Transcriptional Regulatory Network of Plant Cadmium Stress Response
Abstract
:1. Introduction
2. Cd Transport and Accumulation in Plants
2.1. Cd Entry into the Roots
2.1.1. Cd Absorption by Transporters
2.1.2. Cd Efflux by Transporters
2.2. Cd Transport to Shoots by Loading into the Xylem
2.3. Cd Transport through the Phloem to Grains
3. The Transcriptional Regulation of Cd Response by TFs
3.1. WRKY
3.2. MYB
3.3. bZIP
3.4. HSF
3.5. Other TFs
4. Regulation of Cd Response by DNA Methylation, Long RNAs, and Small RNAs
4.1. DNA Methylation
4.2. lncRNAs
4.3. miRNAs
5. How Plants Sense and Transduce Cd Signals to Transcriptional Regulators
6. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Sharma, A. Cadmium Toxicity: Effects on Human Reproduction and Fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef]
- Qadir, S.; Jamshieed, S.; Rasool, S.; Ashraf, M.; Akram, N.A.; Ahmad, P. Modulation of Plant Growth and Metabolism in Cadmium-Enriched Environments. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: Cham, Switzerland, 2014; Volume 229, pp. 51–88. ISBN 978-3-319-03776-9. [Google Scholar]
- Jawad Hassan, M.; Ali Raza, M.; Ur Rehman, S.; Ansar, M.; Gitari, H.; Khan, I.; Wajid, M.; Ahmed, M.; Abbas Shah, G.; Peng, Y.; et al. Effect of Cadmium Toxicity on Growth, Oxidative Damage, Antioxidant Defense System and Cadmium Accumulation in Two Sorghum Cultivars. Plants 2020, 9, 1575. [Google Scholar] [CrossRef] [PubMed]
- Uraguchi, S.; Fujiwara, T. Cadmium Transport and Tolerance in Rice: Perspectives for Reducing Grain Cadmium Accumulation. Rice 2012, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, S.; Aarts, M.G.M.; Thomine, S.; Verbruggen, N. Plant Science: The Key to Preventing Slow Cadmium Poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, N. Effects of Lead and Cadmium on the Immune System and Cancer Progression. J. Environ. Health Sci. Eng. 2020, 18, 335–343. [Google Scholar] [CrossRef]
- Unsal, V.; Dalkõran, T.; Çiçek, M.; Kölükçü, E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv. Pharm. Bull. 2020, 10, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mitra, P.; Goyal, T.; Sharma, S.; Sharma, P. Blood Lead and Cadmium Levels in Occupationally Exposed Workers and Their Effect on Markers of DNA Damage and Repair. Environ. Geochem. Health 2021, 43, 185–193. [Google Scholar] [CrossRef]
- Küpper, H.; Leitenmaier, B. Cadmium-Accumulating Plants. In Cadmium: From Toxicity to Essentiality; Metal Ions in Life Sciences; Sigel, A., Sigel, H., Sigel, R.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 11, pp. 373–393. ISBN 978-94-007-5178-1. [Google Scholar]
- Sasaki, A.; Yamaji, N.; Ma, J.F. Overexpression of OsHMA3 Enhances Cd Tolerance and Expression of Zn Transporter Genes in Rice. J. Exp. Bot. 2014, 65, 6013–6021. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Dong, J.; Qu, M.; Lv, Q.; Zhang, L.; Peng, C.; Hu, Y.; Li, Y.; Ji, Z.; Mao, B.; et al. Knockout of OsNRAMP5 Enhances Rice Tolerance to Cadmium Toxicity in Response to Varying External Cadmium Concentrations via Distinct Mechanisms. Sci. Total Environ. 2022, 832, 155006. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Yu, L.; Yang, M.; Zou, X.; Yin, C.; Lin, Y. Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells 2022, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Li, X.; Li, F.; Huang, Y.; Liu, T.; Yin, H.; Qiao, J.; Chen, G.; Huang, F. Cadmium Uptake and Transport Processes in Rice Revealed by Stable Isotope Fractionation and Cd-Related Gene Expression. Sci. Total Environ. 2022, 806, 150633. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; Ju, Q.; Li, W.; Tran, L.-S.P.; Xu, J. The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation. Plant Physiol. 2019, 180, 529–542. [Google Scholar] [CrossRef]
- Wen, X.; Ding, Y.; Tan, Z.; Wang, J.; Zhang, D.; Wang, Y. Identification and Characterization of Cadmium Stress-Related LncRNAs from Betula platyphylla. Plant Sci. 2020, 299, 110601. [Google Scholar] [CrossRef]
- Li, G.-Z.; Zheng, Y.-X.; Liu, H.-T.; Liu, J.; Kang, G.-Z. WRKY74 Regulates Cadmium Tolerance through Glutathione-Dependent Pathway in Wheat. Environ. Sci. Pollut. Res. 2022, 29, 68191–68201. [Google Scholar] [CrossRef] [PubMed]
- Dowen, R.H.; Pelizzola, M.; Schmitz, R.J.; Lister, R.; Dowen, J.M.; Nery, J.R.; Dixon, J.E.; Ecker, J.R. Widespread Dynamic DNA Methylation in Response to Biotic Stress. Proc. Natl. Acad. Sci. USA 2012, 109, E2183-91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niekerk, L.-A.; Carelse, M.F.; Bakare, O.O.; Mavumengwana, V.; Keyster, M.; Gokul, A. The Relationship between Cadmium Toxicity and the Modulation of Epigenetic Traits in Plants. Int. J. Mol. Sci. 2021, 22, 7046. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, Y.; Suzuki, M.; Tsukamoto, T.; Suzuki, K.; Nakazono, M.; Kobayashi, T.; Wada, Y.; Watanabe, S.; Matsuhashi, S.; Takahashi, M.; et al. Rice Plants Take up Iron as an Fe3+ -Phytosiderophore and as Fe2+. Plant J. 2006, 45, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; An, G. Over-Expression of OsIRT1 Leads to Increased Iron and Zinc Accumulations in Rice. Plant Cell Environ. 2009, 32, 408–416. [Google Scholar] [CrossRef]
