Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Cell Culture
3.3. Microgravity Simulation
3.4. Sample Preparation for UHPLC-IM-QTOF-MS Analysis
3.5. UHPLC-IM-QTOF-MS/MS Analysis
3.6. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Riwaldt, S.; Corydon, T.J.; Pantalone, D.; Sahana, J.; Wise, P.; Wehland, M.; Krüger, M.; Melnik, D.; Kopp, S.; Infanger, M.; et al. Role of Apoptosis in Wound Healing and Apoptosis Alterations in Microgravity. Front. Bioeng. Biotechnol. 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Bizzarri, M.; Fedeli, V.; Piombarolo, A.; Angeloni, A. Space Biomedicine: A Unique Opportunity to Rethink the Relationships between Physics and Biology. Biomedicines 2022, 10, 2633. [Google Scholar] [CrossRef]
- Thirsk, R.; Kuipers, A.; Mukai, C.; Williams, D. The space-flight environment: The International Space Station and beyond. CMAJ 2009, 180, 1216–1220. [Google Scholar] [CrossRef] [Green Version]
- Sheyn, D.; Pelled, G.; Netanely, D.; Domany, E.; Gazit, D. The Effect of Simulated Microgravity on Human Mesenchymal Stem Cells Cultured in an Osteogenic Differentiation System: A Bioinformatics Study. Tissue Eng.-Part A 2010, 16, 3403–3412. [Google Scholar] [CrossRef] [Green Version]
- Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V. Effects of microgravity on osteoblast growth. Gravit. Space Biol. Bull. 1998, 11, 51–60. [Google Scholar]
- Han, X.; Qiu, L.; Zhang, Y.; Kong, Q.; Wang, H.; Wang, H.; Li, H.; Duan, C.; Wang, Y.; Song, Y.; et al. Transplantation of Sertoli-Islet Cell Aggregates Formed by Microgravity: Prolonged Survival in Diabetic Rats. Exp. Biol. Med. 2009, 234, 595–603. [Google Scholar] [CrossRef]
- NSBRI. National Space Biomedical Research Institute Strategic Plan 2010. Biomed Res. 2010. Available online: http://nsbri.org/wp-content/uploads/2015/08/NSBRI_strategic_plan1 (accessed on 18 January 2022).
- Dinarelli, S.; Longo, G.; Dietler, G.; Francioso, A.; Mosca, L.; Pannitteri, G.; Boumis, G.; Bellelli, A.; Girasole, M. Erythrocyte’s aging in microgravity highlights how environmental stimuli shape metabolism and morphology. Sci. Rep. 2018, 8, 5277. [Google Scholar] [CrossRef]
- Poon, C. Factors implicating the validity and interpretation of mechanobiology studies in simulated microgravity environments. Eng. Rep. 2020, 2, 1–18. [Google Scholar] [CrossRef]
- Maxfield, F.R.; Tabas, I. Role of cholesterol and lipid organization in disease. Nature 2005, 438, 612–621. [Google Scholar] [CrossRef]
- Wenk, M.R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 2005, 4, 594–610. [Google Scholar] [CrossRef]
- Carrasco-Pancorbo, A.; Navas-Iglesias, N.; Cuadros-Rodríguez, L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis. TrAC-Trends Anal. Chem. 2009, 28, 263–278. [Google Scholar] [CrossRef]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted Metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30.2.1–30.2.24. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Ivanova, S.M.; Morukov, B.V.; Labetskaia, O.I.; IuV, I.; Levina, A.A.; Kozinets, G.I. Morphobiochemical assay of the red blood system in members of the prime crews of the International Space Station. Hum. Physiol. 2009, 43, 43–47. [Google Scholar]
- Girasole, M.; Pompeo, G.; Cricenti, A.; Congiu-Castellano, A.; Andreola, F.; Serafino, A.; Frazer, B.; Boumis, G.; Amiconi, G. Roughness of the plasma membrane as an independent morphological parameter to study RBCs: A quantitative atomic force microscopy investigation. Biochim. Biophys. Acta (BBA)-Biomembr. 2007, 1768, 1268–1276. [Google Scholar] [CrossRef] [Green Version]
- Manis, C.; Manca, A.; Murgia, A.; Uras, G.; Caboni, P.; Congiu, T.; Faa, G.; Pantaleo, A.; Cao, G. Understanding the Behaviour of Human Cell Types under Simulated Microgravity Conditions: The Case of Erythrocytes. Int. J. Mol. Sci. 2022, 23, 6876. [Google Scholar] [CrossRef]
- Alfrey, C.P.; Udden, M.M.; Leach-Huntoon, C.; Driscoll, T.; Pickett, M.H. Control of red blood cell mass in spaceflight. J. Appl. Physiol. 1996, 81, 98–104. [Google Scholar] [CrossRef]
- Taylor, G.R. Advances in experimental medicine. In Advances in Experimental Medicine and Biology; Plenum Press: New York, NY, USA; London, UK, 1997; Volume 225, pp. 269–271. Available online: http://linkinghub.elsevier.com/retrieve/pii/0020711X84902064 (accessed on 18 January 2022).
