Antiplatelet Effect of Daphnetin Is Regulated by cPLA2-Mediated Thromboxane A2 Generation in Mice
Abstract
:1. Introduction
2. Results
2.1. The Effect of Daphnetin on GPVI-Mediated Platelet Activation
2.2. Daphnetin Regulates 2-MeSADP-Induced Secondary Wave of Aggregation and Secretion in Platelets
2.3. Daphnetin Regulates Platelet Aggregation and Secretion Induced by Low Concentration of Thrombin
2.4. Daphnetin Regulates 2-MeSADP- and Thrombin-Induced TxA2 Generation in Platelets
2.5. Daphnetin Inhibits 2-MeSADP-Induced cPLA2 and ERK Phosphorylation in Platelets
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Mouse Platelet Isolation
4.4. Platelet Aggregation and Dense Granule Secretion
4.5. Measurement of TxA2 Generation
4.6. Immuno-Blotting
4.7. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TxA2 | Thromboxane A2 |
cPLA2 | Cytosolic Phospholipase A2 |
CVD | Cardiovascular disease |
GPVI | Glycoprotein VI |
PLCγ2 | Glycoprotein VI |
ITAM | Immunoreceptor tyrosine-based activation motif |
FcRγ | Fc Receptor (FcR) γ-Chain |
GPCR | G-Protein-Coupled Receptor |
PAR | Protease-Activated Receptor |
AA | Arachidonic Acid |
PKC | Protein Kinase C |
COX | Cyclooxygenase |
ASA | Acetylsalicylic Acid |
References
- Du, X. Signaling and regulation of the platelet glycoprotein Ib–IX–V complex. Curr. Opin. Hematol. 2007, 14, 262–269. [Google Scholar] [CrossRef]
- Jin, J.; Kunapuli, S.P. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc. Natl. Acad. Sci. USA 1998, 95, 8070–8074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Foster, C.; Lecchi, A.; Quinton, T.M.; Prosser, D.M.; Jin, J.; Cattaneo, M.; Kunapuli, S.P. Protease-activated receptors 1 and 4 do not stimulate Gi signaling pathways in the absence of secreted ADP and cause human platelet aggregation independently of Gisignaling. Blood J. Am. Soc. Hematol. 2002, 99, 3629–3636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Quinton, T.M.; Zhang, J.; Rittenhouse, S.E.; Kunapuli, S.P. Adenosine diphosphate (ADP)–induced thromboxane A2generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors. Blood J. Am. Soc. Hematol. 2002, 99, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Shankar, H.; Murugappan, S.; Kim, S.; Kunapuli, S.P. Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets. Biochem. J. 2007, 404, 299–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, H.; Garcia, A.; Prabhakar, J.; Kim, S.; Kunapuli, S. P2Y12 receptor-mediated potentiation of thrombin-induced thromboxane A2 generation in platelets occurs through regulation of Erk1/2 activation. J. Thromb. Haemost. 2006, 4, 638–647. [Google Scholar] [CrossRef]
- Henriksen, R.A.; Samokhin, G.P.; Tracy, P.B. Thrombin-induced thromboxane synthesis by human platelets: Properties of an anion binding exosite I–independent receptor. Atertio. Thromb. Vasc. Biol. 1997, 17, 3519–3526. [Google Scholar] [CrossRef]
- Stalker, T.J.; Newman, D.K.; Ma, P.; Wannemacher, K.M.; Brass, L.F. Platelet Signaling. In Antiplatelet Agents; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–85. [Google Scholar]
- Sharifi-Rad, J.; Cruz-Martins, N.; López-Jornet, P.; Lopez, E.P.-F.; Harun, N.; Yeskaliyeva, B.; Beyatli, A.; Sytar, O.; Shaheen, S.; Sharopov, F. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Med. Cell. Longev. 2021, 2021, 6492346. [Google Scholar] [CrossRef] [PubMed]
- Porcellati, S.; Costantini, V.; Prosdocimi, M.; Stasi, M.; Pistolesi, R.; Nenci, G.; Goracci, G. The coumarin derivative AD6 inhibits the release of arachidonic acid by interfering with phospholipase A2 activity in human platelets stimulated with thrombin. Agents Actions 1990, 29, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.-W.; Lin, K.-C.; Lee, T.-Y.; Hsia, C.-H.; Chou, D.-S.; Jayakumar, T.; Velusamy, M.; Chang, C.-C.; Sheu, J.-R. Esculetin, a coumarin derivative, prevents thrombosis: Inhibitory signaling on PLCγ2–PKC–AKT activation in human platelets. Int. J. Mol. Sci. 2019, 20, 2731. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.-M.; Hsia, C.-W.; Tsai, C.-L.; Hsia, C.-H.; Jayakumar, T.; Velusamy, M.; Sheu, J.-R. Modulation of human platelet activation and in vivo vascular thrombosis by columbianadin: Regulation by integrin α IIb β 3 inside-out but not outside-in signals. J. Biomed. Sci. 2020, 27, 60. [Google Scholar] [CrossRef] [PubMed]
