Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics
Abstract
:1. Introduction
2. Results
2.1. Blood Rheology Measured Ex Vivo
2.2. Sublingual Microcirculation Profile
2.3. Local Blood Rheology
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. RBC Deformability
4.3. Blood Viscosity
4.4. Live Imaging of Microcirculation: Intravital Microscopy and Postprocessing
4.5. Estimation of Local Blood Viscosity, Shear Rate, Shear Stress, and RBC Deformability
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutierrez, M.; Shamoun, M.; Seu, K.G.; Tanski, T.; Kalfa, T.A.; Eniola-Adefeso, O. Characterizing Bulk Rigidity of Rigid Red Blood Cell Populations in Sickle-Cell Disease Patients. Sci. Rep. 2021, 11, 7909. [Google Scholar] [CrossRef]
- Ilesanmi, O.O. Pathological Basis of Symptoms and Crises in Sickle Cell Disorder: Implications for Counseling and Psychotherapy. Hematol. Rep. 2010, 2, 10–22. [Google Scholar] [CrossRef]
- Abraham, A.A.; Tisdale, J.F. Gene Therapy for Sickle Cell Disease: Moving from the Bench to the Bedside. Blood 2021, 138, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Uchida, N.; Tisdale, J.F. Gene Therapy for Sickle Cell Disease: An Update. Cytotherapy 2018, 20, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Kanter, J.; Walters, M.C.; Krishnamurti, L.; Mapara, M.Y.; Kwiatkowski, J.L.; Rifkin-Zenenberg, S.; Aygun, B.; Kasow, K.A.; Pierciey, F.J.; Bonner, M.; et al. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. N. Engl. J. Med. 2022, 386, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Nader, E.; Conran, N.; Romana, M.; Connes, P. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction. Compr. Physiol. 2021, 11, 1785–1803. [Google Scholar] [PubMed]
- Guven, G.; Hilty, M.P.; Ince, C. Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purif. 2020, 49, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Le, A.V.; Fenech, M. Image-Based Experimental Measurement Techniques to Characterize Velocity Fields in Blood Microflows. Front. Physiol. 2022, 13, 886675. [Google Scholar] [CrossRef]
- Dababneh, L.; Cikach, F.; Alkukhun, L.; Dweik, R.A.; Tonelli, A.R. Sublingual Microcirculation in Pulmonary Arterial Hypertension. Ann. Am. Thorac. Soc. 2014, 11, 504–512. [Google Scholar] [CrossRef]
- Sha, M.; Griffin, M.; Denton, C.P.; Butler, P.E. Sidestream Dark Field (SDF) Imaging of Oral Microcirculation in the Assessment of Systemic Sclerosis. Microvasc. Res. 2019, 126, 103890. [Google Scholar] [CrossRef] [PubMed]
- van Beers, E.J.; Goedhart, P.T.; Unger, M.; Biemond, B.J.; Ince, C. Normal Sublingual Microcirculation during Painful Crisis in Sickle Cell Disease. Microvasc. Res. 2008, 76, 57–60. [Google Scholar] [CrossRef]
- Connes, P.; Alexy, T.; Detterich, J.; Romana, M.; Hardy-Dessources, M.-D.; Ballas, S.K. The Role of Blood Rheology in Sickle Cell Disease. Blood Rev. 2016, 30, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nebor, D.; Bowers, A.; Hardy-Dessources, M.D.; Knight-Madden, J.; Romana, M.; Reid, H.; Barthélémy, J.C.; Cumming, V.; Hue, O.; Elion, J.; et al. Frequency of Pain Crises in Sickle Cell Anemia and Its Relationship with the Sympatho-Vagal Balance, Blood Viscosity and Inflammation. Haematologica 2011, 96, 1589–1594. [Google Scholar] [CrossRef]
- Vent-Schmidt, J.; Waltz, X.; Romana, M.; Hardy-Dessources, M.D.; Lemonne, N.; Billaud, M.; Etienne-Julan, M.; Connes, P. Blood Thixotropy in Patients with Sickle Cell Anaemia: Role of Haematocrit and Red Blood Cell Rheological Properties. PLoS ONE 2014, 9, e114412. [Google Scholar] [CrossRef] [PubMed]
