Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside
Abstract
:1. Introduction
2. Compliance with Ethics Guidelines
3. Mechanisms and Pathophysiology
3.1. Physiological Role of Skeletal Muscle
3.2. Mechanisms of Muscle Wasting
3.3. Specific Mechanisms of SAMW
3.4. Pathophysiology of Muscle Changes in Patients with Sepsis
3.5. Effect of Lipopolysaccharides on Skeletal Muscle Cells
3.6. Effect of Cecum Ligation and Puncture on Experimental Animals
3.7. Differences between Disuse Muscle Atrophy and SAMW
3.8. Muscle Wasting, Particularly Diaphragm Wasting in Sepsis
4. Diagnostics
5. Risk Factors
6. Treatments
6.1. Electrical Muscular Stimulation
6.2. Physiotherapy and Mobilization
6.3. Nutritional Support
6.4. Pharmacological Intervention and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Buchman, T.G.; Simpson, S.Q.; Sciarretta, K.L.; Finne, K.P.; Sowers, N.; Collier, M.; Chavan, S.; Oke, I.; Pennini, M.E.; Santhosh, A.; et al. Sepsis Among Medicare Beneficiaries: 1. The Burdens of Sepsis, 2012–2018. Crit Care Med. 2020, 48, 276–288. [Google Scholar] [CrossRef]
- Perner, A.; Gordon, A.; De Backer, D.; Dimopoulos, G.; Russell, J.A.; Lipman, J.; Jensen, J.U.S.; Myburgh, J.; Singer, M.; Bellomo, R.; et al. Sepsis: Frontiers in diagnosis, resuscitation and antibiotic therapy. Intensiv. Care Med. 2016, 42, 1958–1969. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. The immunopathogenesis of sepsis. Nature 2002, 420, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Haberecht-Müller, S.; Krüger, E.; Fielitz, J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021, 11, 1327. [Google Scholar] [CrossRef] [PubMed]
- Weber-Carstens, S.; Deja, M.; Koch, S.; Spranger, J.; Bubser, F.; Wernecke, K.D.; Spies, C.D.; Spuler, S.; Keh, D. Risk factors in critical illness myopathy during the early course of critical illness: A prospective observational study. Crit. Care 2010, 14, R119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkelman, C. The role of inflammation in ICU-acquired weakness. Crit. Care 2010, 14, 186. [Google Scholar] [CrossRef] [Green Version]
- Appleton, R.T.; Kinsella, J.; Quasim, T. The incidence of intensive care unit-acquired weakness syndromes: A systematic review. J. Intensiv. Care Soc. 2014, 16, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Andrade-Junior, M.C.; de Salles, I.C.D.; de Brito, C.M.M.; Pastore-Junior, L.; Righetti, R.F.; Yamaguti, W.P. Skeletal Muscle Wasting and Function Impairment in Intensive Care Patients With Severe COVID-19. Front Physiol. 2021, 12, 640973. [Google Scholar] [CrossRef]
- Herridge, M.S.; Tansey, C.M.; Matté, A.; Tomlinson, G.; Diaz-Granados, N.; Cooper, A.; Guest, C.B.; Mazer, C.D.; Mehta, S.; Stewart, T.E.; et al. Functional Disability 5 Years after Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2011, 364, 1293–1304. [Google Scholar] [CrossRef] [Green Version]
- Odden, A.J.; Rohde, J.M.; Bonham, C.; Kuhn, L.; Malani, P.N.; Chen, L.M.; A Flanders, S.; Iwashyna, T.J. Functional outcomes of general medical patients with severe sepsis. BMC Infect. Dis. 2013, 13, 588. [Google Scholar] [CrossRef] [Green Version]
- Sharlo, K.; Tyganov, S.A.; Tomilovskaya, E.; Popov, D.V.; Saveko, A.A.; Shenkman, B.S. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int. J. Mol. Sci. 2021, 23, 468. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Nathan, J.A.; Goldberg, A.L. Muscle wasting in disease: Molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 2014, 14, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Baehr, L.M.; Furlow, J.D.; Bodine, S.C. Muscle sparing in muscle RING finger 1 null mice: Response to synthetic glucocorticoids. J. Physiol. 2011, 589 Pt 19, 4759–4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Croall, D.; DeMartino, G.N. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol. Rev. 1991, 71, 813–847. [Google Scholar] [CrossRef]
