The Cannabinoid Ligand Arachidonyl-2′-Chloroethylamide (ACEA) Ameliorates Depressive and Overactive Bladder Symptoms in a Corticosterone-Induced Female Wistar Rat Model
Abstract
:1. Introduction
2. Results
2.1. The Effects of ACEA on Corticosterone (CORT)-Induced Changes in Cystometric Parameters
2.2. The Effects of ACEA on Corticosterone (CORT)-Induced Behavioral Changes
2.3. The Effects of ACEA on Corticosterone (CORT)-Induced Changes in the Expression Levels of c-Fos in Central Micturition Areas
2.4. The Effects of ACEA on Corticosterone (CORT)-Induced Changes in Biochemical Analyses of Biomarkers in Urine
2.5. The Effects of ACEA on Corticosterone (CORT)-Induced Changes in Biochemical Analyses of Biomarkers in the Bladder Detrusor Muscle
2.6. The Effects of ACEA on Corticosterone (CORT)-Induced Changes in Biochemical Analyses of Biomarkers in the Bladder Urothelium
2.7. The Effects of ACEA on Corticosterone (CORT)-Induced Changes in Biochemical Analyses of Biomarkers in Hippocampus
3. Discussion
4. Materials and Methods
4.1. Animals
- Control group receiving vehicle for 14 days plus vehicle for 7 days (the control group, CON);
- Corticosterone 20 mg/kg/day for 14 days plus vehicle for 7 days (CORT);
- Vehicle for 14 days plus ACEA for 7 days (ACEA; 0.3 mg/kg/day);
- Corticosterone 20 mg/kg/day for 14 days plus ACEA for 7 days (CORT + ACEA).
4.2. Drugs
- -
- Corticosterone (CORT) (Tocris Bioscience): (11β)-11,21-Dihydroxypregn-4-ene-3,20-dione—was given subcutaneously at a daily dose of 20 mg/kg for 14 days as described elsewhere (12),
- -
- ACEA (Tocris Bioscience): N-(2-Chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide—a potent and highly selective CB1 receptor agonist (Ki = 1.4 nM), which displays >1400-fold selectivity over CB2 receptors. ACEA was administered intraperitoneally (i.p.) at a daily dose of 0.3 mg/kg for 7 days. The doses of the administered agents were selected on the basis of the results of our previous experiments and the literature data and were confirmed/adjusted in our laboratory in preliminary non-published experiments. The control animals received volume-matched injection of vehicle.
4.3. Surgical Procedures
4.4. Conscious Cystometry
4.5. Forced Swim Test
4.6. Locomotor Activity
4.7. Biochemical Analyses
4.7.1. Determining the Expression Levels of c-Fos in the Central Micturition Areas
4.7.2. Determining the Expression Levels of Biomarkers in the Hippocampus
4.8. Study Design
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEA | N-(2-Chloroethyl)-5Z:8Z:11Z,14Z-eicosatetraenamid |
ANVC | non-voiding contractions amplitude (cm H2O); |
ATP | adenosine triphosphate citrate lyase (pg/mL); |
AUC | the area under the pressure curve (cm H2O/s); |
BC | bladder compliance (mL/cm H2O); |
BDNF | brain-derived neurotrophic factor (pg/mL); |
BP | basal pressure (cm H2O); |
c-Fos | AP-1 transcription factor subunit (pg/mL); |
CGRP | Calcitonin Gene-Related Peptide (pg/mL); |
CRF | corticotropin-releasing factor (pg/mL); |
DO | detrusor overactivity; |
DOI | detrusor overactivity index (cm H2O/mL); |
FNVC | non-voiding contractions frequency (times/filling phase); |
ICI | intercontraction interval (s); |
IL-1β | Interleukin 1-β (pg/mL); |
IL-6 | Interleukin-6 (pg/mL); |
IL-10 | Interleukin-10 (pg/mL); |
MPA | medial preoptic area; |
MVP | micturition voiding pressure (cm H2O); |
NGF | nerve growth factor (pg/mL); |
OAB | overactive bladder syndrome; |
OCT3 | Organic Cation Transporter 3 (pg/mL); |
PMC | pontine micturition center; |
PVR | post-void residual (mL); |
ROCK | rho kinase (pg/mL); |
TNF- | tumor necrosis factor alpha (pg/mL); |