- Tripette, J.; Alexy, T.; Hardy-Dessources, M.D.; Mougenel, D.; Beltan, E.; Chalabi, T.; Chout, R.; Etienne-Julan, M.; Hue, O.; Meiselman, H.J.; et al. Red Blood Cell Aggregation, Aggregate Strength and Oxygen Transport Potential of Blood Are Abnormal in Both Homozygous Sickle Cell Anemia and Sickle-Hemoglobin C Disease. Haematologica 2009, 94, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Meiselman, H.J. Blood Rheology and Hemodynamics. Semin. Thromb. Hemost. 2003, 29, 435–450. [Google Scholar]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D.; et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Ravelojaona, M.; Féasson, L.; Oyono-Enguéllé, S.; Vincent, L.; Djoubairou, B.; Ewa’sama Essoue, C.; Messonnier, L.A. Evidence for a Profound Remodeling of Skeletal Muscle and Its Microvasculature in Sickle Cell Anemia. Am. J. Clin. Pathol. 2015, 185, 1448–1456. [Google Scholar] [CrossRef]
- Mchedlishvili, G. Basic Factors Determining the Hemorheological Disorders in the Microcirculation. Clin. Hemorheol. Microcirc. 2004, 30, 179–180. [Google Scholar]
- de Backer, D.; Hollenberg, S.; Boerma, C.; Goedhart, P.; Büchele, G.; Ospina-Tascon, G.; Dobbe, I.; Ince, C. How to Evaluate the Microcirculation: Report of a Round Table Conference. Crit. Care 2007, 11, R101. [Google Scholar] [CrossRef]
- Merlet, A.N.; Messonnier, L.A.; Coudy-Gandilhon, C.; Béchet, D.; Gellen, B.; Rupp, T.; Galactéros, F.; Bartolucci, P.; Féasson, L. Beneficial Effects of Endurance Exercise Training on Skeletal Muscle Microvasculature in Sickle Cell Disease Patients. Blood 2019, 134, 2233–2241. [Google Scholar] [CrossRef]
- Czabanka, M.; Peñ-Tapia, P.; Schubert, G.A.; Woitzik, J.; Vajkoczy, P.; Schmiedek, P. Characterization of Cortical Microvascularization in Adult Moyamoya Disease. Stroke 2008, 39, 1703–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, R.E.; de Montalembert, M.; Tshilolo, L.; Abboud, M.R. Sickle Cell Disease. Lancet 2017, 390, 311–323. [Google Scholar] [CrossRef]
- Dor, Y.; Keshet, E. Ischemia-Driven Angiogenesis. Trends Cardiovasc. Med. 1997, 7, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Duits, A.J.; Rodriguez, T.; Schnog, J.J.B. Serum Levels of Angiogenic Factors Indicate a Pro-Angiogenic State in Adults with Sickle Cell Disease. Br. J. Haematol. 2006, 134, 116–119. [Google Scholar] [CrossRef]
- Park, S.Y.; Matte, A.; Jung, Y.; Ryu, J.; Anand, W.B.; Han, E.Y.; Liu, M.; Carbone, C.; Melisi, D.; Nagasawa, T.; et al. Pathologic Angiogenesis in the Bone Marrow of Humanized Sickle Cell Mice Is Reversed by Blood Transfusion. Blood 2020, 135, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Secomb, T.W.; Bullock, K.V.; Boas, D.A.; Sakadžic, S.; Sakadžic´4, S. The Mass Transfer Coefficient for Oxygen Transport from Blood to Tissue in Cerebral Cortex. J. Cereb. Blood Flow Metab. 2020, 40, 1634–1646. [Google Scholar] [CrossRef]
- Gilbert-Kawai, E.; Coppel, J.; Court, J.; van der Kaaij, J.; Vercueil, A.; Feelisch, M.; Levett, D.; Mythen, M.; Grocott, M.P.; Martin, D. Sublingual Microcirculatory Blood Flow and Vessel Density in Sherpas at High Altitude. J. Appl. Physiol. 2017, 122, 1011–1018. [Google Scholar] [CrossRef]
- Tarbell, J.; Mahmoud, M.; Corti, A.; Cardoso, L.; Caro, C. The Role of Oxygen Transport in Atherosclerosis and Vascular Disease. J. R. Soc. Interface 2020, 17, 20190732. [Google Scholar] [CrossRef]