- Ramesh, S.A.; Shin, R.; Eide, D.J.; Schachtman, D.P. Differential Metal Selectivity and Gene Expression of Two Zinc Transporters from Rice. Plant Physiol. 2003, 133, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Chou, T.-S.; Chao, Y.-Y.; Huang, W.-D.; Hong, C.-Y.; Kao, C.H. Effect of Magnesium Deficiency on Antioxidant Status and Cadmium Toxicity in Rice Seedlings. J. Plant Physiol. 2011, 168, 1021–1030. [Google Scholar] [CrossRef]
- Tian, S.; Liang, S.; Qiao, K.; Wang, F.; Zhang, Y.; Chai, T. Co-Expression of Multiple Heavy Metal Transporters Changes the Translocation, Accumulation, and Potential Oxidative Stress of Cd and Zn in Rice (Oryza sativa). J. Hazard Mater. 2019, 380, 120853. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, J.; Ahmadi, H.; Scheepers, M.; Weber, M.; Nitsche, S.; Carnol, M.; Bosman, B.; Kroymann, J.; Motte, P.; Clemens, S.; et al. The Two Copies of the Zinc and Cadmium ZIP6 Transporter of Arabidopsis halleri Have Distinct Effects on Cadmium Tolerance. Plant Cell Environ. 2020, 43, 2143–2157. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhu, Y.; Fan, T.; Peng, C.; Wang, J.; Sun, L.; Chen, C. OsZIP7 Functions in Xylem Loading in Roots and Inter-Vascular Transfer in Nodes to Deliver Zn/Cd to Grain in Rice. Biochem. Biophys. Res. Commun. 2019, 512, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Qu, M.; Zhu, Y.; Peng, C.; Wang, J.; Gao, D.; Chen, C. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 Function Synergistically in Zinc/Cadmium Uptake. Plant Physiol. 2020, 183, 1235–1249. [Google Scholar] [CrossRef]
- Yang, M.; Li, Y.; Liu, Z.; Tian, J.; Liang, L.; Qiu, Y.; Wang, G.; Du, Q.; Cheng, D.; Cai, H.; et al. A High Activity Zinc Transporter OsZIP9 Mediates Zinc Uptake in Rice. Plant J. 2020, 103, 1695–1709. [Google Scholar] [CrossRef]
- Cailliatte, R.; Schikora, A.; Briat, J.-F.; Mari, S.; Curie, C. High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions. Plant Cell 2010, 22, 904–917. [Google Scholar] [CrossRef] [Green Version]
- Thomine, S.; Wang, R.; Ward, J.M.; Crawford, N.M.; Schroeder, J.I. Cadmium and Iron Transport by Members of a Plant Metal Transporter Family in Arabidopsis with Homology to Nramp Genes. Proc. Natl. Acad. Sci. USA 2000, 97, 4991–4996. [Google Scholar] [CrossRef] [Green Version]
- Thomine, S.; Lelièvre, F.; Debarbieux, E.; Schroeder, J.I.; Barbier-Brygoo, H. AtNRAMP3, a Multispecific Vacuolar Metal Transporter Involved in Plant Responses to Iron Deficiency: NRAMP Vacuolar Metal Transporter. Plant J. 2003, 34, 685–695. [Google Scholar] [CrossRef]
- Pottier, M.; Oomen, R.; Picco, C.; Giraudat, J.; Scholz-Starke, J.; Richaud, P.; Carpaneto, A.; Thomine, S. Identification of Mutations Allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to Discriminate against Cadmium. Plant J. 2015, 83, 625–637. [Google Scholar] [CrossRef]
- Wu, D.; Yamaji, N.; Yamane, M.; Kashino-Fujii, M.; Sato, K.; Feng Ma, J. The HvNramp5 Transporter Mediates Uptake of Cadmium and Manganese, But Not Iron. Plant Physiol. 2016, 172, 1899–1910. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Huang, S.; Yamaji, N.; Zhang, W.; Ma, J.F.; Zhao, F. OsNRAMP1 Transporter Contributes to Cadmium and Manganese Uptake in Rice. Plant Cell Environ. 2020, 43, 2476–2491. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, W.; Zhang, S.; Yang, T.; Liu, Q.; Dong, J.; Fu, H.; Mao, X.; Liu, B. Genome-Wide Association Study and Candidate Gene Analysis of Rice Cadmium Accumulation in Grain in a Diverse Rice Collection. Rice 2018, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.D.; Hwang, J.G.; Han, A.R.; Park, Y.C.; Lee, C.; Ok, Y.S.; Jang, C.S. Positive Regulation of Rice RING E3 Ligase OsHIR1 in Arsenic and Cadmium Uptakes. Plant Mol. Biol. 2014, 85, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Shankar, A.; Jha, S.K.; Kanwar, P.; Pandey, A.; Pandey, G.K. A Rice Tonoplastic Calcium Exchanger, OsCCX2 Mediates Ca2+/Cation Transport in Yeast. Sci. Rep. 2015, 5, 17117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, X.; Zeng, M.; Wang, J.; Zeng, Z.; Dai, J.; Xie, Z.; Yang, Y.; Tian, L.; Chen, L.; Li, D. A Node-Expressed Transporter OsCCX2 Is Involved in Grain Cadmium Accumulation of Rice. Front. Plant Sci. 2018, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, D.; Haydon, M.J.; Wang, Y.; Wong, E.; Sherson, S.M.; Young, J.; Camakaris, J.; Harper, J.F.; Cobbett, C.S. P-Type ATPase Heavy Metal Transporters with Roles in Essential Zinc Homeostasis in Arabidopsis. Plant Cell 2004, 16, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Morel, M.; Crouzet, J.; Gravot, A.; Auroy, P.; Leonhardt, N.; Vavasseur, A.; Richaud, P. AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis. Plant Physiol. 