. J. Haematol. 2011, 155, 613–619. [Google Scholar] [CrossRef]
- Kuipers, S.; Schreijer, A.J.; Cannegieter, S.C.; Buller, H.R.; Rosendaal, F.R.; Middeldorp, S. Travel and venous thrombosis: A systematic review. J. Intern. Med. 2007, 262, 615–634. [Google Scholar] [CrossRef]
- Garcia, D.; Erkan, D. Diagnosis and Management of the Antiphospholipid Syndrome. N. Engl. J. Med. 2018, 379, 1290. [Google Scholar] [CrossRef]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; de Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Bucci, T.; Menichelli, D.; Pignatelli, P.; Triggiani, M.; Violi, F.; Pastori, D. Relationship of Antiphospholipid Antibodies to Risk of Dementia: A Systematic Review. J. Alzheimer’s Dis. 2019, 69, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Bucci, T.; Ames, P.R.J.; Triggiani, M.; Parente, R.; Ciampa, A.; Pignatelli, P.; Pastori, D.; The Multicenter ATHERO-APS Study group. Cardiac and vascular features of arterial and venous primary antiphospholipid syndrome. The multicenter ATHERO-APS study. Thromb. Res. 2022, 209, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Luciani, D.; Bertolini, G.; Barbui, T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: A systematic review of the literature. Blood 2003, 101, 1827–1832. [Google Scholar] [CrossRef]
- Galli, M.; Borrelli, G.; Jacobsen, E.M.; Marfisi, R.M.; Finazzi, G.; Marchioli, R.; Wisloff, F.; Marziali, S.; Morboeuf, O.; Barbui, T.; et al. Clinical significance of different antiphospholipid antibodies in the WAPS (warfarin in the antiphospholipid syndrome) study. Blood 2007, 110, 1178–1183. [Google Scholar] [CrossRef]
- Pengo, V.; Ruffatti, A.; Legnani, C.; Gresele, P.; Barcellona, D.; Erba, N.; Testa, S.; Marongiu, F.; Bison, E.; Denas, G.; et al. Clinical course of high-risk patients diagnosed with antiphospholipid syndrome. J. Thromb. Haemost. 2010, 8, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Ettorre, E.; Menichelli, D.; Pani, A.; Violi, F.; Pastori, D. Seronegative antiphospholipid syndrome: Refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica 2020, 105, 562–572. [Google Scholar] [CrossRef]
- Chaturvedi, S.; McCrae, K.R. Diagnosis and management of the antiphospholipid syndrome. Blood Rev. 2017, 31, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Braunstein, E.M.; Yuan, X.; Yu, J.; Alexander, A.; Chen, H.; Gavriilaki, E.; Alluri, R.; Streiff, M.B.; Petri, M.; et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood 2020, 135, 239–251. [Google Scholar] [CrossRef]
- Tan, M.; Mos, I.C.; Klok, F.A.; Huisman, M.V. Residual venous thrombosis as predictive factor for recurrent venous thromboembolim in patients with proximal deep vein thrombosis: A sytematic review. Br. J. Haematol. 2011, 153, 168–178. [Google Scholar] [CrossRef]
- Mazetto, B.M.; Orsi, F.L.A.; Silveira, S.A.F.; Bittar, L.F.; Flores-Nascimento, M.M.C.; Zapponi, K.C.S.; Colella, M.P.; de Paula, E.V.; Annichino-Bizzacchi, J.M. Residual Vein Thrombosis Echogenicity Is Associated to the Risk of DVT Recurrence: A Cohort Study. Clin. Appl. Thromb. Hemost. 2018, 24, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P. Risk factors of recurrent venous thromboembolism: The role of residual vein thrombosis. Pathophysiol. Haemost. Thromb. 