- Adair, T.H.; Montani, J.-P. Regulation: Metabolic Factors. In Angiogenesis; Richards, K., Adair, L., Eds.; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Veluswamy, S.; Shah, P.; Denton, C.C.; Chalacheva, P.; Khoo, M.C.K.; Coates, T.D. Vaso-Occlusion in Sickle Cell Disease: Is Autonomic Dysregulation of the Microvasculature the Trigger? J. Clin. Med. 2019, 8, 1690. [Google Scholar] [CrossRef]
- Gouraud, E.; Connes, P.; Gauthier-Vasserot, A.; Faes, C.; Merazga, S.; Poutrel, S.; Renoux, C.; Boisson, C.; Joly, P.; Bertrand, Y.; et al. Is Skeletal Muscle Dysfunction a Limiting Factor of Exercise Functional Capacity in Patients with Sickle Cell Disease? J. Clin. Med. 2021, 10, 2250. [Google Scholar] [CrossRef]
- Rabai, M.; Detterich, J.A.; Wenby, R.B.; Hernandez, T.M.; Toth, K.; Meiselman, H.J.; Wood, J.C. Deformability Analysis of Sickle Blood Using Ektacytometry. Biorheology 2014, 51, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Mehri, R.; Mavriplis, C.; Fenech, M. Red Blood Cell Aggregates and Their Effect on Non-Newtonian Blood Viscosity at Low Hematocrit in a Two-Fluid Low Shear Rate Microfluidic System. PLoS ONE 2018, 13, e0199911. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Haya, L. Blood Flow Mechanics. In Cardiovascular Mechanics; Labrosse, M., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 63–89. [Google Scholar]
- Treu, C.M.; Lupi, O.; Bottino, D.A.; Bouskela, E. Sidestream Dark Field Imaging: The Evolution of Real-Time Visualization of Cutaneous Microcirculation and Its Potential Application in Dermatology. Arch. Dermatol. Res. 2011, 303, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.C.; Dellinger, R.P.; Parrillo, J.E.; Chansky, M.E.; Lotano, V.E.; McCoy, J.V.; Jones, A.E.; Shapiro, N.I.; Hollenberg, S.M.; Trzeciak, S. Discordance between Microcirculatory Alterations and Arterial Pressure in Patients with Hemodynamic Instability. J. Crit. Care 2012, 27, e1–e531. [Google Scholar] [CrossRef]
- Jakobs, M.A.; Dimitracopoulos, A.; Franze, K. Kymobutler, a Deep Learning Software for Automated Kymograph Analysis. Elife 2019, 8, e42288. [Google Scholar] [CrossRef] [PubMed]
Parameter | HbAA | HbSS |
---|---|---|
Hematocrit (%) | 42.1 ± 4.6 | 29.5 ± 4.0 ** |
Maximum RBC deformability, EImax (a.u.) | 0.65 ± 0.06 | 0.43 ± 0.09 ** |
Viscosity flow consistence index, k (Pa.sn) | 34.4 ± 15.2 | 16.2 ± 4.2 * |
Viscosity power law index, n (a.u.) | 0.69 ± 0.07 | 0.43 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sant, S.; Gouraud, E.; Boisson, C.; Nader, E.; Goparaju, M.; Cannas, G.; Gauthier, A.; Joly, P.; Renoux, C.; Merazga, S.; et al. Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics. Int. J. Mol. Sci. 2023, 24, 3621. https://doi.org/10.3390/ijms24043621
Sant S, Gouraud E, Boisson C, Nader E, Goparaju M, Cannas G, Gauthier A, Joly P, Renoux C, Merazga S, et al. Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics. International Journal of Molecular Sciences. 2023; 24(4):3621. https://doi.org/10.3390/ijms24043621
Chicago/Turabian StyleSant, Sachi, Etienne Gouraud, Camille Boisson, Elie Nader, Mounika Goparaju, Giovanna Cannas, Alexandra Gauthier, Philippe Joly, Céline Renoux, Salima Merazga, and et al. 2023. "Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics" International Journal of Molecular Sciences 24, no. 4: 3621. https://doi.org/10.3390/ijms24043621
APA StyleSant, S., Gouraud, E., Boisson, C., Nader, E., Goparaju, M., Cannas, G., Gauthier, A., Joly, P., Renoux, C., Merazga, S., Hautier, C., Connes, P., & Fenech, M. (2023). Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics. International Journal of Molecular Sciences, 24(4), 3621. https://doi.org/10.3390/ijms24043621