2009, 149, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Verret, F.; Gravot, A.; Auroy, P.; Leonhardt, N.; David, P.; Nussaume, L.; Vavasseur, A.; Richaud, P. Overexpression of AtHMA4 Enhances Root-to-Shoot Translocation of Zinc and Cadmium and Plant Metal Tolerance. FEBS Lett. 2004, 576, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Ishimaru, Y.; Shimo, H.; Ogo, Y.; Senoura, T.; Nishizawa, N.K.; Nakanishi, H. The OsHMA2 Transporter Is Involved in Root-to-Shoot Translocation of Zn and Cd in Rice: Characterization of OsHMA2. Plant Cell Environ. 2012, 35, 1948–1957. [Google Scholar] [CrossRef]
- Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene Limiting Cadmium Accumulation in Rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, J.F.; Xia, J.; Yamaji, N.; Shen, R.F.; Ma, J.F. Effective Reduction of Cadmium Accumulation in Rice Grain by Expressing OsHMA3 under the Control of the OsHMA2 Promoter. J. Exp. Bot. 2018, 69, 2743–2752. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, Y.-Y.; Lee, Y.; An, G. Rice P1B-Type Heavy-Metal ATPase, OsHMA9, Is a Metal Efflux Protein. Plant Physiol. 2007, 145, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Uraguchi, S.; Kamiya, T.; Sakamoto, T.; Kasai, K.; Sato, Y.; Nagamura, Y.; Yoshida, A.; Kyozuka, J.; Ishikawa, S.; Fujiwara, T. Low-Affinity Cation Transporter (OsLCT1) Regulates Cadmium Transport into Rice Grains. Proc. Natl. Acad. Sci. USA 2011, 108, 20959–20964. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Jiang, J.; Liu, Y.; Meng, M.; Xu, S.; Tan, Y.; Li, Y.; Shu, Q.; Huang, J. Characterization and Evaluation of OsLCT1 and OsNramp5 Mutants Generated through CRISPR/Cas9-Mediated Mutagenesis for Breeding Low Cd Rice. Rice Sci. 2019, 26, 88–97. [Google Scholar] [CrossRef]
- Yan, H.; Xu, W.; Xie, J.; Gao, Y.; Wu, L.; Sun, L.; Feng, L.; Chen, X.; Zhang, T.; Dai, C.; et al. Variation of a Major Facilitator Superfamily Gene Contributes to Differential Cadmium Accumulation between Rice Subspecies. Nat. Commun. 2019, 10, 2562. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Lu, Y.; Zhang, X.; Yang, G.; Chao, D.; Wang, Z.; Shi, M.; Chen, J.; Chao, D.-Y.; Li, R.; et al. The ABC Transporter ABCG36 Is Required for Cadmium Tolerance in Rice. J. Exp. Bot. 2019, 70, 5909–5918. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC Transporter AtPDR8 Is a Cadmium Extrusion Pump Conferring Heavy Metal Resistance: Role of AtPDR8 in Cadmium Resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef]
- Luo, J.-S.; Huang, J.; Zeng, D.-L.; Peng, J.-S.; Zhang, G.-B.; Ma, H.-L.; Guan, Y.; Yi, H.-Y.; Fu, Y.-L.; Han, B.; et al. A Defensin-like Protein Drives Cadmium Efflux and Allocation in Rice. Nat. Commun. 2018, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Gao, X.; Zhao, J.; Zhang, J.; Chen, S.; Lu, L. Plant Cadmium Resistance 2 (SaPCR2) Facilitates Cadmium Efflux in the Roots of Hyperaccumulator Sedum Alfredii Hance. Front. Plant Sci. 2020, 11, 568887. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Cózatl, D.G.; Xie, Q.; Akmakjian, G.Z.; Jobe, T.O.; Patel, A.; Stacey, M.G.; Song, L.; Demoin, D.W.; Jurisson, S.S.; Stacey, G.; et al. OPT3 Is a Component of the Iron-Signaling Network between Leaves and Roots and Misregulation of OPT3 Leads to an Over-Accumulation of Cadmium in Seeds. Mol. Plant. 2014, 7, 1455–1469. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, S.K.; Pandit, E.; Pawar, S.; Pradhan, A.; Behera, L.; Das, S.R.; Pathak, H. Genetic Regulation of Homeostasis, Uptake, Bio-Fortification and Efficiency Enhancement of Iron in Rice. Environ. Exp. Bot. 2020, 177, 104066. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ogawa, I.; Ishimaru, Y.; Mori, S.; Nishizawa, N.K. Iron Deficiency Enhances Cadmium Uptake and Translocation Mediated by the Fe2+ Transporters OsIRT1 and OsIRT2 in Rice. Soil Sci. Plant Nutr. 2006, 52, 464–469. [Google Scholar] [CrossRef]
- Moore, R.E.T.; Ullah, I.; de Oliveira, V.H.; Hammond, S.J.; Strekopytov, S.; Tibbett, M.; Dunwell, J.M.; Rehkämper, M. Cadmium Isotope Fractionation Reveals Genetic Variation in Cd Uptake and Translocation by Theobroma cacao and Role of Natural Resistance-Associated Macrophage Protein 5 and Heavy Metal ATPase-Family Transporters. Hortic. Res. 2020, 7, 71. [Google Scholar] [CrossRef]