- Tidball, J.G.; Spencer, M.J. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol. 2002, 545, 819–828. [Google Scholar] [CrossRef]
- Franco-Romero, A.; Sandri, M. Role of autophagy in muscle disease. Mol. Asp. Med. 2021, 82, 101041. [Google Scholar] [CrossRef]
- Sandri, M. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 2013, 45, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Chen, Y.; Shen, X.; Pan, H.; Yu, W. Impact of Muscle Mass on Survival in Patients with Sepsis: A Systematic Review and Meta-Analysis. Ann. Nutr. Metab. 2021, 77, 330–336. [Google Scholar] [CrossRef]
- Hermans, G.; van den Berghe, G. Clinical review: Intensive care unit acquired weakness. Crit. Care 2015, 19, 274. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.P.; Reid, M.B. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1165–R1170. [Google Scholar] [CrossRef]
- Pinsky, M.R. Dysregulation of the Immune Response in Severe Sepsis. Am. J. Med Sci. 2004, 328, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Catarina, A.V.; Branchini, G.; Bettoni, L.; De Oliveira, J.R.; Nunes, F.B. Sepsis-Associated Encephalopathy: From Pathophysiology to Progress in Experimental Studies. Mol. Neurobiol. 2021, 58, 2770–2779. [Google Scholar] [CrossRef]
- Mankowski, R.; Laitano, O.; Clanton, T.; Brakenridge, S. Pathophysiology and Treatment Strategies of Acute Myopathy and Muscle Wasting after Sepsis. J. Clin. Med. 2021, 10, 1874. [Google Scholar] [CrossRef] [PubMed]
- Zanders, L.; Kny, M.; Hahn, A.; Schmidt, S.; Wundersitz, S.; Todiras, M.; Lahmann, I.; Bandyopadhyay, A.; Wollersheim, T.; Kaderali, L.; et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J. Cachex- Sarcopenia Muscle 2021, 13, 713–727. [Google Scholar] [CrossRef]
- Esteban, A.; Frutos, F.; Tobin, M.J.; Alía, I.; Solsona, J.F.; Valverdu, V.; Fernández, R.; de la Cal, M.A.; Benito, S.; Tomás, R.; et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N. Engl. J. Med. 1995, 332, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Hasselgren, P.-O.; Talamini, M.; James, J.H.; Fischer, J.E. Protein Metabolism in Different Types of Skeletal Muscle During Early and Late Sepsis in Rats. Arch. Surg. 1986, 121, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Tiao, G.; Hobler, S.; Wang, J.J.; A Meyer, T.; Luchette, F.; E Fischer, J.; O Hasselgren, P. Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J. Clin. Investig. 1997, 99, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wray, C.J.; Mammen, J.M.; Hershko, D.D.; Hasselgren, P.-O. Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int. J. Biochem. Cell Biol. 2003, 35, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Callahan, L.A.; Supinski, G.S. Sepsis-induced myopathy. Crit. Care Med. 2009, 37 (Suppl. 10), S354–S367. [Google Scholar] [CrossRef] [Green Version]
- Brun, J.; A Gray, D. Targeting the ubiquitin proteasome pathway for the treatment of septic shock in patients. Crit. Care 2009, 13, 311. [Google Scholar] [CrossRef] [Green Version]
- Stana, F.; Vujovic, M.; Mayaki, D.; Leduc-Gaudet, J.-P.; Leblanc, P.; Huck, L.; Hussain, S.N.A. Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis. Crit. Care Med. 2017, 45, e971–e979. [Google Scholar] [CrossRef] [PubMed]
- Mammucari, C.; Schiaffino, S.; Sandri, M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 2008, 4, 524–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickmann, C.E.; Castanares-Zapatero, D.; Deldicque, L.; Van den Bergh, P.; Caty, G.; Robert, A.; Roeseler, J.; Francaux, M.; Laterre, P.F. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Crit. Care Med. 2018, 46, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Dirks, M.; Hansen, D.; Van Assche, A.; Dendale, P.; van Loon, L.J. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin. Sci. 2014, 128, 357–365. [Google Scholar] [CrossRef]