- Hsia, C.-W.; Shyu, K.-G.; Jayakumar, T.; Hsia, C.-H.; Velusamy, M.; Yang, C.-H.; Sheu, J.-R. Natural coumarin derivative esculetin regulates platelet activation via modulating NF-κB signaling in cyclic nucleotide-independent manner. Nat. Prod. Commun. 2019, 14, 1934578X19896663. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Li, Y.; Xiao, Q.; Li, D. Daphnetin activates the Nrf2-dependent antioxidant response to prevent arsenic-induced oxidative insult in human lung epithelial cells. Chem. Biol. Interact. 2019, 302, 93–100. [Google Scholar] [CrossRef]
- Deng, H.; Zheng, M.; Hu, Z.; Zeng, X.; Kuang, N.; Fu, Y. Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-α. Cytokine 2020, 127, 154952. [Google Scholar] [CrossRef]
- Yu, W.-W.; Lu, Z.; Zhang, H.; Kang, Y.-H.; Mao, Y.; Wang, H.-H.; Ge, W.-H.; Shi, L.-Y. Anti-inflammatory and protective properties of daphnetin in endotoxin-induced lung injury. J. Agric. Food Chem. 2014, 62, 12315–12325. [Google Scholar] [CrossRef]
- Song, B.; Wang, Z.; Liu, Y.; Xu, S.; Huang, G.; Xiong, Y.; Zhang, S.; Xu, L.; Deng, X.; Guan, S. Immunosuppressive activity of daphnetin, one of coumarin derivatives, is mediated through suppression of NF-κB and NFAT signaling pathways in mouse T cells. PLoS ONE 2014, 9, e96502. [Google Scholar] [CrossRef]
- Garcia, A.; Kim, S.; Bhavaraju, K.; Schoenwaelder, S.M.; Kunapuli, S.P. Role of phosphoinositide 3-kinase β in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem. J. 2010, 429, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdi, G.; Lordkipanidzé, M.; Philippe, A.; Bachelot-Loza, C.; Gaussem, P. Current and novel antiplatelet therapies for the treatment of cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 13079. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Fu, Z.; Sheng, R.; Wu, W.; Fan, J.; Guo, R. Syntheses and evaluation of daphnetin derivatives as novel G protein-coupled receptor inhibitors and activators. Bioorg. Chem. 2020, 104, 104342. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, M.; Svensson, J.; Samuelsson, B. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 1975, 72, 2994–2998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Needleman, P.; Minkes, M.; Raz, A. Thromboxanes: Selective biosynthesis and distinct biological properties. Science 1976, 193, 163–165. [Google Scholar] [CrossRef]
- Merhi, Y. Essential Role of Protein Kinase C in Platelet Signaling. J. Biol. Chem. 2006, 281, 30024–30035. [Google Scholar]
- Kita, Y.; Ohto, T.; Uozumi, N.; Shimizu, T. Biochemical properties and pathophysiological roles of cytosolic phospholipase A2s. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2006, 1761, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Ballou, L.; DeWitt, L.; Cheung, W. Substrate-specific forms of human platelet phospholipase A2. J. Biol. Chem. 1986, 261, 3107–3111. [Google Scholar] [CrossRef]
- Garcia, A.; Quinton, T.M.; Dorsam, R.T.; Kunapuli, S.P. Src family kinase–mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets. Blood 2005, 106, 3410–3414. [Google Scholar] [CrossRef]
- Gallet, C.; Blaie, S.; Lévy-Toledano, S.; Habib, A. Epidermal-growth-factor receptor and metalloproteinases mediate thromboxane A2-dependent extracellular-signal-regulated kinase activation. Biochem. J. 2003, 371, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tang, S.; Zhou, S.; Ware, J.A. The thromboxane A2 receptor activates mitogen-activated protein kinase via protein kinase C-dependent Gi coupling and Src-dependent phosphorylation of the epidermal growth factor receptor. J. Pharmacol. Exp. Ther. 2001, 296, 426–433. [Google Scholar]