- Yamaji, N.; Xia, J.; Mitani-Ueno, N.; Yokosho, K.; Feng Ma, J. Preferential Delivery of Zinc to Developing Tissues in Rice Is Mediated by P-Type Heavy Metal ATPase OsHMA2. Plant Physiol. 2013, 162, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-P.; Wang, P.; Chang, J.-D.; Kopittke, P.M.; Zhao, F.-J. Producing Cd-Safe Rice Grains in Moderately and Seriously Cd-Contaminated Paddy Soils. Chemosphere 2021, 267, 128893. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wang, B.; Song, Y.; Xie, Z.; Li, C.; Li, S.; Huang, Y.; Jiang, M. Astaxanthin and Its Gold Nanoparticles Mitigate Cadmium Toxicity in Rice by Inhibiting Cadmium Translocation and Uptake. Sci. Total Environ. 2021, 786, 147496. [Google Scholar] [CrossRef] [PubMed]
- De Storme, N.; Geelen, D. The Impact of Environmental Stress on Male Reproductive Development in Plants: Biological Processes and Molecular Mechanisms. Plant Cell Environ. 2014, 37, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Shao, Y.; et al. Knockout of OsNramp5 Using the CRISPR/Cas9 System Produces Low Cd-Accumulating Indica Rice without Compromising Yield. Sci. Rep. 2017, 7, 14438. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.S.; Feng, S.J.; Zhang, B.Q.; Wang, M.Q.; Cao, H.W.; Rono, J.K.; Chen, X.; Yang, Z.M. OsZIP1 Functions as a Metal Efflux Transporter Limiting Excess Zinc, Copper and Cadmium Accumulation in Rice. BMC Plant Biol. 2019, 19, 283. [Google Scholar] [CrossRef] [Green Version]
- Uraguchi, S.; Mori, S.; Kuramata, M.; Kawasaki, A.; Arao, T.; Ishikawa, S. Root-to-Shoot Cd Translocation via the Xylem Is the Major Process Determining Shoot and Grain Cadmium Accumulation in Rice. J. Exp. Bot. 2009, 60, 2677–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, I.C.; Arias-Barreiro, C.R.; Ooi, L.; Lee, N.-H.; Sobahan, M.A.; Nakamura, Y.; Hirai, Y.; Murata, Y. Cadmium Uptake via Apoplastic Bypass Flow in Oryza Sativa. J. Plant Res. 2021, 134, 1139–1148. [Google Scholar] [CrossRef]
- Adil, M.F.; Sehar, S.; Chen, G.; Chen, Z.-H.; Jilani, G.; Chaudhry, A.N.; Shamsi, I.H. Cadmium-Zinc Cross-Talk Delineates Toxicity Tolerance in Rice via Differential Genes Expression and Physiological/Ultrastructural Adjustments. Ecotoxicol. Environ. Saf. 2020, 190, 110076. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, L.; Tang, Z.; Huang, X.-Y.; Ma, J.F.; Zhao, F.-J. Producing Cadmium-Free Indica Rice by Overexpressing OsHMA3. Environ. Int. 2019, 126, 619–626. [Google Scholar] [CrossRef]
- GB 2762-2017; Maximum Levels of Contaminants in Foods. Ministry of Health of the People’s Republic of China: Beijing, China, 2017; p. 4.
- Wu, Z.; Zhao, X.; Sun, X.; Tan, Q.; Tang, Y.; Nie, Z.; Hu, C. Xylem Transport and Gene Expression Play Decisive Roles in Cadmium Accumulation in Shoots of Two Oilseed Rape Cultivars (Brassica napus). Chemosphere 2015, 119, 1217–1223. [Google Scholar] [CrossRef]
- Gu, T.-Y.; Qi, Z.-A.; Chen, S.-Y.; Yan, J.; Fang, Z.-J.; Wang, J.-M.; Gong, J.-M. Dual-Function DEFENSIN 8 Mediates Phloem Cadmium Unloading and Accumulation in Rice Grains. Plant Physiol. 2023, 191, 515–527. [Google Scholar] [CrossRef]
- Reid, R.J.; Dunbar, K.R.; Mclaughlin, M.J. Cadmium Loading into Potato Tubers: The Roles of the Periderm, Xylem and Phloem: Cadmium Mobility in Potatoes. Plant Cell Environ. 2003, 26, 201–206. [Google Scholar] [CrossRef]
- Qin, Q.; Li, X.; Zhuang, J.; Weng, L.; Liu, W.; Tai, P. Long-Distance Transport of Cadmium from Roots to Leaves of Solanum Melongena. Ecotoxicology 2015, 24, 2224–2232. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, S.; Foyer, C.H.; Hou, D.; Wang, H.; Zhou, W.; Liu, T.; Ge, J.; Lu, L.; Lin, X. Efficient Phloem Transport Significantly Remobilizes Cadmium from Old to Young Organs in a Hyperaccumulator Sedum alfredii. J. Hazard. Mater. 2019, 365, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Song, W.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The Phytochelatin Transporters AtABCC1 and AtABCC2 Mediate Tolerance to Cadmium and Mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, Z.; Haque, M.M.; Gupta, M. WRKY Transcription Factors: A Promising Way to Deal with Arsenic Stress in Rice. Mol. Biol. Rep. 2022, 49, 10895–10904. [Google Scholar] [CrossRef] [PubMed]
- Maksymiec, W. Signaling Responses in Plants to Heavy Metal Stress. Acta Physiol. Plant 2007, 29, 177–187. [Google Scholar] [CrossRef]
- Chen, P.; Li, Z.; Luo, D.; Jia, R.; Lu, H.; Tang, M.; Hu, Y.; Yue, J.; Huang, Z. Comparative Transcriptomic Analysis Reveals Key Genes and Pathways in Two Different Cadmium Tolerance Kenaf (Hibiscus cannabinus L.) Cultivars. Chemosphere 2021, 263, 128211. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Studies on the Regulatory Mechanism and Interacting Proteins of Rice WRKY Gene under Heavy Metal Stress. p. 69. Available online: https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZWFZ201810001061.htm (accessed on 12 October 2018).