2003, 33, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Lensing, A.W.; Prins, M.H.; Bernardi, E.; Marchiori, A.; Bagatella, P.; Frulla, M.; Mosena, L.; Tormene, D.; Piccioli, A.; et al. Residual venous thrombosis as a predictive factor of recurrent venous thromboembolism. Ann. Intern. Med. 2002, 137, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Burn, E.; Duarte-Salles, T.; Fernandez-Bertolin, S.; Reyes, C.; Kostka, K.; Delmestri, A.; Rijnbeek, P.; Verhamme, K.; Prieto-Alhambra, D. Venous or arterial thrombosis and deaths among COVID-19 cases: A European network cohort study. Lancet Infect. Dis. 2022, 22, 1142–1152. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Jilma, B.; Pabinger, I.; Ay, C. Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 2020, 4, 1178–1191. [Google Scholar] [CrossRef]
- Hasan, S.S.; Radford, S.; Kow, C.S.; Zaidi, S.T.R. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2020, 50, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, F.; Barco, S.; Kamangar, F.; Heresi, G.A.; Emadi, A.; Kaymaz, C.; Jansa, P.; Reis, A.; Rashidi, A.; Taghizadieh, A.; et al. Incidence of symptomatic venous thromboembolism following hospitalization for coronavirus disease 2019: Prospective results from a multi-center study. Thromb. Res. 2021, 198, 135–138. [Google Scholar] [CrossRef]
- Patell, R.; Bogue, T.; Koshy, A.; Bindal, P.; Merrill, M.; Aird, W.C.; Bauer, K.A.; Zwicker, J.I. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood 2020, 136, 1342–1346. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W.; Kaatz, S.; Latack, K.; Schultz, L.; Poisson, L. Factors Associated With Risk of Postdischarge Thrombosis in Patients With COVID-19. JAMA Netw. Open 2021, 4, e2135397. [Google Scholar] [CrossRef]
- Engelen, M.M.; Vandenbriele, C.; Balthazar, T.; Claeys, E.; Gunst, J.; Guler, I.; Jacquemin, M.; Janssens, S.; Lorent, N.; Liesenborghs, L.; et al. Venous Thromboembolism in Patients Discharged after COVID-19 Hospitalization. Semin. Thromb. Hemost. 2021, 47, 362–371. [Google Scholar] [CrossRef]
- Roubinian, N.H.; Vinson, D.R.; Knudson-Fitzpatrick, T.; Mark, D.G.; Skarbinski, J.; Lee, C.; Liu, V.X.; Pai, A.P. Risk of posthospital venous thromboembolism in patients with COVID-19 varies by SARS-CoV-2 period and vaccination status. Blood Adv. 2023, 7, 141–144. [Google Scholar] [CrossRef]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine 2020, 29, 100639. [Google Scholar] [CrossRef]
- Xie, J.; Prats-Uribe, A.; Feng, Q.; Wang, Y.; Gill, D.; Paredes, R.; Prieto-Alhambra, D. Clinical and Genetic Risk Factors for Acute Incident Venous Thromboembolism in Ambulatory Patients with COVID-19. JAMA Intern. Med. 2022, 182, 1063–1070. [Google Scholar] [CrossRef]
- Law, N.; Chan, J.; Kelly, C.; Auffermann, W.F.; Dunn, D.P. Incidence of pulmonary embolism in COVID-19 infection in the ED: Ancestral, Delta, Omicron variants and vaccines. Emerg. Radiol. 2022, 29, 625–629. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H.; et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Gianni, P.; Goldin, M.; Ngu, S.; Zafeiropoulos, S.; Geropoulos, G.; Giannis, D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review. World J. Exp. Med. 2022, 12, 53–67. [Google Scholar] [CrossRef]
- Tudoran, C.; Velimirovici, D.E.; Berceanu-Vaduva, D.M.; Rada, M.; Voita-Mekeres, F.; Tudoran, M. Increased Susceptibility for Thromboembolic Events versus High Bleeding Risk Associated with COVID-19. Microorganisms 2022, 10, 1738. [Google Scholar] [CrossRef]