TP | threshold pressure (cm H2O); |
TRPV1 | Transient Receptor Potential Cation Channel Subfamily V, Member 1 |
VAChT | vesicular acetylcholine transporter (pg/mL); |
vlPAG | ventrolateral periaqueductal gray; |
VTNVC | volume threshold to elicit NVC (%); |
VV | voided volume (mL). |
References
- Haylen, B.T.; de Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. 2010, 29, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, A.; Averbeck, M.A.; Sahai, A.; Rahnama’i, M.S.; Anding, R.; Robinson, D.; Gravas, S.; Dmochowski, R. Can we create a valid treatment algorithm for patients with drug resistant overactive bladder (OAB) syndrome or detrusor overactivity (DO)? Results from a think tank (ICI-RS 2015). Neurourol. Urodyn. 2017, 36, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Hiragata, S.; Ogawa, T.; Hayashi, Y.; Tyagi, P.; Seki, S.; Nishizawa, O.; de Miguel, F.; Chancellor, M.B.; Yoshimura, N. Effects of IP-751, Ajulemic Acid, on Bladder Overactivity Induced by Bladder Irritation in Rats. Urology 2007, 70, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Walczak, J.; Price, T.; Cervero, F. Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. Neuroscience 2009, 159, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Tambaro, S.; Casu, M.A.; Mastinu, A.; Lazzari, P. Evaluation of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis. Eur. J. Pharmacol. 2014, 729, 67–74. [Google Scholar] [CrossRef]
- Gratzke, C.; Streng, T.; Park, A.; Christ, G.; Stief, C.G.; Hedlund, P.; Andersson, K.-E. Distribution and Function of Cannabinoid Receptors 1 and 2 in the Rat, Monkey and Human Bladder. J. Urol. 2009, 181, 1939–1948. [Google Scholar] [CrossRef]
- Hedlund, P. Cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. Neurourol. Urodyn. 2014, 33, 46–53. [Google Scholar] [CrossRef]
- Martin, R.S.; Luong, L.A.; Welsh, N.J.; Eglen, R.M.; Martin, G.R.; MacLennan, S.J. Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br. J. Pharmacol. 2000, 129, 1707–1715. [Google Scholar] [CrossRef]
- Bakali, E.; Elliott, R.A.; Taylor, A.H.; Willets, J.; Konje, J.C.; Tincello, U.G. Distribution and function of the endocannabinoid system in the rat and human bladder. Int. Urogynecol. J. 2013, 24, 855–863. [Google Scholar] [CrossRef]
- Freeman, R.M.; Adekanmi, O.; Waterfield, M.R.; Waterfield, A.E.; Wright, D.; Zajicek, J. The effect of cannabis on urge incontinence in patients with multiple sclerosis: A multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int. Urogynecol. J. 2006, 17, 636–641. [Google Scholar] [CrossRef]
- Tomiyama, K.-I.; Funada, M. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: The involvement of cannabinoid CB1 receptors and apoptotic cell death. Toxicol. Appl. Pharmacol. 2014, 274, 17–23. [Google Scholar] [CrossRef]
- Wróbel, A.; Serefko, A.; Poleszak, E.; Rechberger, T. Fourteen-day administration of corticosterone may induce detrusor overactivity symptoms. Int. Urogynecol. J. 2016, 27, 1713–1721. [Google Scholar] [CrossRef]
- Wróbel, A.; Serefko, A.; Szopa, A.; Ulrich, D.; Poleszak, E.; Rechberger, T. O-1602, an Agonist of Atypical Cannabinoid Receptors GPR55, Reverses the Symptoms of Depression and Detrusor Overactivity in Rats Subjected to Corticosterone Treatment. Front. Pharmacol. 2020, 11, 1002. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Li, Y.; Wu, P.; Zhang, Y.; Zheng, J.; Shi, H. ACEA Attenuates Oxidative Stress by Promoting Mitophagy via CB1R/Nrf1/PINK1 Pathway after Subarachnoid Hemorrhage in Rats. Oxid. Med. Cell. Longev. 2022, 2022, 1024279. [Google Scholar] [CrossRef]