- Han, Y.; Fan, T.; Zhu, X.; Wu, X.; Ouyang, J.; Jiang, L.; Cao, S. WRKY12 Represses GSH1 Expression to Negatively Regulate Cadmium Tolerance in Arabidopsis. Plant Mol. Biol. 2019, 99, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Yan, X.; Huang, Y.; Han, Y.; Zhang, C.; Ren, Y.; Fan, T.; Xiao, F.; Liu, Y.; Cao, S. The WRKY Transcription Factor, WRKY13, Activates PDR8 Expression to Positively Regulate Cadmium Tolerance in Arabidopsis. Plant Cell Environ. 2019, 42, 891–903. [Google Scholar] [CrossRef]
- Li, C.; Ng, C.K.-Y.; Fan, L.-M. MYB Transcription Factors, Active Players in Abiotic Stress Signaling. Environ. Exp. Bot. 2015, 114, 80–91. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, W.; Jie, Y.; Zhou, Q.; Song, C. A MYB Transcription Factor, BnMYB2, Cloned from Ramie (Boehmeria nivea) Is Involved in Cadmium Tolerance and Accumulation. PLoS ONE 2020, 15, e0233375. [Google Scholar] [CrossRef]
- Tiwari, P.; Indoliya, Y.; Chauhan, A.S.; Singh, P.; Singh, P.K.; Singh, P.C.; Srivastava, S.; Pande, V.; Chakrabarty, D. Auxin-Salicylic Acid Cross-Talk Ameliorates OsMYB-R1 Mediated Defense towards Heavy Metal, Drought and Fungal Stress. J. Hazard. Mater. 2020, 399, 122811. [Google Scholar] [CrossRef]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB Transcription Factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Hu, S.; Yu, Y.; Chen, Q.; Mu, G.; Shen, Z.; Zheng, L. OsMYB45 Plays an Important Role in Rice Resistance to Cadmium Stress. Plant Sci. 2017, 264, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. BZIP Transcription Factors in Arabidopsis. Trends Plant Sci. 2002, 7, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Kim, H.; Shim, D.; Jang, S.; Yamaoka, Y.; Shin, S.; Yamano, T.; Kajikawa, M.; Jin, E.; Fukuzawa, H.; et al. The Chlamydomonas BZIP Transcription Factor BLZ8 Confers Oxidative Stress Tolerance by Inducing the Carbon-Concentrating Mechanism. Plant Cell 2022, 34, 910–926. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Qiu, W.; Jin, K.; Yu, M.; Han, X.; He, X.; Wu, L.; Wu, C.; Zhuo, R. Identification and Analysis of BZIP Family Genes in Sedum Plumbizincicola and Their Potential Roles in Response to Cadmium Stress. Front. Plant Sci. 2022, 13, 859386. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Bai, Y.; Chao, Y.; Sun, X.; He, C.; Liang, X.; Xie, L.; Han, L. Genome-Wide Analysis Reveals Four Key Transcription Factors Associated with Cadmium Stress in Creeping Bentgrass (Agrostis stolonifera L.). PeerJ 2018, 6, e5191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesarwani, M.; Yoo, J.; Dong, X. Genetic Interactions of TGA Transcription Factors in the Regulation of Pathogenesis-Related Genes and Disease Resistance in Arabidopsis. Plant Physiol. 2007, 144, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinati, S.; DalCorso, G.; Varotto, S.; Furini, A. The Brassica juncea BjCdR15, an Ortholog of Arabidopsis TGA3, Is a Regulator of Cadmium Uptake, Transport and Accumulation in Shoots and Confers Cadmium Tolerance in Transgenic Plants. New Phytol. 2010, 185, 964–978. [Google Scholar] [CrossRef]
- Fusco, N.; Micheletto, L.; Corso, G.D.; Borgato, L.; Furini, A. Identification of Cadmium-Regulated Genes by CDNA-AFLP in the Heavy Metal Accumulator Brassica juncea L. J. Exp. Bot. 2005, 56, 3017–3027. [Google Scholar] [CrossRef] [Green Version]
- von Koskull-Döring, P.; Scharf, K.-D.; Nover, L. The Diversity of Plant Heat Stress Transcription Factors. Trends Plant Sci. 2007, 12, 452–457. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, S.; Yin, L.; Shi, K.; Xia, X.; Zhou, Y.; Yu, J.; Zhou, J. Tomato HsfA1a Plays a Critical Role in Plant Drought Tolerance by Activating ATG Genes and Inducing Autophagy. Autophagy 2015, 11, 2033–2047. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Zhang, Y.; Xu, Y.; Qi, Z.; Li, M.-Q.; Ahammed, G.J.; Xia, X.-J.; Shi, K.; Zhou, Y.-H.; Reiter, R.J.; et al. HsfA1a Upregulates Melatonin Biosynthesis to Confer Cadmium Tolerance in Tomato Plants. J. Pineal. Res. 2017, 62, e12387. [Google Scholar] [CrossRef]
- Li, M.-Q.; Hasan, M.K.; Li, C.-X.; Ahammed, G.J.; Xia, X.-J.; Shi, K.; Zhou, Y.-H.; Reiter, R.J.; Yu, J.-Q.; Xu, M.-X.; et al. Melatonin Mediates Selenium-Induced Tolerance to Cadmium Stress in Tomato Plants. J. Pineal. Res. 2016, 61, 291–302. [Google Scholar] [CrossRef]
- Chen, S.; Yu, M.; Li, H.; Wang, Y.; Lu, Z.; Zhang, Y.; Liu, M.; Qiao, G.; Wu, L.; Han, X.; et al. SaHsfA4c from Sedum alfredii Hance Enhances Cadmium Tolerance by Regulating ROS-Scavenger Activities and Heat Shock Proteins Expression. Front. Plant Sci. 2020, 11, 142. [Google Scholar] [CrossRef] [Green Version]
- Shim, D.; Hwang, J.-U.; Lee, J.; Lee, S.; Choi, Y.; An, G.; Martinoia, E.; Lee, Y. Orthologs of the Class A4 Heat Shock Transcription Factor HsfA4a Confer Cadmium Tolerance in Wheat and Rice. Plant Cell 2010, 21, 4031–4043. [Google Scholar] [CrossRef] [Green Version]