- Miggin, S.M.; Kinsella, B.T. Thromboxane A2 receptor mediated activation of the mitogen activated protein kinase cascades in human uterine smooth muscle cells. Biochim. Biophys. Acta BBA Mol. Cell Res. 2001, 1539, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Liu, P.; Zhu, L.; Li, N.; Hu, H. P2X1-initiated p38 signalling enhances thromboxane A2-induced platelet secretion and aggregation. Thromb. Haemost. 2014, 112, 142–150. [Google Scholar]
- Gijón, M.A.; Spencer, D.M.; Siddiqi, A.R.; Bonventre, J.V.; Leslie, C.C. Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that do and do not mobilize calcium: Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J. Biol. Chem. 2000, 275, 20146–20156. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jin, J.; Kunapuli, S.P. Akt activation in platelets depends on Gi signaling pathways. J. Biol. Chem. 2004, 279, 4186–4195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oury, C.; Kuijpers, M.J.; Toth-Zsamboki, E.; Bonnefoy, A.; Danloy, S.; Vreys, I.; Feijge, M.A.; De Vos, R.; Vermylen, J.; Heemskerk, J.W. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood J. Am. Soc. Hematol. 2003, 101, 3969–3976. [Google Scholar] [CrossRef] [PubMed]
- Oury, C.; Daenens, K.; Hu, H.; Toth-Zsamboki, E.; Bryckaert, M.; Hoylaerts, M.F. ERK2 activation in arteriolar and venular murine thrombosis: Platelet receptor GPIb vs. P2X1. J. Thromb. Haemost. 2006, 4, 443–452. [Google Scholar] [CrossRef]
- Thomas, D.W.; Mannon, R.B.; Mannon, P.J.; Latour, A.; Oliver, J.A.; Hoffman, M.; Smithies, O.; Koller, B.H.; Coffman, T.M. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J. Clin. Investig. 1998, 102, 1994–2001. [Google Scholar] [CrossRef] [Green Version]
- Ting, H.J.; Murad, J.P.; Espinosa, E.V.; Khasawneh, F.T. Thromboxane A2 receptor: Biology and function of a peculiar receptor that remains resistant for therapeutic targeting. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 248–259. [Google Scholar] [CrossRef]
- Bousser, M.-G.; Amarenco, P.; Chamorro, A.; Fisher, M.; Ford, I.; Fox, K.M.; Hennerici, M.G.; Mattle, H.P.; Rothwell, P.M.; de Cordoüe, A. Terutroban versus aspirin in patients with cerebral ischaemic events (PERFORM): A randomised, double-blind, parallel-group trial. Lancet 2011, 377, 2013–2022. [Google Scholar] [CrossRef]
- Kim, S.; Cipolla, L.; Guidetti, G.; Okigaki, M.; Jin, J.; Torti, M.; Kunapuli, S.P. Distinct role of Pyk2 in mediating thromboxane generation downstream of both G12/13 and integrin αIIbβ3 in platelets. J. Biol. Chem. 2013, 288, 18194–18203. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Jin, J.; Kunapuli, S.P. Relative contribution of G-protein-coupled pathways to protease-activated receptor-mediated Akt phosphorylation in platelets. Blood 2006, 107, 947–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, P.K.; Kim, S.; Kim, S. Antiplatelet Effect of Daphnetin Is Regulated by cPLA2-Mediated Thromboxane A2 Generation in Mice. Int. J. Mol. Sci. 2023, 24, 5779. https://doi.org/10.3390/ijms24065779
Chaudhary PK, Kim S, Kim S. Antiplatelet Effect of Daphnetin Is Regulated by cPLA2-Mediated Thromboxane A2 Generation in Mice. International Journal of Molecular Sciences. 2023; 24(6):5779. https://doi.org/10.3390/ijms24065779
Chicago/Turabian StyleChaudhary, Preeti Kumari, Sanggu Kim, and Soochong Kim. 2023. "Antiplatelet Effect of Daphnetin Is Regulated by cPLA2-Mediated Thromboxane A2 Generation in Mice" International Journal of Molecular Sciences 24, no. 6: 5779. https://doi.org/10.3390/ijms24065779
APA StyleChaudhary, P. K., Kim, S., & Kim, S. (2023). Antiplatelet Effect of Daphnetin Is Regulated by cPLA2-Mediated Thromboxane A2 Generation in Mice. International Journal of Molecular Sciences, 24(6), 5779. https://doi.org/10.3390/ijms24065779