- Puthucheary, Z.; Montgomery, H.; Moxham, J.; Harridge, S.; Hart, N. Structure to function: Muscle failure in critically ill patients. J. Physiol. 2010, 588 Pt 23, 4641–4648. [Google Scholar] [CrossRef]
- Lacomis, D.; Giuliani, M.J.; van Cott, A.; Kramer, D.J. Acute myopathy of intensive care: Clinical, electromyographic, and pathological aspects. Ann. Neurol. 1996, 40, 645–654. [Google Scholar] [CrossRef]
- Bierbrauer, J.; Koch, S.; Olbricht, C.; Hamati, J.; Lodka, D.; Schneider, J.; Luther-Schröder, A.; Kleber, C.; Faust, K.; Wiesener, S.; et al. Early type II fiber atrophy in intensive care unit patients with nonexcitable muscle membrane. Crit. Care Med. 2012, 40, 647–650. [Google Scholar] [CrossRef]
- Helliwell, T.R.; Wilkinson, A.; Griffiths, R.D.; Clelland, M.; Palmer, T.; Bone, J.M. Muscle fibre atrophy in critically ill patients is associated with the loss of myosin filaments and the presence of lysosomal enzymes and ubiquitin. Neuropathol. Appl. Neurobiol. 1998, 24, 507–517. [Google Scholar] [CrossRef]
- Frost, R.A.; Nystrom, G.J.; Lang, C.H. Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R698–R709. [Google Scholar] [CrossRef]
- Eggelbusch, M.; Shi, A.; Broeksma, B.C.; Vázquez-Cruz, M.; Soares, M.N.; de Wit, G.M.J.; Everts, B.; Jaspers, R.T.; Wüst, R.C. The NLRP3 inflammasome contributes to inflammation-induced morphological and metabolic alterations in skeletal muscle. J. Cachex- Sarcopenia Muscle 2022, 13, 3048–3061. [Google Scholar] [CrossRef]
- Reed, S.A.; Sandesara, P.B.; Senf, S.M.; Judge, A.R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 2011, 26, 987–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, J.; Palao, J.-C.; Castells, J.; Desgeorges, M.; Busso, T.; Molliex, S.; Jahnke, V.; Del Carmine, P.; Gondin, J.; Arnould, D.; et al. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. Sci. Rep. 2017, 7, 10866. [Google Scholar] [CrossRef] [Green Version]
- Balboa, E.; Saavedra-Leiva, F.; Cea, L.A.; Vargas, A.A.; Ramírez, V.; Escamilla, R.; Sáez, J.C.; Regueira, T. Sepsis-Induced Channelopathy in Skeletal Muscles is Associated with Expression of Non-Selective Channels. Shock 2018, 49, 221–228. [Google Scholar] [CrossRef]
- Yu, X.; Han, W.; Wang, C.; Sui, D.; Bian, J.; Bo, L.; Deng, X. Upregulation of Heme Oxygenase-1 by Hemin Alleviates Sepsis-Induced Muscle Wasting in Mice. Oxidative Med. Cell. Longev. 2018, 2018, 8927104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moarbes, V.; Mayaki, D.; Huck, L.; Leblanc, P.; Vassilakopoulos, T.; Petrof, B.J.; Hussain, S.N.A. Differential regulation of myofibrillar proteins in skeletal muscles of septic mice. Physiol. Rep. 2019, 7, e14248. [Google Scholar] [CrossRef]
- Wang, J.; Wu, T. Testosterone improves muscle function of the extensor digitorum longus in rats with sepsis. Biosci. Rep. 2020, 40, BSR20193342. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kasamatsu, S.; Shinozaki, S.; Yasuhara, S.; Kaneki, M. Myostatin deficiency not only prevents muscle wasting but also improves survival in septic mice. Am. J. Physiol. Metab. 2021, 320, E150–E159. [Google Scholar] [CrossRef]
- Busch, K.; Kny, M.; Huang, N.; Klassert, T.E.; Stock, M.; Hahn, A.; Graeger, S.; Todiras, M.; Schmidt, S.; Chamling, B.; et al. Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy. J. Cachexia Sarcopenia Muscle 2021, 12, 1653–1668. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, X.; Sun, X.; Shi, J.; Shen, Y.; Chen, R. IL-6 Deficiency Attenuates Skeletal Muscle Atrophy by Inhibiting Mitochondrial ROS Production through the Upregulation of PGC-1α in Septic Mice. Oxidative Med. Cell. Longev. 2022, 2022, 9148246. [Google Scholar] [CrossRef]