- Rono, J.K.; Le Wang, L.; Wu, X.C.; Cao, H.W.; Zhao, Y.N.; Khan, I.U.; Yang, Z.M. Identification of a New Function of Metallothionein-like Gene OsMT1e for Cadmium Detoxification and Potential Phytoremediation. Chemosphere 2021, 265, 129136. [Google Scholar] [CrossRef]
- Ng, D.; Abeysinghe, J.; Kamali, M. Regulating the Regulators: The Control of Transcription Factors in Plant Defense Signaling. Int. J. Mol. Sci. 2018, 19, 3737. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; He, F.; Zhu, B.; Ren, M.; Tang, H. NAC Transcription Factors from Aegilops markgrafii Reduce Cadmium Concentration in Transgenic Wheat. Plant Soil 2020, 449, 39–50. [Google Scholar] [CrossRef]
- Charfeddine, M.; Saïdi, M.N.; Charfeddine, S.; Hammami, A.; Gargouri Bouzid, R. Genome-Wide Analysis and Expression Profiling of the ERF Transcription Factor Family in Potato (Solanum tuberosum L.). Mol. Biotechnol. 2015, 57, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Chahel, A.A.; Yousaf, Z.; Zeng, S.; Li, Y.; Ying, W. Growth and Physiological Alterations Related to Root-Specific Gene Function of LrERF061-OE in Glycyrrhiza uralensis Fisch. Hairy Root Clones under Cadmium Stress. Plant Cell Tissue Org. 2020, 140, 115–127. [Google Scholar] [CrossRef]
- Lanier, C.; Bernard, F.; Dumez, S.; Leclercq, J.; Lemière, S.; Vandenbulcke, F.; Nesslany, F.; Platel, A.; Devred, I.; Cuny, D.; et al. Combined Effect of Cd and Pb Spiked Field Soils on Bioaccumulation, DNA Damage, and Peroxidase Activities in Trifolium repens. Environ. Sci. Pollut. Res. 2016, 23, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhu, C.; Jiang, J.; Zhang, H.; Zhu, J.; Duan, C. Epigenetic Regulation in Plant Abiotic Stress Responses. J. Integr. Plant Biol. 2020, 62, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.J.; Zhang, X.D.; Liu, X.S.; Tan, S.K.; Chu, S.S.; Meng, J.G.; Zhao, K.X.; Zheng, J.F.; Yang, Z.M. Characterization of Long Non-Coding RNAs Involved in Cadmium Toxic Response in Brassica napus. RSC Adv. 2016, 6, 82157–82173. [Google Scholar] [CrossRef]
- Greco, M.; Sáez, C.A.; Contreras, R.A.; Rodríguez-Rojas, F.; Bitonti, M.B.; Brown, M.T. Cadmium and/or Copper Excess Induce Interdependent Metal Accumulation, DNA Methylation, Induction of Metal Chelators and Antioxidant Defences in the Seagrass Zostera marina. Chemosphere 2019, 224, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.K.; Ye, J.Y.; Zhang, L.L.; Chen, H.S.; Zhang, H.H.; Zhu, Y.X.; Liu, X.X.; Jin, C.W. Inhibition of DNA Demethylation Enhances Plant Tolerance to Cadmium Toxicity by Improving Iron Nutrition. Plant Cell Environ. 2019, 43, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Fu, L.; Kuang, L.; Chen, D.; Zhang, G.; Shen, Q.; Wu, D. Transcriptome-Wide M6A Methylation Profile Reveals Regulatory Networks in Roots of Barley under Cadmium Stress. J. Hazard. Mater. 2022, 423, 127140. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.J.; Liu, X.S.; Tao, H.; Tan, S.K.; Chu, S.S.; Oono, Y.; Zhang, X.D.; Chen, J.; Yang, Z.M. Variation of DNA Methylation Patterns Associated with Gene Expression in Rice (Oryza sativa) Exposed to Cadmium: DNA Methylation in Cd-Exposed Rice. Plant Cell Environ. 2016, 39, 2629–2649. [Google Scholar] [CrossRef]
- Sun, L.; Xue, C.; Guo, C.; Jia, C.; Yuan, H.; Pan, X.; Tai, P. Maintenance of Grafting Reducing Cadmium Accumulation in Soybean (Glycine max) Is Mediated by DNA Methylation. Sci. Total Environ. 2022, 847, 157488. [Google Scholar] [CrossRef]
- Aina, R.; Sgorbati, S.; Santagostino, A.; Labra, M.; Ghiani, A.; Citterio, S. Specific Hypomethylation of DNA Is Induced by Heavy Metals in White Clover and Industrial Hemp. Physiol. Plant. 2004, 121, 472–480. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Jha, R.; Khurshid, M.; Zhou, M.; Mantri, N.; Siddique, K.H.M. Long Non-Coding RNAs: Emerging Players Regulating Plant Abiotic Stress Response and Adaptation. BMC Plant Biol. 2020, 20, 466. [Google Scholar] [CrossRef]
- Rowley, M.J.; Böhmdorfer, G.; Wierzbicki, A.T. Analysis of Long Non-Coding RNAs Produced by a Specialized RNA Polymerase in Arabidopsis thaliana. Methods 2013, 63, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Shi, S.; Jiang, N.; Khanzada, H.; Wassan, G.M.; Zhu, C.; Peng, X.; Xu, J.; Chen, Y.; Yu, Q.; et al. Genome-Wide Analysis of Long Non-Coding RNAs Affecting Roots Development at an Early Stage in the Rice Response to Cadmium Stress. BMC Genom. 2018, 19, 460. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Song, J.B.; Yang, Z.M. Genome-Wide Identification of Brassica Napus MicroRNAs and Their Targets in Response to Cadmium. J. Exp. Bot. 2012, 63, 4597–4613. [Google Scholar] [CrossRef] [Green Version]