- Jones, M.R.; Wang, Z.-Y.; Bjorling, D.E. Intrathecal cannabinoid-1 receptor agonist prevents referred hyperalgesia in acute acrolein-induced cystitis in rats. Am. J. Clin. Exp. Urol. 2015, 3, 28–35. [Google Scholar]
- Rutkowska, M.; Jachimczuk, O. Antidepressant-like properties of ACEA (arachidonyl-2-chloroethylamide), the selective agonist of CB1 receptors. Acta Pol. Pharm.-Drug Res. 2004, 61, 165–167. [Google Scholar]
- Wróbel, A.; Serefko, A.; Rechberger, E.; Banczerowska-Górska, M.; Poleszak, E.; Dudka, J.; Skorupska, K.; Miotła, P.; Semczuk, A.; Kulik-Rechberger, B.; et al. Inhibition of Rho kinase by GSK 269962 reverses both corticosterone-induced detrusor overactivity and depression-like behaviour in rats. Eur. J. Pharmacol. 2018, 837, 127–136. [Google Scholar] [CrossRef]
- Stewart, L.H. Time to change our target in the treatment of OAB. Neurourol. Urodyn. 2022, 41, 513. [Google Scholar] [CrossRef]
- Leija-Salazar, M.; Bermudez de Leon, M.; Gonzalez-Horta, A.; Gonzalez-Hernandez, B. Arachidonyl-2’-chloroethylamide (ACEA), a synthetic agonist of cannabinoid receptor, increases CB(1)R gene expression and reduces dyskinesias in a rat model of Parkinson’s disease. Pharmacol. Biochem. Behav. 2020, 194, 172950. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Wang, P.; Bjorling, D.E. Activation of cannabinoid receptor 1 inhibits increased bladder activity induced by nerve growth factor. Neurosci. Lett. 2015, 589, 19–24. [Google Scholar] [CrossRef]
- Apostolidis, A.; Wagg, A.; Rahnam, A.I.M.S.; Panicker, J.N.; Vrijens, D.; von Gontard, A. Is there “brain OAB” and how can we recognize it? International Consultation on Incontinence-Research Society (ICI-RS) 2017. Neurourol. Urodyn. 2018, 37, S38–S45. [Google Scholar] [CrossRef] [PubMed]
- Peyronnet, B.; Mironska, E.; Chapple, C.; Cardozo, L.; Oelke, M.; Dmochowski, R.; Amarenco, G.; Gamé, X.; Kirby, R.; Van Der Aa, F.; et al. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. Eur. Urol. 2019, 75, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Luo, C.; Zhang, W.; Chen, Y.; He, J.; Zhao, Q.; Zuo, R.; Wu, Y. Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: Involvement in depression. Behav. Brain Res. 2011, 225, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.C.; Fatima, M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: Role of antidepressants treatment. Int. J. Neurosci. 2019, 129, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Li, Y.; Tian, T.; Quan, W.; Wang, L.; Shao, Q.; Fu, L.-Q.; Zhang, X.-H.; Wang, X.-Y.; Zhang, H.; et al. Role of the endocannabinoid system in the formation and development of depression. Die Pharm. 2017, 72, 435–439. [Google Scholar]
- Jaszczyk, A.; Juszczak, G.R. Glucocorticoids, metabolism and brain activity. Neurosci. Biobehav. Rev. 2021, 126, 113–145. [Google Scholar] [CrossRef]
- Ko, I.G.; Moon, B.M.; Kim, S.E.; Jin, J.J.; Hwang, L.; Ji, E.S.; Kim, C.J.; Kim, T.H.; Choi, H.H.; Chung, K.J. Effects of Combination Treatment of Alpha 1-Adrenergic Receptor Antagonists on Voiding Dysfunction: Study on Target Organs in Overactive Bladder Rats. Int. Neurourol. J. 2016, 20, S150–S158. [Google Scholar] [CrossRef]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef]
- Ogłodek, E.A.; Just, M.J.; Szromek, A.R.; Araszkiewicz, A. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol. Rep. 2016, 68, 945–951. [Google Scholar] [CrossRef]
- Cruz, C.D. Neurotrophins in bladder function: What do we know and where do we go from here? Neurourol. Urodyn. 2014, 33, 39–45. [Google Scholar] [CrossRef]