- Yin, D.; Lin, D.; Xie, Y.; Gong, A.; Jiang, P.; Wu, J. Neuregulin-1β Alleviates Sepsis-Induced Skeletal Muscle Atrophy by Inhibiting Autophagy via AKT/mTOR Signaling Pathway in Rats. Shock 2021, 57, 397–407. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, Q.; Liu, W.; Chen, Q.; Chen, X.; Yuan, Z.; Luo, N.; Wang, C. Exploring the Muscle Metabolomics in the Mouse Model of Sepsis-Induced Acquired Weakness. Evid.-Based Complement. Altern. Med. 2022, 2022, 6908488. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Maejima, Y.; Saito, M.; Sakamoto, K.; Horita, S.; Shimomura, K.; Inoue, S.; Kotani, J. TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci. Rep. 2020, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Leeuwenburgh, C.; Gurley, C.M.; Strotman, B.A.; Dupont-Versteegden, E.E. Age-related differences in apoptosis with disuse atrophy in soleus muscle. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, R1288–R1296. [Google Scholar] [CrossRef] [Green Version]
- Senf, S.M.; Dodd, S.L.; Judge, S. FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am. J. Physiol. Physiol. 2010, 298, C38–C45. [Google Scholar] [CrossRef] [Green Version]
- Vary, T.C.; Kimball, S.R. Sepsis-induced changes in protein synthesis: Differential effects on fast- and slow-twitch muscles. Am. J. Physiol. Physiol. 1992, 262 Pt 1, C1513–C1519. [Google Scholar] [CrossRef]
- Kazi, A.A.; Pruznak, A.M.; Frost, R.A.; Lang, C.H. Sepsis-Induced Alterations in Protein-Protein Interactions Within mTOR Complex 1 and the Modulating Effect of Leucine on Muscle Protein Synthesis. Shock 2011, 35, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Pessin, J.E. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Mirzoev, T.M.; Tyganov, S.A.; Petrova, I.O.; Shenkman, B.S. Acute recovery from disuse atrophy: The role of stretch-activated ion channels in the activation of anabolic signaling in skeletal muscle. Am. J. Physiol. Metab. 2019, 316, E86–E95. [Google Scholar] [CrossRef] [PubMed]
- Crowell, K.T.; Soybel, D.I.; Lang, C.H. Restorative Mechanisms Regulating Protein Balance in Skeletal Muscle During Recovery From Sepsis. Shock 2017, 47, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béduneau, G.; Pham, T.; Schortgen, F.; Piquilloud, L.; Zogheib, E.; Jonas, M.; Grelon, F.; Runge, I.; Terzi, N.; Grangé, S.; et al. Epidemiology of Weaning Outcome according to a New Definition. The WIND Study. Am. J. Respir. Crit. Care Med. 2017, 195, 772–783. [Google Scholar] [CrossRef]
- Shanely, R.A.; Zergeroglu, M.A.; Lennon, S.L.; Sugiura, T.; Yimlamai, T.; Enns, D.; Belcastro, A.; Powers, S.K. Mechanical Ventilation–induced Diaphragmatic Atrophy Is Associated with Oxidative Injury and Increased Proteolytic Activity. Am. J. Respir. Crit. Care Med. 2002, 166, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Goligher, E.C.; Dres, M.; Fan, E.; Rubenfeld, G.D.; Scales, D.C.; Herridge, M.S.; Vorona, S.; Sklar, M.C.; Rittayamai, N.; Lanys, A.; et al. Mechanical Ventilation–induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018, 197, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Damuth, E.; Mitchell, J.A.; Bartock, J.L.; Roberts, B.W.; Trzeciak, S. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, C.A.; Ranganathan, K.; Matusko, N.; Jacobson, J.A.; Wang, S.C.; Park, P.K.; Levi, B.L. Computed Tomography Evidence of Psoas Muscle Atrophy Without Concomitant Tendon Wasting in Early Sepsis. J. Surg. Res. 2019, 234, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; Trevisan, C.; Veronese, N.; Lucato, P.; Manzato, E. Imaging of sarcopenia. Eur. J. Radiol. 2016, 85, 1519–1524. [Google Scholar] [CrossRef]
- Tanaka, K.; Yamada, T. Ultrasound Measurement of Septic Shock-induced Acute Skeletal Muscle Atrophy in Intensive Care Unit. PM&R 2020, 13, 347–352. [Google Scholar] [CrossRef]