- Meehan, R.T.; Neale, L.S.; Kraus, E.T.; Stuart, C.A.; Smith, M.L.; Cintron, N.M.; Sams, C.F. Alteration in human mononuclear leucocytes following space flight. Immunology 1992, 76, 491–497. [Google Scholar]
- Diedrich, A.; Paranjape, S.Y.; Robertson, D. Plasma and Blood Volume in Space. Am. J. Med. Sci. 2007, 334, 80–86. [Google Scholar] [CrossRef]
- Erslev, A.J. Erythropoietin. N. Engl. J. Med. 1991, 324, 1339–1344. [Google Scholar] [CrossRef]
- Koury, M.J.; Bondurant, M.C. Erythropoietin Retards DNA Breakdown and Prevents Programmed Death in Erythroid Progenitor Cells. Science 1990, 248, 378–381. [Google Scholar] [CrossRef]
- Trudel, G.; Shahin, N.; Ramsay, T.; Laneuville, O.; Louati, H. Hemolysis contributes to anemia during long-duration space flight. Nat. Med. 2022, 28, 59–62. [Google Scholar] [CrossRef]
- Crimi, M.; Degli Esposti, M. Apoptosis-induced changes in mitochondrial lipids. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2011, 1813, 551–557. [Google Scholar] [CrossRef]
- Sprong, H.; Van Der Sluijs, P.; van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2001, 2, 504–513. [Google Scholar] [CrossRef]
- Robertson, J.L. The lipid bilayer membrane and its protein constituents. J. Gen. Physiol. 2018, 150, 1472–1483. [Google Scholar] [CrossRef] [Green Version]
- Koeberle, A.; Shindou, H.; Koeberle, S.C.; Laufer, S.A.; Shimizu, T.; Werz, O. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc. Natl. Acad. Sci. USA 2013, 110, 2546–2551. [Google Scholar] [CrossRef] [Green Version]
- Picache, J.A.; Rose, B.S.; Balinski, A.; Leaptrot, K.L.; Sherrod, S.D.; May, J.C.; McLean, J.A. Collision cross section compendium to annotate and predict multi-omic compound identities. Chem. Sci. 2019, 10, 983–993. [Google Scholar] [CrossRef] [Green Version]
- Subbanagounder, G.; Leitinger, N.; Schwenke, D.C.; Wong, J.W.; Lee, H.; Rizza, C.; Watson, A.D.; Faull, K.F.; Fogelman, A.M.; Berliner, J.A. Determinants of bioactivity of oxidized phospholipids: Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2248–2254. [Google Scholar] [CrossRef] [Green Version]
- Ran, F.; An, L.; Fan, Y.; Hang, H.; Wang, S. Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophys. Rep. 2016, 2, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.Z.; Kar, N.S.; Podrez, E.A. Oxidized phospholipids: Biomarker for cardiovascular diseases. Int. J. Biochem. Cell Biol. 2009, 41, 1241–1244. [Google Scholar] [CrossRef] [Green Version]
- Huber, J.; Vales, A.; Mitulović, G.; Blumer, M.; Schmid, R.; Witztum, J.L.; Binder, B.R.; Leitinger, N. Oxidized Membrane Vesicles and Blebs from Apoptotic Cells Contain Biologically Active Oxidized Phospholipids That Induce Monocyte-Endothelial Interactions. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-K.; Binder, C.J.; Torzewski, M.; Witztum, J.L. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA 2002, 99, 13043–13048. [Google Scholar] [CrossRef] [Green Version]