- The Lancet Haematology. COVID-19 coagulopathy: An evolving story. Lancet Haematol. 2020, 7, e425. [Google Scholar] [CrossRef]
- Violi, F.; Pastori, D.; Cangemi, R.; Pignatelli, P.; Loffredo, L. Hypercoagulation and Antithrombotic Treatment in Coronavirus 2019: A New Challenge. Thromb. Haemost. 2020, 120, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.A.; Levine, D.A.; Blumberg, N.; Flanders, S.A.; Chopra, V.; Langa, K.M. Triggers of hospitalization for venous thromboembolism. Circulation 2012, 125, 2092–2099. [Google Scholar] [CrossRef]
- Wang, T.; Guo, J.; Long, Y.; Yin, Y.; Hou, Z. Risk factors for preoperative deep venous thrombosis in hip fracture patients: A meta-analysis. J. Orthop. Traumatol. 2022, 23, 19. [Google Scholar] [CrossRef]
- Zhang, B.F.; Wei, X.; Huang, H.; Wang, P.F.; Liu, P.; Qu, S.W.; Li, J.H.; Wang, H.; Cong, Y.X.; Zhuang, Y.; et al. Deep vein thrombosis in bilateral lower extremities after hip fracture: A retrospective study of 463 patients. Clin. Interv. Aging 2018, 13, 681–689. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, W.; Li, J.; Zhao, K.; Zhang, J.; Meng, H.; Zhang, Y.; Zhang, Q. Incidence and locations of preoperative deep venous thrombosis (DVT) of lower extremity following tibial plateau fractures: A prospective cohort study. J. Orthop. Surg. Res. 2021, 16, 113. [Google Scholar] [CrossRef]
- Tan, Z.; Hu, H.; Wang, Z.; Wang, Y.; Zhang, Y. Prevalence and risk factors of preoperative deep venous thrombosis in closed patella fracture: A prospective cohort study. J. Orthop. Surg. Res. 2021, 16, 404. [Google Scholar] [CrossRef]
- Yang, W.; Wang, H.; Wei, Q.; Ding, K.; Jia, Y.; Li, C.; Zhu, Y.; Chen, W. Preoperative incidence and risk factors of deep vein thrombosis in patients with an isolated patellar fracture. BMC Musculoskelet. Disord. 2022, 23, 204. [Google Scholar] [CrossRef]
- Williams, J.R.; Little, M.T.; Kramer, P.A.; Benirschke, S.K. Incidence of Preoperative Deep Vein Thrombosis in Calcaneal Fractures. J. Orthop. Trauma 2016, 30, e242–e245. [Google Scholar] [CrossRef]
- Meng, H.; Zhu, Y.; Zhang, J.; Li, J.; Zhao, K.; Zhang, Y.; Chen, W. Incidence and risk factor for preoperative deep vein thrombosis (DVT) in isolated calcaneal fracture, a prospective cohort study. Foot Ankle Surg. 2021, 27, 510–514. [Google Scholar] [CrossRef]
- Ma, J.; Qin, J.; Shang, M.; Zhou, Y.; Zhang, Y.; Zhu, Y. Incidence and risk factors of preoperative deep venous thrombosis in closed tibial shaft fracture: A prospective cohort study. Arch. Orthop. Trauma Surg. 2022, 142, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.S.; Esser, M.; Jain, A. Thromboembolic events in pelvic and acetabulum fractures: A systematic review of the current literature on incidence, screening, and thromboprophylaxis. Int. Orthop. 2022, 46, 1707–1720. [Google Scholar] [CrossRef] [PubMed]
- Giladi, O.; Steinberg, D.M.; Peleg, K.; Tanne, D.; Givon, A.; Grossman, E.; Klein, Y.; Avigdori, S.; Greenberg, G.; Katz, R.; et al. Head trauma is the major risk factor for cerebral sinus-vein thrombosis. Thromb. Res. 2016, 137, 26–29. [Google Scholar] [CrossRef]