- Hadda, V.; Kumar, R.; Khilnani, G.C.; Kalaivani, M.; Madan, K.; Tiwari, P.; Mittal, S.; Mohan, A.; Bhalla, A.S.; Guleria, R. Trends of loss of peripheral muscle thickness on ultrasonography and its relationship with outcomes among patients with sepsis. J. Intensive Care 2018, 6, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, R.C.; Soriano, F.G. Association Between Muscle Wasting and Muscle Strength in Patients Who Developed Severe Sepsis And Septic Shock. Shock 2019, 51, 312–320. [Google Scholar] [CrossRef]
- Grimm, A.; Teschner, U.; Porzelius, C.; Ludewig, K.; Zielske, J.; Witte, O.W.; Brunkhorst, F.M.; Axer, H. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit. Care 2013, 17, R227. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.A.; O’Brien, J.M., Jr.; Hoffmann, S.P.; Phillips, G.; Garland, A.; Finley, J.C.; Almoosa, K.; Hejal, R.; Wolf, K.M.; Lemeshow, S.; et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am. J. Respir. Crit. Care Med. 2008, 178, 261–268. [Google Scholar] [CrossRef]
- Neto Silva, I.; Duarte, J.A.; Perret, A.; Dousse, N.; Wozniak, H.; Bollen Pinto, B.; Giraud, R.; Bendjelid, K. Diaphragm dysfunction and peripheral muscle wasting in septic shock patients: Exploring their relationship over time using ultrasound technology (the MUSiShock protocol). PLoS ONE 2022, 17, e0266174. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, A.; Chiti, E.; Maiese, A.; Turillazzi, E.; Spinetti, I. MicroRNAs: An Update of Applications in Forensic Science. Diagnostics 2020, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-C.; Han, D.-S.; Hsu, C.-C.; Wang, J.-S. Circulating MicroRNA-486 and MicroRNA-146a serve as potential biomarkers of sarcopenia in the older adults. BMC Geriatr. 2021, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Furlan, J.C.; Pakosh, M.; Craven, B.C.; Popovic, M.R. Insights on the Potential Mechanisms of Action of Functional Electrical Stimulation Therapy in Combination With Task-Specific Training: A Scoping Review. Neuromodulation Technol. Neural Interface 2021, 25, 1280–1288. [Google Scholar] [CrossRef]
- Vanhorebeek, I.; Latronico, N.; Van den Berghe, G. ICU-acquired weakness. Intensive Care Med. 2020, 46, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Burtin, C.; Clerckx, B.; Robbeets, C.; Ferdinande, P.; Langer, D.; Troosters, T.; Hermans, G.; Decramer, M.; Gosselink, R. Early exercise in critically ill patients enhances short-term functional recovery*. Crit. Care Med. 2009, 37, 2499–2505. [Google Scholar] [CrossRef]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Poulsen, J.B.; Moller, K.; Jensen, C.V.; Weisdorf, S.; Kehlet, H.; Perner, A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock*. Crit. Care Med. 2011, 39, 456–461. [Google Scholar] [CrossRef]
- Rodriguez, P.O.; Setten, M.; Maskin, L.P.; Bonelli, I.; Vidomlansky, S.R.; Attie, S.; Frosiani, S.L.; Kozima, S.; Valentini, R. Muscle weakness in septic patients requiring mechanical ventilation: Protective effect of transcutaneous neuromuscular electrical stimulation. J. Crit. Care 2012, 27, 319.e1–319.e8. [Google Scholar] [CrossRef]
- Latronico, N.; Tomelleri, G.; Filosto, M. Critical illness myopathy. Curr. Opin. Rheumatol. 2012, 24, 616–622. [Google Scholar] [CrossRef]
- Hunter, A.; Johnson, L.; Coustasse, A. Reduction of Intensive Care Unit Length of Stay: The Case of Early Mobilization. Health Care Manag. 2020, 39, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A.; Bloomfield, S.A.; Greenleaf, J.E. An overview of the issues: Physiological effects of bed rest and restricted physical activity. Med. Sci. Sports Exerc. 