- Rouhanizadeh, M.; Hwang, J.; Clempus, R.E.; Marcu, L.; Lassègue, B.; Sevanian, A.; Hsiai, T.K. Oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine induces vascular endothelial superoxide production: Implication of NADPH oxidase. Free Radic. Biol. Med. 2005, 39, 1512–1522. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, G.A.; Beverly, L.J.; Siskind, L.J. Sphingolipids and mitochondrial apoptosis. J. Bioenerg. Biomembr. 2016, 48, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Ulmer, C.Z.; Jones, C.M.; Yost, R.A.; Garrett, T.J.; Bowden, J.A. Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Anal. Chim. Acta 2018, 1037, 351–357. [Google Scholar] [CrossRef]
Lipid | Adduct | m/z Experimental | m/z Theoretical | Δ (ppm) | RT (min) | Fatty Acid Composition | DTCCSN2 (Å2) | VIP | Significance Level | Regulation in G0 Cells |
---|---|---|---|---|---|---|---|---|---|---|
6 h | ||||||||||
LysoPC16:1 | +H+ | 494.3216 | 494.3241 | 5.1 | 6.55 | 16:1 | 231.58 | 1.73 | ns | up |
PC 32:2 | +H+ | 730.5394 | 730.5381 | 1.3 | 7.77 | 32:2 | 286.75 | 1.71 | ** | up |
PC 38:5 | +H+ | 808.5871 | 808.5851 | 2.0 | 8.05 | 18:1, 20:4 | 292.87 | 1.50 | ** | up |
PC 33:5 | +H+ | 738.5070 | 738.5068 | 0.3 | 7.74 | 287.33 | 1.26 | ns | down | |
SM d34:0 | +H+ | 705.5930 | 705.5905 | 3.5 | 8.01 | 16:0, 18:0 | 285.87 | 1.10 | * | down |
PC 38:4 | +H+ | 810.6021 | 810.6007 | 1.7 | 9.23 | 18:0, 20:4 | 295.11 | 1.05 | ** | up |
PC 36:2 | +H+ | 786.6031 | 786.6007 | 3.0 | 9.43 | 18:1, 18:1 | 291.56 | 1.00 | * | up |
SM d 38:1 | +H+ | 759.6328 | 759.6375 | 6.0 | 11.31 | 297.55 | 1.00 | ** | down | |
PC 36:1 | +H+ | 788.6192 | 788.6164 | 3.2 | 10.43 | 293.88 | 0.99 | * | up | |
FA 16:2 | -H− | 251.2021 | 251.2017 | 1.6 | 3.59 | 16:2 | 114.95 | 1.38 | ** | down |
HexCer_AP t37:1 | +(C2H3O2)− | 832.6152 | 832.6164 | 1.5 | 10.43 | 22:1, 15:0 | 296.27 | 1.46 | ** | up |
Etn-1-P-Cer 32:1 | -H− | 687.5469 | 687.5446 | 3.4 | 7.51 | 14:1, 18:0 | 265.47 | 1.13 | *** | up |
EtherOxPC 36:4e + 1O | +(CHO2)− | 828.5761 | 828.5781 | 2.4 | 8.3 | 16:0, 20:4 | 293.50 | 1.07 | * | up |
SM d40:1 | +(CHO2)− | 831.6632 | 831.6597 | 4 | 11.66 | 301.49 | 1.06 | ns | up | |
PE 36:3 | -H− | 740.5249 | 740.5236 | 2 | 7.50 | 18:2, 18:1 | 270.58 | 1.02 | ns | up |
9 h | ||||||||||
PC 38:6 | +H+ | 806.5700 | 806.5694 | 0.74 | 8.48 | 18:2, 20:4 | 293.14 | 1.79 | * | up |
SM d 38:1 | +H+ | 759.6328 | 759.6375 | 6.0 | 11.31 | 297.55 | 1.75 | ** | down | |
PC 35:5 | +H+ | 766.5399 | 766.5381 | 2.3 | 8.33 | 15:1, 20:4 | 280.17 | 1.73 | *** | up |