- Mackman, N. Role of tissue factor in hemostasis and thrombosis. Blood Cells Mol. Dis. 2006, 36, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.F.; Ludlam, C.A. Plasma microparticles and vascular disorders. Br. J. Haematol. 2007, 137, 36–48. [Google Scholar] [CrossRef]
- Horner, D.; Pandor, A.; Goodacre, S.; Clowes, M.; Hunt, B.J. Individual risk factors predictive of venous thromboembolism in patients with temporary lower limb immobilization due to injury: A systematic review. J. Thromb. Haemost. 2019, 17, 329–344. [Google Scholar] [CrossRef]
- Day, S.M.; Reeve, J.L.; Pedersen, B.; Farris, D.M.; Myers, D.D.; Im, M.; Wakefield, T.W.; Mackman, N.; Fay, W.P. Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 2005, 105, 192–198. [Google Scholar] [CrossRef]
- Martin, D.; Mantziari, S.; Demartines, N.; Hubner, M. Defining Major Surgery: A Delphi Consensus Among European Surgical Association (ESA) Members. World J. Surg. 2020, 44, 2211–2219. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jimenez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. 2019, 54, 1901647. [Google Scholar]
- White, R.H.; Zhou, H.; Romano, P.S. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb. Haemost. 2003, 90, 446–455. [Google Scholar]
- Nguyen, N.T.; Hinojosa, M.W.; Fayad, C.; Varela, E.; Konyalian, V.; Stamos, M.J.; Wilson, S.E. Laparoscopic surgery is associated with a lower incidence of venous thromboembolism compared with open surgery. Ann. Surg. 2007, 246, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, R.F.; Sujatha-Bhaskar, S.; Li, S.; Stamos, M.J.; Nguyen, N.T. Venous thromboembolism in common laparoscopic abdominal surgical operations. Am. J. Surg. 2017, 214, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Khavanin, N.; Rambachan, A.; McCarthy, R.J.; Mlodinow, A.S.; de Oliveria, G.S., Jr.; Stock, M.C.; Gust, M.J.; Mahvi, D.M. Surgical duration and risk of venous thromboembolism. JAMA Surg. 2015, 150, 110–117. [Google Scholar] [CrossRef]
- Mlodinow, A.S.; Khavanin, N.; Ver Halen, J.P.; Rambachan, A.; Gutowski, K.A.; Kim, J.Y. Increased anaesthesia duration increases venous thromboembolism risk in plastic surgery: A 6-year analysis of over 19,000 cases using the NSQIP dataset. J. Plast. Surg. Hand Surg. 2015, 49, 191–197. [Google Scholar] [CrossRef]
- Kano, D.; Hu, C.; Thornley, C.J.; Cruz, C.Y.; Soper, N.J.; Preston, J.F. Risk factors associated with venous thromboembolism in laparoscopic surgery in non-obese patients with benign disease. Surg. Endosc. 2022, 37, 592–606. [Google Scholar] [CrossRef]
- Santana, D.C.; Emara, A.K.; Orr, M.N.; Klika, A.K.; Higuera, C.A.; Krebs, V.E.; Molloy, R.M.; Piuzzi, N.S. An Update on Venous Thromboembolism Rates and Prophylaxis in Hip and Knee Arthroplasty in 2020. Medicina 2020, 56, 41. [Google Scholar] [CrossRef] [PubMed]
- Albayati, M.A.; Grover, S.P.; Saha, P.; Lwaleed, B.A.; Modarai, B.; Smith, A. Postsurgical Inflammation as a Causative Mechanism of Venous Thromboembolism. Semin. Thromb. Hemost. 2015, 41, 615–620. [Google Scholar] [CrossRef]
- Scheres, L.J.J.; Lijfering, W.M.; Groenewegen, N.F.M.; Koole, S.; de Groot, C.J.M.; Middeldorp, S.; Cannegieter, S.C. Hypertensive Complications of Pregnancy and Risk of Venous Thromboembolism. Hypertension 2020, 75, 781–787. [Google Scholar] [CrossRef]
- Abdul Sultan, A.; West, J.; Stephansson, O.; Grainge, M.J.; Tata, L.J.; Fleming, K.M.; Humes, D.; Ludvigsson, J.F. Defining venous thromboembolism and measuring its incidence using Swedish health registries: A nationwide pregnancy cohort study. BMJ Open 2015, 5, e008864. [Google Scholar] [CrossRef]