- Farquhar-Smith, W.P.; Rice, A.S.C. A Novel Neuroimmune Mechanism in Cannabinoid-mediated Attenuation of Nerve Growth Factor-induced Hyperalgesia. Anesthesiology 2003, 99, 1391–1401. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, Y.; Chen, J.; Yao, D.; Feng, C.; Dong, Y.; Ren, Y.; Ma, H.; Wang, Z.; Li, G.; et al. Effects of RhoA on depression-like behavior in prenatally stressed offspring rats. Behav. Brain Res. 2022, 432, 113973. [Google Scholar] [CrossRef]
- Morelli, A.; Filippi, S.; Sandner, P.; Fibbi, B.; Chavalmane, A.K.; Silvestrini, E.; Sarchielli, E.; Vignozzi, L.; Gacci, M.; Carini, M.; et al. Vardenafil modulates bladder contractility through cGMP-mediated inhibition of RhoA/Rho kinase signaling pathway in spontaneously hypertensive rats. J. Sex Med. 2009, 6, 1594–1608. [Google Scholar] [CrossRef]
- Kashyap, M.P.; Pore, S.K.; de Groat, W.C.; Chermansky, C.J.; Yoshimura, N.; Tyagi, P. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity. Am. J. Physiol. Physiol. 2018, 315, F45–F56. [Google Scholar] [CrossRef]
- Rahnama’I, M.; Biallosterski, B.; Van Kerrebroeck, P.; van Koeveringe, G.; Gillespie, J.; de Wachter, S. Distribution and sub-types of afferent fibre in the mouse urinary bladder. J. Chem. Neuroanat. 2017, 79, 1–11. [Google Scholar] [CrossRef]
- Andersson, K.-E.; Gratzke, C.; Hedlund, P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int. 2010, 106, 1114–1127. [Google Scholar] [CrossRef]
- Gillespie, J.I. Inhibitory actions of calcitonin gene-related peptide and capsaicin: Evidence for local axonal reflexes in the bladder wall. BJU Int. 2005, 95, 149–156. [Google Scholar] [CrossRef]
- Smet, P.J.; Moore, K.H.; Jonavicius, J. Distribution and colocalization of calcitonin gene-related peptide, tachykinins, and vasoactive intestinal peptide in normal and idiopathic unstable human urinary bladder. Lab. Investig. 1997, 77, 37–49. [Google Scholar]
- Hayn, M.H.; Ballesteros, I.; de Miguel, F.; Coyle, C.H.; Tyagi, S.; Yoshimura, N.; Chancellor, M.B.; Tyagi, P. Functional and Immunohistochemical Characterization of CB1 and CB2 Receptors in Rat Bladder. Urology 2008, 72, 1174–1178. [Google Scholar] [CrossRef]
- McDowell, T.S.; Wang, Z.-Y.; Singh, R.; Bjorling, D. CB1 cannabinoid receptor agonist prevents NGF-induced sensitization of TRPV1 in sensory neurons. Neurosci. Lett. 2013, 551, 34–38. [Google Scholar] [CrossRef]
- Hanna-Mitchell, A.T.; Beckel, J.M.; Barbadora, S.; Kanai, A.J.; de Groat, W.C.; Birder, L.A. Non-neuronal acetylcholine and urinary bladder urothelium. Life Sci. 2007, 80, 2298–2302. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Lopes, T.; Cruz, F. Urinary Biomarkers in Overactive Bladder: Revisiting the Evidence in 2019. Eur. Urol. Focus 2019, 5, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-H.; Cheng, J.-T.; Tong, Y.-C. Metabolic Syndrome Induced Bladder Cannabinoid Receptor Changes in the Fructose-Fed Rats. LUTS: Low. Urin. Tract Symptoms 2018, 10, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, A.; Łańcut, M.; Rechberger, T. A new model of detrusor overactivity in conscious rats induced by retinyl acetate instillation. J. Pharmacol. Toxicol. Methods 2015, 74, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, A.; Rechberger, T. The effect of combined treatment with a beta3 AR agonist and a ROCK inhibitor on detrusor overactivity. Neurourol. Urodyn. 2017, 36, 580–588. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands; London, UK, 2007; ISBN 9780123919496. [Google Scholar]
- Kim, S.-E.; Shin, M.-S.; Kim, C.-J.; Park, J.-H.; Chung, K.-J.; Jung, H.; Kim, K.-H.; Lee, J.-H.; Ko, I.-G. Effects of Tamsulosin on Urinary Bladder Function and Neuronal Activity in the Voiding Centers of Rats with Cyclophosphamide-induced Overactive Bladder. Int. Neurourol. J. 2012, 16, 13–22. [Google Scholar] [CrossRef]