PE 36:1 | +H+ | 746.5712 | 746.5694 | 2.1 | 10.71 | 18:0, 18:1 | 281.87 | 1.71 | ** | up |
PC 36:5 | +H+ | 780.5541 | 780.5538 | 0.3 | 8.11 | 16:1, 20:4 | 228.33 | 1.70 | ** | up |
PC 32:0 | +H+ | 734.572 | 734.5694 | 3.5 | 8.92 | 16:0, 16:0 | 284.83 | 1.64 | ** | up |
PC 36:2 | +H+ | 786.6031 | 786.6007 | 3.0 | 9.25 | 18:1, 18:1 | 291.56 | 1.63 | ** | up |
SM d34:0 | +H+ | 705.5930 | 705.5905 | 3.5 | 8.01 | 16:0, 18:0 | 285.87 | 1.61 | ** | up |
PC 35:5 | +H+ | 766.5407 | 766.5381 | 3.4 | 8.51 | 288.55 | 1.60 | ** | down | |
PE 38:6 | +H+ | 764.524 | 764.5225 | 2.0 | 7.89 | 16:0, 22:6 | 279.42 | 1.59 | ** | up |
PC 36:3 | +H+ | 784.5872 | 784.5851 | 2.7 | 8.25 | 18:1, 18:2 | 289.42 | 1.57 | ** | up |
PC 35:4 | +H+ | 768.5593 | 768.5538 | 7.0 | 8.73 | 15:0, 20:4 | 289.52 | 1.56 | ** | up |
SM d44:5 | +H+ | 835.6691 | 835.6688 | 1.0 | 11.61 | 14:3, 30:2 | 305.48 | 1.52 | ** | up |
SM 42:3 | +H+ | 811.6713 | 811.6688 | 3.1 | 10.49 | 302.65 | 1.48 | ** | up | |
PC 38:7 | +H+ | 804.554 | 804.5 538 | 0.3 | 7.93 | 18:3, 20:4 | 292.2 | 1.45 | ns | up |
PC 34:0 | +H+ | 762.6032 | 762.6007 | 3.3 | 10.27 | 290.86 | 1.38 | ns | up | |
PC 36:5 | +H+ | 780.5541 | 780.5538 | 0.3 | 8.11 | 289.42 | 1.37 | * | up | |
PC 36:4 | +H+ | 782.5701 | 782.5694 | 1.0 | 9.08 | 16:0, 20:4 | 229.67 | 1.36 | ** | up |
PC 34:3 | +H+ | 756.554 | 759.5538 | 0.3 | 8.92 | 18:1, 16:2 | 286.35 | 1.33 | * | up |
PE 34:2 | +H+ | 716.5251 | 716.5225 | 3.5 | 8.37 | 16:0, 18:2 | 273.06 | 1.23 | ns | up |
PC 36:1 | +H+ | 788.6192 | 788.6164 | 3.2 | 10.43 | 293.88 | 1.21 | * | up | |
SM d42:2 | +H+ | 813.6870 | 813.6844 | 3.2 | 11.61 | 305.35 | 1.21 | ** | up | |
PC 38:5 | +H+ | 808.5870 | 808.5851 | 2.3 | 8.04 | 16:0, 22:5 | 292.87 | 1.20 | ns | up |
PC 33:5 | +H+ | 738.5070 | 738.5068 | 0.3 | 7.74 | 287.33 | 1.07 | * | down | |
PE 36:3 | +H+ | 742.5399 | 742.5381 | 2.5 | 8.51 | 16:0, 20:3 | 276.61 | 1.04 | ns | up |
PE 36:4 | +H+ | 740.5239 | 740.5225 | 2.0 | 8.19 | 16:0, 20:4 | 276.93 | 1.03 | ** | up |
SM d42:2 | +H+ | 813.6870 | 813.6844 | 3.2 | 11.61 | 305.03 | 1.00 | ** | up | |
EtherOxPC 36:4e + 1O | +(CHO2)− | 828.5761 | 828.5781 | 2.4 | 8.3 | 16:0, 20:4 | 293.50 | 1.56 | * | down |
PE 36:2 | -H− | 742.5403 | 742.5392 | 1.5 | 9.55 | 18:1, 18:1 | 271.52 | 1.16 | ** | up |
PC 38:6 | +(CHO2)− | 850.5613 | 850.5604 | 1.1 | 7.62 | 18:2, 20:4 | 296.34 | 1.01 | ns | up |
24 h | ||||||||||
PC 35:4 | +H+ | 768.5593 | 768.5538 | 7.0 | 8.73 | 15:0, 20:4 | 289.52 | 1.84 | ** | up |
PE 36:4 | +H+ | 740.5239 | 740.5225 | 2.0 | 8.19 | 16:0, 20:4 | 276.93 | 1.84 | ** | up |
PC 36:2 | +H+ | 786.6031 | 786.6007 | 3.0 | 9.25 | 18:1, 18:1 | 291.56 | 1.64 | ** | up |
PC 32:0 | +H+ | 734.572 | 734.5694 | 3.5 | 8.92 | 16:0, 16:0 | 284.83 | 1.61 | ns | up |