- Kourlaba, G.; Relakis, J.; Kontodimas, S.; Holm, M.V.; Maniadakis, N. A systematic review and meta-analysis of the epidemiology and burden of venous thromboembolism among pregnant women. Int. J. Gynaecol. Obstet. 2016, 132, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.G.; Lee, J.H.; Bang, S.M. Incidence of Pregnancy-associated Venous Thromboembolism: Second Nationwide Study. Thromb. Haemost. 2023. [Google Scholar] [CrossRef] [PubMed]
- Goualou, M.; Noumegni, S.; de Moreuil, C.; Le Guillou, M.; de Coninck, G.; Hoffmann, C.; Robin, S.; Morcel, K.; le Moigne, E.; Tremouilhac, C.; et al. Venous Thromboembolism Associated with Assisted Reproductive Technology: A Systematic Review and Meta-analysis. Thromb. Haemost. 2022. [Google Scholar] [CrossRef] [PubMed]
- Pintao, M.C.; Ribeiro, D.D.; Bezemer, I.D.; Garcia, A.A.; de Visser, M.C.; Doggen, C.J.; Lijfering, W.M.; Reitsma, P.H.; Rosendaal, F.R. Protein S levels and the risk of venous thrombosis: Results from the MEGA case-control study. Blood 2013, 122, 3210–3219. [Google Scholar] [CrossRef] [PubMed]
- James, A.H.; Rhee, E.; Thames, B.; Philipp, C.S. Characterization of antithrombin levels in pregnancy. Thromb. Res. 2014, 134, 648–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Country | Incidence of VTE | Incidence of DVT | Incidence of PE |
---|---|---|---|
Norway [2] | 1.43 | 0.93 | 0.50 |
Italy [3] | - | - | 0.41–0.55 |
France [4] | 1.84 | 1.198 | 0.64 |
Spain | 1.54 [5] | - | 0.33 [6] |
Germany [7] | 1.4–3.2 | 1.1–2.9 | 0.8–1.6 |
United Kingdom [8,9] | 0.75–1.31 | 0.40 | 0.34 |
Denmark [10] | 1.15 | 0.65 | 0.51 |
United States of America [11] | 1.17 | 0.48 | 0.69 |
Canada [12,13] | 1.22–1.38 | 0.78 | 0.45 |
Australia [8] | 0.83 | 0.52 | 0.31 |
Taiwan [8] | 0.16 | - | - |
Hong Kong [8] | 0.08 | 0.17 | 0.04 |
Korea [8] | 0.14 | 0.05 | 0.07 |
Argentina [8] | 1.65 | 1.30 | 0.69 |
Weak Risk Factors |
Bed rest >3 days/prolonged travel Cardiovascular risk factors (Diabetes mellitus/Arterial hypertension/Obesity) Elderly Minor surgery Pregnancy/puerperium Varicose veins |
Moderate Risk Factors |
Arthroscopic knee surgery Autoimmune diseases (Sjogren’s syndrome, rheumatoid arthritis, systemic lupus erythematosus, vasculitis and systemic sclerosis) Blood transfusion/Erythropoiesis-stimulating agents Central venous lines/Intravenous catheters and leads Chronic congestive heart failure or respiratory failure Hormone replacement therapy/In vitro fertilization/Oral contraceptive therapy Infection (specifically pneumonia, urinary tract infection and HIV) Inflammatory bowel disease Cancer (highest risk in metastatic disease)/Chemotherapy Paralytic stroke Superficial vein thrombosis Thrombophilia |
Strong Risk Factors |
Fracture of lower limb/Hip or knee replacement/Spinal cord injury Hospitalization for heart failure or atrial fibrillation/flutter or Myocardial infarction (within previous 3 months) Major trauma Previous VTE Antiphospholipid syndrome Thrombophilia (homozygous of Factor V of Leiden or prothrombin 20210, antithrombin deficiency and combination thrombophilia) |
Uncertain Risk Factors |
Thrombophilia (heterozygous of Factor V of Leiden or prothrombin 20210, PAI-1 mutation and Protein C and S deficiency) Male sex Smoking habits Myopathies |