1997, 29, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.R.; Kuo, Y.F.; Graham, J.E.; Ottenbacher, K.J.; Ostir, G.V. Early ambulation and length of stay in older adults hospitalized for acute illness. Arch. Intern. Med. 2010, 170, 1942–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sossdorf, M.; Otto, G.P.; Menge, K.; Claus, R.A.; Lösche, W.; Kabisch, B.; Kohl, M.; Smolenski, U.C.; Schlattmann, P.; Reinhart, K.; et al. Potential effect of physiotherapeutic treatment on mortality rate in patients with severe sepsis and septic shock: A retrospective cohort analysis. J. Crit. Care 2013, 28, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Connolly, B.; O’Neill, B.; Salisbury, L.; Blackwood, B. Physical rehabilitation interventions for adult patients during critical illness: An overview of systematic reviews. Thorax 2016, 71, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Schaller, S.J.; Anstey, M.; Blobner, M.; Edrich, T.; Grabitz, S.D.; Gradwohl-Matis, I.; Heim, M.; Houle, T.; Kurth, T.; Latronico, N.; et al. Early, goal-directed mobilisation in the surgical intensive care unit: A randomised controlled trial. Lancet 2016, 388, 1377–1388. [Google Scholar] [CrossRef]
- Prescott, H.C.; Angus, D.C. Enhancing Recovery From Sepsis: A Review. JAMA 2018, 319, 62–75. [Google Scholar] [CrossRef]
- Weijs, P.J.; Looijaard, W.G.; Beishuizen, A.; Girbes, A.R.; Straaten, H.M.O.-V. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care 2014, 18, 701. [Google Scholar] [CrossRef] [Green Version]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Nakano, H.; Naraba, H.; Mochizuki, M.; Takahashi, Y.; Sonoo, T.; Hashimoto, H.; Morimura, N. High protein versus medium protein delivery under equal total energy delivery in critical care: A randomized controlled trial. Clin. Nutr. 2021, 40, 796–803. [Google Scholar] [CrossRef] [PubMed]
- van Zanten, A.R.; Petit, L.; De Waele, J.; Kieft, H.; de Wilde, J.; van Horssen, P.; Klebach, M.; Hofman, Z. Very high intact-protein formula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: A double-blind randomized trial. Crit. Care 2018, 22, 156. [Google Scholar] [CrossRef] [Green Version]
- Goodman, C.A.; Kotecki, J.A.; Jacobs, B.L.; Hornberger, T.A. Muscle Fiber Type-Dependent Differences in the Regulation of Protein Synthesis. PLoS ONE 2012, 7, e37890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.; Farup, J.; Rahbek, S.K.; de Paoli, F.V.; Vissing, K. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions. PLoS ONE 2015, 10, e0127808. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, H.; Smith, K.; Atherton, P.J.; Idris, I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: A systematic review and meta-analysis. Diabetologia 2015, 59, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Giroud, S.; Chery, I.; Bertile, F.; Bertrand-Michel, J.; Tascher, G.; Gauquelin-Koch, G.; Arnemo, J.M.; Swenson, J.E.; Singh, N.J.; Lefai, E.; et al. Lipidomics Reveals Seasonal Shifts in a Large-Bodied Hibernator, the Brown Bear. Front. Physiol. 2019, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- A Nelson, R.; Jones, J.D.; Wahner, H.W.; McGill, D.B.; Code, C.F. Nitrogen metabolism in bears: Urea metabolism in summer starvation and in winter sleep and role of urinary bladder in water and nitrogen conservation. Mayo Clin. Proc. 1975, 50, 141–146. [Google Scholar]
- Kondo, N.; Sekijima, T.; Kondo, J.; Takamatsu, N.; Tohya, K.; Ohtsu, T. Circannual Control of Hibernation by HP Complex in the Brain. Cell 2006, 125, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Andrews, M.T. Molecular interactions underpinning the phenotype of hibernation in mammals. J. Exp. Biol. 2019, 222 Pt 2, jeb160606. [Google Scholar] [CrossRef] [Green Version]
- Melvin, R.G.; Andrews, M.T. Torpor induction in mammals: Recent discoveries fueling new ideas. Trends Endocrinol. Metab. 2009, 20, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Soo, E.; Welch, A.; Marsh, C.; McKay, D. Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplant. Rev. 2019, 34, 100512. [Google Scholar] [CrossRef] [PubMed]
- Abnous, K.; Storey, K.B. 5′-Adenosine monophosphate deaminase regulation in ground squirrels during hibernation. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 253, 110543. [Google Scholar] [CrossRef] [PubMed]