SM d42:2 | +H+ | 813.6870 | 813.6844 | 3.2 | 11.98 | 305.03 | 1.46 | * | up | |
SM 42:3 | +H+ | 811.6713 | 811.6688 | 3.1 | 10.49 | 302.65 | 1.40 | ** | up | |
PC 36:3 | +H+ | 784.5872 | 784.5851 | 2.7 | 8.25 | 18:1, 18:2 | 289.42 | 1.35 | * | up |
PE 36:1 | +H+ | 746.5712 | 746.5694 | 2.1 | 10.71 | 18:0, 18:1 | 281.87 | 1.34 | ns | up |
PE 38:6 | +H+ | 764.524 | 764.5225 | 2.0 | 7.89 | 18:2, 20:4 | 279.42 | 1.21 | ** | up |
PC 36:4 | +H+ | 782.5701 | 782.5694 | 1.0 | 9.08 | 16:0, 20:4 | 229.67 | 1.20 | *** | up |
PC 36:5 | +H+ | 780.5541 | 780.5538 | 0.3 | 8.11 | 289.42 | 1.20 | * | up | |
PC 38:4 | +H+ | 810.6021 | 810.6007 | 1.7 | 9.23 | 18:0, 20:4 | 295.11 | 1.19 | ** | up |
PC 34:0 | +H+ | 762.6032 | 762.6007 | 3.3 | 10.27 | 290.86 | 1.13 | * | up | |
PC 35:5 | +H+ | 766.5399 | 766.5381 | 2.3 | 8.33 | 15:1, 20:4 | 280.17 | 1.11 | * | down |
PE 36:3 | +H+ | 742.5399 | 742.5381 | 2.5 | 8.52 | 16:0, 20:3 | 276.61 | 1.11 | ns | up |
SM d44:5 | +H+ | 835.6691 | 835.6688 | 1.0 | 11.61 | 14:3, 30:2 | 305.48 | 1.09 | ** | up |
SM d42:2 | +H+ | 813.6870 | 813.6844 | 3.2 | 11.62 | 305.35 | 1.05 | ns | up | |
PC 35:5 | +H+ | 766.5407 | 766.5381 | 3.4 | 8.51 | 288.55 | 1.03 | * | down | |
LysoPC16:1 | +H+ | 494.3216 | 494.3241 | 5.1 | 6.55 | 16:1 | 231.58 | 1.01 | * | up |
FA 16:2 | -H− | 251.2021 | 251.2017 | 1.6 | 3.59 | 16:2 | 114.95 | 1.99 | ns | up |
Cer 42:1 | +(CHO2)− | 694.6369 | 694.6355 | 2.1 | 15.27 | 18:1, 24:0 | 278.31 | 1.02 | * | down |
HexCer_AP t37:2 | +(C2H3O2)− | 830.5979 | 830.5999 | 2.5 | 9.42 | 22:1, 15:1 | 295.07 | 1.01 | ns | down |
HexCer_AP t37:1 | +(C2H3O2)− | 832.6152 | 832.6164 | 1.5 | 10.43 | 22:1, 15:0 | 296.27 | 1.01 | ns | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manis, C.; Murgia, A.; Manca, A.; Pantaleo, A.; Cao, G.; Caboni, P. Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions. Int. J. Mol. Sci. 2023, 24, 4379. https://doi.org/10.3390/ijms24054379
Manis C, Murgia A, Manca A, Pantaleo A, Cao G, Caboni P. Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions. International Journal of Molecular Sciences. 2023; 24(5):4379. https://doi.org/10.3390/ijms24054379
Chicago/Turabian StyleManis, Cristina, Antonio Murgia, Alessia Manca, Antonella Pantaleo, Giacomo Cao, and Pierluigi Caboni. 2023. "Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions" International Journal of Molecular Sciences 24, no. 5: 4379. https://doi.org/10.3390/ijms24054379
APA StyleManis, C., Murgia, A., Manca, A., Pantaleo, A., Cao, G., & Caboni, P. (2023). Untargeted Lipidomics of Erythrocytes under Simulated Microgravity Conditions. International Journal of Molecular Sciences, 24(5), 4379. https://doi.org/10.3390/ijms24054379