Risk Factor | Stasis | Vascular Disfunction/Injury | Abnormal Coagulation Cascade | Innate Immunity Activation/Increase of Inflammatory Mediators | Higher Number of Platelets |
---|---|---|---|---|---|
Aging | - | + | + | + | - |
Venous catheter insertion | - | + | - | - | - |
Hormonal therapy/oral contraceptives | - | - | + | - | - |
Trauma | + | + | - | + | - |
Surgery | + | - | - | + | - |
Prolonged bed rest/plaster cast | + | - | - | - | - |
Long-haul flight | + | - | - | - | - |
Diabetes | - | + | + | - | - |
Obesity | + | - | + | - | + |
Smoking | - | - | + | + | + |
SARS-CoV2 infection | - | + | - | + | - |
Infection/sepsis | - | + | - | + (also acquired immunity) | - |
Inflammatory disease | - | - | - | + (also acquired immunity) | - |
Cancer | - | + | - | + | + |
Chemotherapy | - | + | - | + | - |
Inherited and acquired thrombophilia | - | - | + | - | - |
Type of Cancer | Incidence Rate (per 1000 Person-Years) | Hazard Ratio (95%CI) |
---|---|---|
Pancreatic | 156.0 | 50.4 (36.5–69.6) |
Ovarian | 71.8 | 30.7 (21.0–45.1) |
Liver | 103.6 | 23.1 (13.4–39.8) |
Lymphoma
| 60.5 59.5 | 95.8 (22.9–401.2) 20.1 (15.5–26.0) |
Leukaemia | 29.8 | 9.6 (7.1–13.0) |
Stomach | 66.4 | 20.1 (14.0–28.9) |
Colon | 51.9 | 12.8 (11.2–14.7) |
Brain | 54.6 | 23.0 (14.7–35.9) |
Bladder | 37.8 | 8.9 (6.9–11.4) |
Kidney | 51.2 | 22.3 (15.4–32.3) |
Melanoma | 7.3 | 2.9 (2.2–3.8) |
Prostate | 16.5 | 3.8 (3.3–4.3) |
Lung
| 74.4 43 | 20.0 (17.4–22.9) 14.8 (10.0–21.9) |
Breast | 13.2 | 4.5 (3.9–5.1) |
Uterine | 30.1 | 10.8 (7.8–14.9) |
Type of Fracture | Incidence of VTE | Reference |
---|---|---|
Hip | DVT: 16.6% | [164] |
Pelvis | DVT: 0.21–41% PE: 0–21.7% | [165] |
Tibial plateau | DVT: 16.3% (86.4% of DVTs diagnosed within 7 days after the injury and 66.0% within 2 days) | [166] |
Patellar | DVT: 4.4% DVT: 5.8% | [167,168] |
Calcanear | DVT: 12% DVT: 3.1% | [169,170] |
Tibial shaft | DVT: 13.3% | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastori, D.; Cormaci, V.M.; Marucci, S.; Franchino, G.; Del Sole, F.; Capozza, A.; Fallarino, A.; Corso, C.; Valeriani, E.; Menichelli, D.; et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. Int. J. Mol. Sci. 2023, 24, 3169. https://doi.org/10.3390/ijms24043169
Pastori D, Cormaci VM, Marucci S, Franchino G, Del Sole F, Capozza A, Fallarino A, Corso C, Valeriani E, Menichelli D, et al. A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. International Journal of Molecular Sciences. 2023; 24(4):3169. https://doi.org/10.3390/ijms24043169
Chicago/Turabian StylePastori, Daniele, Vito Maria Cormaci, Silvia Marucci, Giovanni Franchino, Francesco Del Sole, Alessandro Capozza, Alessia Fallarino, Chiara Corso, Emanuele Valeriani, Danilo Menichelli, and et al. 2023. "A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology" International Journal of Molecular Sciences 24, no. 4: 3169. https://doi.org/10.3390/ijms24043169
APA StylePastori, D., Cormaci, V. M., Marucci, S., Franchino, G., Del Sole, F., Capozza, A., Fallarino, A., Corso, C., Valeriani, E., Menichelli, D., & Pignatelli, P. (2023). A Comprehensive Review of Risk Factors for Venous Thromboembolism: From Epidemiology to Pathophysiology. International Journal of Molecular Sciences, 24(4), 3169. https://doi.org/10.3390/ijms24043169