- Chuck, G.; Candela, H.; Hake, S. Big Impacts by Small RNAs in Plant Development. Curr. Opin. Plant Biol. 2009, 12, 81–86. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, L.; Jiang, Q.; Zhu, C. MicroRNAs as Important Regulators of Heat Stress Responses in Plants. J. Agric. Food Chem. 2020, 68, 11320–11326. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, Z.; Zhu, C. Microarray-Based Analysis of Cadmium-Responsive MicroRNAs in Rice (Oryza sativa). J. Exp. Bot. 2011, 62, 3563–3573. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Tao, Y.; Zhu, C. Emerging Roles of MicroRNAs in the Mediation of Drought Stress Response in Plants. J. Exp. Bot. 2013, 64, 3077–3086. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Gong, S.; Wang, Y.; Wang, F.; Bao, H.; Sun, J.; Cai, C.; Yi, K.; Chen, Z.; Zhu, C. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice. Plant Physiol. 2018, 177, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Ye, Y.; Jiang, Z.; Wang, Y.; Zhu, C. MicroRNA390 Is Involved in Cadmium Tolerance and Accumulation in Rice. Front. Plant Sci. 2016, 7, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.G.; Zhang, X.D.; Tan, S.K.; Zhao, K.X.; Yang, Z.M. Genome-Wide Identification of Cd-Responsive NRAMP Transporter Genes and Analyzing Expression of NRAMP 1 Mediated by MiR167 in Brassica napus. Biometals 2017, 30, 917–931. [Google Scholar] [CrossRef]
- Huang, S.Q.; Xiang, A.L.; Che, L.L.; Chen, S.; Li, H.; Song, J.B.; Yang, Z.M. A Set of MiRNAs from Brassica Napus in Response to Sulphate Deficiency and Cadmium Stress. Plant Biotechnol. J. 2010, 8, 887–899. [Google Scholar] [CrossRef]
- Zhang, L.W.; Song, J.B.; Shu, X.X.; Zhang, Y.; Yang, Z.M. MiR395 Is Involved in Detoxification of Cadmium in Brassica napus. J. Hazard. Mater. 2013, 250–251, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Sunkar, R.; Kapoor, A.; Zhu, J.-K. Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of MiR398 and Important for Oxidative Stress Tolerance. Plant Cell 2006, 18, 2051–2065. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.-H.; Zhou, X.-Y.; Shi, S.-H.; Zhang, S.; Chen, Z.-H.; Ali, M.A.; Ahmed, I.M.; Wang, Y.; Wu, F. An MiR156-Regulated Nucleobase-Ascorbate Transporter 2 Confers Cadmium Tolerance via Enhanced Anti-Oxidative Capacity in Barley. J. Adv. Res. 2022, 44, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Singh, S.; Ramamurthy, P.C.; Jan, S.; Bhardwaj, S.; Gill, S.S.; Prasad, R.; Singh, J. Molecular Consequences of Cadmium Toxicity and Its Regulatory Networks in Plants. Plant Gene 2021, 28, 100342. [Google Scholar] [CrossRef]
- Sinha, A.K.; Jaggi, M.; Raghuram, B.; Tuteja, N. Mitogen-Activated Protein Kinase Signaling in Plants under Abiotic Stress. Plant Signal. Behav. 2011, 6, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.-M.; Chien, P.-S.; Huang, H.-J. Distinct Signalling Pathways for Induction of MAP Kinase Activities by Cadmium and Copper in Rice Roots. J. Exp. Bot. 2007, 58, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.P.; Vani, G.; Kumar, K.; Wankhede, D.P.; Misra, M.; Gupta, M.; Sinha, A.K. Arsenic Stress Activates MAP Kinase in Rice Roots and Leaves. Arch. Biochem. Biophys. 2011, 506, 73–82. [Google Scholar] [CrossRef]
- Smeets, K.; Opdenakker, K.; Remans, T.; Forzani, C.; Hirt, H.; Vangronsveld, J.; Cuypers, A. The Role of the Kinase OXI1 in Cadmium- and Copper-Induced Molecular Responses in Arabidopsis thaliana: The Role of OXI1 in Metal Stress. Plant Cell Environ. 2013, 36, 1228–1238. [Google Scholar] [CrossRef]
- Kovtun, Y.; Chiu, W.-L.; Tena, G.; Sheen, J. Functional Analysis of Oxidative Stress-Activated Mitogen-Activated Protein Kinase Cascade in Plants. Proc. Natl. Acad. Sci. USA 2000, 97, 2940–2945. [Google Scholar] [CrossRef] [Green Version]
- Nakagami, H.; Soukupová, H.; Schikora, A.; Zárský, V.; Hirt, H. A Mitogen-Activated Protein Kinase Kinase Kinase Mediates Reactive Oxygen Species Homeostasis in Arabidopsis. J. Biol. Chem. 2006, 281, 38697–38704. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, D.; Aarts, M.G.M.; Schat, H.; Van Straalen, N.M. Functional Ecological Genomics to Demonstrate General and Specific Responses to Abiotic Stress. Funct. Ecol. 2008, 22, 8–18. [Google Scholar] [CrossRef]
- Guo, Z.; Zeng, P.; Xiao, X.; Peng, C. Physiological, Anatomical, and Transcriptional Responses of Mulberry (Morus alba L.) to Cd Stress in Contaminated Soil. Environ. Pollut. 2021, 284, 117387. [Google Scholar] [CrossRef]
- Opdenakker, K.; Remans, T.; Vangronsveld, J.; Cuypers, A. Mitogen-Activated Protein (MAP) Kinases in Plant Metal Stress: Regulation and Responses in Comparison to Other Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2012, 13, 7828–7853. [Google Scholar] [CrossRef] [PubMed]
- Jalmi, S.K.; Bhagat, P.K.; Verma, D.; Noryang, S.; Tayyeba, S.; Singh, K.; Sharma, D.; Sinha, A.K. Traversing the Links between Heavy Metal Stress and Plant Signaling. Front. Plant Sci. 2018, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghori, N.-H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy Metal Stress and Responses in Plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Chen, S.; Han, X.; Fang, J.; Lu, Z.; Qiu, W.; Liu, M.; Sang, J.; Jiang, J.; Zhuo, R. Sedum alfredii SaNramp6 Metal Transporter Contributes to Cadmium Accumulation in Transgenic Arabidopsis thaliana. Sci. Rep. 2017, 7, 13318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhao, H.; Wu, L.; Liu, A.; Zhao, F.; Xu, W. Heavy Metal ATPase 3 (HMA3) Confers Cadmium Hypertolerance on the Cadmium/Zinc Hyperaccumulator Sedum plumbizincicola. New Phytol. 2017, 215, 687–698. [Google Scholar] [CrossRef] [Green Version]