No. | First Author, Year | Country | Mouse/Rat | Sepsis Model | Evaluation Days after Onset of Sepsis (Day) | Treatments/Gene Knock Out | Doses of Treatment | Timing of Treatment | Antibiotics | Muscle Wasting in the Control Group | Muscle Wasting in the Treatment Group | Weight of Muscles Changes | Grip Strength | Histology | Atrogin-1 Expression in Muscles in the Treatment Group | MuRF1 Expression in Muscles in the Treatment Group | Reference No. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Reed SA, 2012 | US | C57BL/6 mouse | CLP | 7 | - | - | - | (−) | TA, GAS, SOL muscle wasting (+) | - | - | - | - | - | - | [41] |
2 | Morel J, 2017 | France | C57BL/6 mouse | CLP | 7 | - | - | - | (−) | GAS, Diaphragm muscle wasting (+) | - | - | - | - | - | - | [42] |
3 | Balboa E, 2018 | US | C57BL/6 mouse | CLP | 7 | - | - | - | (−) | GAS, TA muscle wasting (+) | - | - | - | - | - | - | [43] |
4 | Yu X, 2018 | China | C57BL/6 mouse | CLP | 1~7 | Heme Oxygenase-1 | 50 mg/kg | 1 day before CLP | (−) | SOL muscle wasting (+), ≥3 days after CLP | SOL muscle wasting (−), ≥3 days after CLP | improved | Not described | Improved | Decreased | Decreased | [44] |
5 | Moarbes V, 2019 | Canada | C57BL/6 mouse | CLP | 1~4 | - | - | - | (−) | TA, Diaphragm muscle wasting (+) | - | Not described | Not described | - | - | - | [45] |
6 | Wang J, 2020 | China | SD rats | CLP | 24 | Testosterone propionate | 10 mg/kg | 8 days after CLP | (−) | EDL muscle wasting (+) | EDL muscle wasting (−) | Not described | Not described | Improved | Not described | Not described | [46] |
7 | Kobayashi M, 2021 | Japan | C57BL/6 mouse | CLP | 14 | Myostatin-deficient | - | - | (−) | TA, GAS, SOL muscle wasting (+) | TA, GAS, SOL muscle wasting (−) | Not described | Not described | Improved | Decreased | Decreased | [47] |
8 | Busch K, 2021 | Germany | NLRP3 knock out mouse | CLP | 4 | NLRP3 knock out | - | - | (−) | Heart muscle wasting (+) | Heart muscle wasting (−) | improved | Not described | Improved | Not described | Not described | [48] |
9 | Yang B, 2022 | China | C57BL/6 mouse | CLP | 2 | IL-6 knock out | - | - | (−) | EDL muscle wasting (+) | EDL muscle wasting (−) | Not described | Improved | Improved | Decreased | Decreased | [49] |
10 | Yin D, 2022 | China | SD rats | CLP | 3 | Neuregulin-1β | 10 µg/kg | 12 h after CLP | (−) | TA muscle wasting (+) | TA muscle wasting (−) | Not described | Not described | Improved | Not described | Not described | [50] |
11 | Jiang Y, 2022 | China | C57BL/6 mouse | CLP | 5 | Limb-immobilization | - | with CLP | (−) | TA muscle wasting (+) | TA muscle wasting (+) | deteriorate | Deteriorate | Deteriorate | Not described | Not described | [51] |
12 | Zanders L, 2022 | Germany | IL6 knock out mouse | CLP | 1~4 | IL-6 knock out | - | - | (−) | TA muscle wasting (+), morphological changes were seen in 4 days after CLP | TA muscle wasting (−), morphological changes were seen in 4 days after CLP | improved | Not described | Improved | Decreased | Decreased | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshihara, I.; Kondo, Y.; Okamoto, K.; Tanaka, H. Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. Int. J. Mol. Sci. 2023, 24, 5040. https://doi.org/10.3390/ijms24055040
Yoshihara I, Kondo Y, Okamoto K, Tanaka H. Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. International Journal of Molecular Sciences. 2023; 24(5):5040. https://doi.org/10.3390/ijms24055040
Chicago/Turabian StyleYoshihara, Ikumi, Yutaka Kondo, Ken Okamoto, and Hiroshi Tanaka. 2023. "Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside" International Journal of Molecular Sciences 24, no. 5: 5040. https://doi.org/10.3390/ijms24055040
APA StyleYoshihara, I., Kondo, Y., Okamoto, K., & Tanaka, H. (2023). Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. International Journal of Molecular Sciences, 24(5), 5040. https://doi.org/10.3390/ijms24055040