- Joanny, P.; Steinberg, J.; Zamora, A.J.; Conte-Devolx, B.; Millet, Y.; Oliver, C. Corticotropin-releasing factor release from in vitro superfused and incubated rat hypothalamus. Effect of potassium, norepinephrine, and dopamine. Peptides 1989, 10, 903–911. [Google Scholar] [CrossRef]
Control | Corticosterone | ACEA | Corticosterone + ACEA | |
---|---|---|---|---|
Storage phase | ||||
Threshold Pressure (TP, cm H2O) | 8.9 ± 1 | 6.7 ± 1.2 ** | 9.2 ± 1.7 ^^^ | 8.5 ± 1.8 ^ |
Basal Pressure (BP, cm H2O) | 3.6 ± 0.49 | 5.1 ± 0.91 **** | 2.9 ± 0.69 ^^^^ | 3.1 ± 0.84 ^^^^ |
Bladder Compliance (BC, mL/cm H2O) | 0.31 ± 0.050 | 0.24 ± 0.053 ** | 0.28 ± 0.024 | 0.34 ± 0.051 ^^^^ |
Volume Threshold to Elicit NVC (VTNC, %) | 75 ± 7.5 | 55 ± 8.2 **** | 67 ± 10 ^ | 67 ± 8.3 ^^ |
Detrusor Overactivity Index (DOI, cm H2O/mL) | 30 ± 15 | 851 ± 291 **** | 27 ± 12 ^^^^ | 206 ± 56 ^^^^ |
Non-voiding Contractions Frequency (FNVC, times/filling phase) | 0.36 ± 0.24 | 7.3 ± 1.2 **** | 0.3 ± 0.17 ^^^^ | 3.8 ± 0.97 ****^^^^ |
Non-voiding Contractions Amplitude (ANVC, cm H2O) | 2.9 ± 0.49 | 3.5 ± 0.91 | 2.5 ± 0.39 | 3.4 ± 0.64 |
Voiding phase | ||||
Micturition Voiding Pressure (MVP, cm H2O) | 49 ± 4.9 | 38 ± 7 ** | 52 ± 8 ^^^ | 41 ± 9 ^ |
Intercontraction Interval (ICI, s) | 1049 ± 105 | 863 ± 107 *** | 1085 ± 116 | 990 ± 124 ^ |
Voided Volume (VV, mL) | 0.97 ± 0.13 | 0.73 ± 0.081 *** | 0.94 ± 0.13 ^^ | 1 ± 0.18 ^^^^ |
Post-void Residual (PVR, mL) | 0.071 ± 0.011 | 0.093 ± 0.015 ** | 0.074 ± 0.018 ^ | 0.073 ± 0.016 ^ |
Area Under the pressure Curve (AUC, cm H2O/s) | 20 ± 2.9 | 31 ± 3.7 **** | 18 ± 2.4 ^^^^ | 22 ± 2.6 ^^^^ |
Control | Corticosterone | ACEA | Corticosterone + ACEA | |
---|---|---|---|---|
Number of movements during 1 h | 6009 ± 1379 | 5935 ± 1233 | 5567 ± 1145 | 6418 ± 1207 |
Immobility time (s) (forced swim test, FST) | 183 ± 12 | 227 ± 20 **** | 172 ± 12 ^^^^ | 169 ± 16 ^^^^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapała, Ł.; Niemczyk, G.; Zapała, P.; Wdowiak, A.; Bojar, I.; Kluz, T.; Szopa, A.; Serefko, A.; Radziszewski, P.; Wróbel, A. The Cannabinoid Ligand Arachidonyl-2′-Chloroethylamide (ACEA) Ameliorates Depressive and Overactive Bladder Symptoms in a Corticosterone-Induced Female Wistar Rat Model. Int. J. Mol. Sci. 2023, 24, 3820. https://doi.org/10.3390/ijms24043820
Zapała Ł, Niemczyk G, Zapała P, Wdowiak A, Bojar I, Kluz T, Szopa A, Serefko A, Radziszewski P, Wróbel A. The Cannabinoid Ligand Arachidonyl-2′-Chloroethylamide (ACEA) Ameliorates Depressive and Overactive Bladder Symptoms in a Corticosterone-Induced Female Wistar Rat Model. International Journal of Molecular Sciences. 2023; 24(4):3820. https://doi.org/10.3390/ijms24043820
Chicago/Turabian StyleZapała, Łukasz, Grzegorz Niemczyk, Piotr Zapała, Artur Wdowiak, Iwona Bojar, Tomasz Kluz, Aleksandra Szopa, Anna Serefko, Piotr Radziszewski, and Andrzej Wróbel. 2023. "The Cannabinoid Ligand Arachidonyl-2′-Chloroethylamide (ACEA) Ameliorates Depressive and Overactive Bladder Symptoms in a Corticosterone-Induced Female Wistar Rat Model" International Journal of Molecular Sciences 24, no. 4: 3820. https://doi.org/10.3390/ijms24043820
APA StyleZapała, Ł., Niemczyk, G., Zapała, P., Wdowiak, A., Bojar, I., Kluz, T., Szopa, A., Serefko, A., Radziszewski, P., & Wróbel, A. (2023). The Cannabinoid Ligand Arachidonyl-2′-Chloroethylamide (ACEA) Ameliorates Depressive and Overactive Bladder Symptoms in a Corticosterone-Induced Female Wistar Rat Model. International Journal of Molecular Sciences, 24(4), 3820. https://doi.org/10.3390/ijms24043820