Family Name | Gene Name | Main Expression Organ | Subcellular Localization | Function | Metal | Concentration | Exposure Time | Reference |
---|---|---|---|---|---|---|---|---|
ZIP family | OsIRT1/ OsIRT2 | Root | Plasma membrane | Cd absorption by root | Cd/Fe | 300 μM CdCl2/ 0.1 mM Fe-EDTA | 10 d/7 d | [19,20] |
OsZIP1 | Root | Endoplasmic reticulum, plasma membrane | Cd and Zn transport | Cd/Zn | 5 μM CdCl2/ 12 μM ZnCl2 | 6 d/21 d | [21,22] | |
OsZIP3 | Stem | Plasma membrane | Cd accumulation | Cd/Zn | 10 μM CdSO4/ 12 μM ZnCl2 | 7 d/21 d | [21,23] | |
OsZIP6 | Root, stem | Plasma membrane | Cd transport | Cd/Zn | 0.05 μM CdCl2/ 1, 20 μM ZnCl2 | 21 d | [24] | |
OsZIP7 | Root, node | Plasma membrane | Cd and Zn accumulation | Cd/Zn | 0.1, 0.4, 40 μM CdSO4/ 0.1, 0.4, 40 μM ZnSO4 | 7–28 d/ 7–28 d | [25] | |
OsZIP9 | Root | Plasma membrane | Cd and Zn uptake | Cd/Zn | 5 μM CdSO4/ 0.04, 0.4 μM ZnCl2 | 24 h/21 d | [26,27] | |
NRAMP family | AtNRAMP1 | Root, leaf | Plasma membrane, tonoplast | Cd uptake | Cd/Fe | 2 μM CdSO4/0.2 mM FeCl3 | 14 d/3 d | [28,29] |
AtNRAMP3 | Root, leaf | Tonoplast | Cd uptake | Cd/Fe | 1, 10 μM CdCl2/0.2 mM FeCl3 | 3 d | [29,30] | |
AtNRAMP4 | Root, leaf | Tonoplast | Cd uptake | Cd/Fe | 500 nM CdCl2/0.2 mM FeCl3 | 14 d/3 d | [29,31] | |
HvNRAMP5 | Root | Plasma membrane | Cd transport | Cd/Fe/Mn | 0.1, 0.5, 1 μM CdSO4/0.1, 2, 10 μM FeSO4/0.05, 0.5, 5 μM MnCl2 | 14 d | [32] | |
OsNRAMP1 | Root, leaf | Plasma membrane | Cd absorption by root | Cd/ Mn | 0.1, 1 μM CdCl2/0.5, 5, 20, 80 μM Mn | 3 d/7 d | [33] | |
OsNRAMP2 | Shoot | Tonoplast | Cd transport and accumulation | Cd | 5 μM CdCl2 | 1–5 d | [34] | |
OsNRAMP5 | Root | Plasma membrane | Cd transport into vascular bundles | Cd/Fe/Mn | 100 nM CdSO4/ 5, 20 μM Fe-EDTA/ 2,4,6 μM Mn | 21 d/ 14 d/ 18 d | [11,33,35] | |
HIR family | OsHIR1 | — | Plasma membrane and nucleus | Cd uptake | Cd/As | 50 μM CdSO4/ 150 μM As (V) | 12 d | [36] |
CaCA family | OsCDT1/ OsCCX2 | Node | Plasma membrane | Cd loading in xylem | Cd/Ca | 0.1, 100 μM CdCl2/50 mM CaCl2 | 32 h, 7 d/ 3 d | [37,38] |
P-type ATPase family | AtHMA2 | Root, Stem, leaf | Plasma membrane | Cd root-to-shoot translocation | Cd | 0.06, 0.15, 0.3 Cd | 14 d | [39] |
AtHMA3 | Root, shoot | Tonoplast | Cd sequestrating in vacuoles | Cd | 30 μM CdCl2 | 11 d | [40] | |
AtHMA4 | Root, Stem, leaf | Plasma membrane | Cd and Zn root-to-shoot translocation | Cd/Zn/Co | 40 μM CdCl2/3, 200 μM ZnSO4/40 μM CoCl2 | 24 h | [41] | |
OsHMA2 | Root, node | Plasma membrane | Cd loading in xylem | Cd | 0.2, 1 μM CdCl2 | 10 d | [42] | |
OsHMA3 | Root | Tonoplast | Transportation of Cd from cytoplasm to vacuoles | Cd | 0.1, 1 μM CdSO4 | 8 d | [43,44] | |
OsHMA9 | Leaf | Plasma membrane | Cd efflux | Cd | 500 μM CdCl2 | 12 d | [45] | |
LCT transporter | OsLCT1 | Node | Plasma membrane | Cd transporter in phloem | Cd | 0.2 μM CdCl2 | 6 h, 60 d | [46,47] |
MFS superfamily | OsCd1 | Root, grain | Plasma membrane | Cd uptake in roots and accumulation in grains | Cd | 1 μM CdCl2 | 20 d | [48] |
ABC transporter | OsABCG36 | Root | Plasma membrane | Cd efflux | Cd | 0.1, 1, 5 μM CdSO4 | 14 d | [49] |
AtPDR8 | Root, leaf | Plasma membrane | Cd efflux | Cd/Pb | 5, 10, 20, 30 μM CdCl2/0.5 mM Pb(NO3)2 | 14–21 d | [50] | |
— | CAL1 | Root | Cell membrane | Cd accumulation in leaves | Cd | 10 μM CdCl2 | 7 d | [51] |
PCR family | SaPCR2 | Root | Plasma membrane | Cd efflux | Cd | 10, 15, 30 μM CdCl2 | 7 d | [52] |
OPT family | OPT3 | Root, grain | Plasma membrane | Cd transporter in phloem | Cd | 50 μM CdCl2 | 14 d | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ding, L.; Zhou, M.; Chen, Z.; Ding, Y.; Zhu, C. Transcriptional Regulatory Network of Plant Cadmium Stress Response. Int. J. Mol. Sci. 2023, 24, 4378. https://doi.org/10.3390/ijms24054378
Li Y, Ding L, Zhou M, Chen Z, Ding Y, Zhu C. Transcriptional Regulatory Network of Plant Cadmium Stress Response. International Journal of Molecular Sciences. 2023; 24(5):4378. https://doi.org/10.3390/ijms24054378
Chicago/Turabian StyleLi, Yakun, Lihong Ding, Mei Zhou, Zhixiang Chen, Yanfei Ding, and Cheng Zhu. 2023. "Transcriptional Regulatory Network of Plant Cadmium Stress Response" International Journal of Molecular Sciences 24, no. 5: 4378. https://doi.org/10.3390/ijms24054378
APA StyleLi, Y., Ding, L., Zhou, M., Chen, Z., Ding, Y., & Zhu, C. (2023). Transcriptional Regulatory Network of Plant Cadmium Stress Response. International Journal of Molecular Sciences, 24(5), 4378. https://doi.org/10.3390/ijms24054378