Recent Advances in NMR Protein Structure Prediction with ROSETTA
Abstract
:1. Introduction
2. Basic Rosetta Algorithms and Scoring Procedures
3. A Brief History of NMR Methods in Rosetta
4. Available NMR Data Implementations
5. Structure Prediction with Chemical Shift Data in Rosetta
6. Recent Developments of NMR Modeling Methods in Rosetta
6.1. Hydrogen–Deuterium Exchange (HDX)
6.2. Paramagnetic NMR
6.3. Integrative Structural Biology on Protein Complexes
7. Future Directions
7.1. Augmentation of Deep Learning Methods with NMR Data
7.2. Modeling of Alternative Conformational States
7.3. Modeling of Disordered Proteins and Protein Fibrils
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, P.C. Structure Determination by NMR: Overview. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2488–2495. ISBN 978-3-642-16712-6. [Google Scholar]
- Guntert, P. Calculation of Structures from NMR Restraints. In Protein NMR Spectroscopy: Practical Techniques and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 159–192. ISBN 978-1-119-97200-6. [Google Scholar]
- Jiang, Y.; Kalodimos, C.G. NMR Studies of Large Proteins. J. Mol. Biol. 2017, 429, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Danmaliki, G.I.; Hwang, P.M. Solution NMR Spectroscopy of Membrane Proteins. Biochim. Biophys. Acta (BBA)—Biomembr. 2020, 1862, 183356. [Google Scholar] [CrossRef]
- Reif, B.; Ashbrook, S.E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Mandala, V.S.; Williams, J.K.; Hong, M. Structure and Dynamics of Membrane Proteins from Solid-State NMR. Annu. Rev. Biophys. 2018, 47, 201–222. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.; Zeng, Y.; Hu, Z.; Lu, J. Solid-State NMR Studies of Amyloids. Structure 2023, 31, 230–243. [Google Scholar] [CrossRef]
- Habenstein, B.; Loquet, A. Solid-State NMR: An Emerging Technique in Structural Biology of Self-Assemblies. Biophys. Chem. 2016, 210, 14–26. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Ruff, K.M.; Pappu, R.V. AlphaFold and Implications for Intrinsically Disordered Proteins. J. Mol. Biol. 2021, 433, 167208. [Google Scholar] [CrossRef]
- Pinheiro, F.; Santos, J.; Ventura, S. AlphaFold and the Amyloid Landscape. J. Mol. Biol. 2021, 433, 167059. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, E.B.; Cook, E.C.; Showalter, S.A. Application of NMR to Studies of Intrinsically Disordered Proteins. Arch. Biochem. Biophys. 2017, 628, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Linge, J.P.; Habeck, M.; Rieping, W.; Nilges, M. ARIA: Automated NOE Assignment and NMR Structure Calculation. Bioinformatics 2003, 19, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T.E.; Nilges, M. ARIA2: Automated NOE Assignment and Data Integration in NMR Structure Calculation. Bioinformatics 2007, 23, 381–382. [Google Scholar] [CrossRef]
- Güntert, P.; Buchner, L. Combined Automated NOE Assignment and Structure Calculation with CYANA. J. Biomol. NMR 2015, 62, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Tejero, R.; Powers, R.; Montelione, G.T. A Topology-Constrained Distance Network Algorithm for Protein Structure Determination from NOESY Data. Proteins 2006, 62, 587–603. [Google Scholar] [CrossRef]
- Schwieters, C.D.; Kuszewski, J.J.; Tjandra, N.; Clore, G.M. The Xplor-NIH NMR Molecular Structure Determination Package. J. Magn. Reson. 2003, 160, 65–73. [Google Scholar] [CrossRef]
- Bermejo, G.A.; Schwieters, C.D. Protein Structure Elucidation from NMR Data with the Program Xplor-NIH. Methods Mol. Biol. 2018, 1688, 311–340. [Google Scholar] [CrossRef]
- Lee, W.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced Software for Biomolecular NMR Spectroscopy. Bioinformatics 2015, 31, 1325–1327. [Google Scholar] [CrossRef]
- Leman, J.K.; Weitzner, B.D.; Lewis, S.M.; Adolf-Bryfogle, J.; Alam, N.; Alford, R.F.; Aprahamian, M.; Baker, D.; Barlow, K.A.; Barth, P.; et al. Macromolecular Modeling and Design in Rosetta: Recent Methods and Frameworks. Nat. Methods 2020, 17, 665–680. [Google Scholar] [CrossRef]
- Maciejewski, M.W.; Schuyler, A.D.; Gryk, M.R.; Moraru, I.I.; Romero, P.R.; Ulrich, E.L.; Eghbalnia, H.R.; Livny, M.; Delaglio, F.; Hoch, J.C. NMRbox: A Resource for Biomolecular NMR Computation. Biophys. J. 2017, 112, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Vranken, W.F.; Boucher, W.; Stevens, T.J.; Fogh, R.H.; Pajon, A.; Llinas, M.; Ulrich, E.L.; Markley, J.L.; Ionides, J.; Laue, E.D. The CCPN Data Model for NMR Spectroscopy: Development of a Software Pipeline. Proteins Struct. Funct. Bioinform. 2005, 59, 687–696. [Google Scholar] [CrossRef]
- Skinner, S.P.; Fogh, R.H.; Boucher, W.; Ragan, T.J.; Mureddu, L.G.; Vuister, G.W. CcpNmr AnalysisAssign: A Flexible Platform for Integrated NMR Analysis. J. Biomol. NMR 2016, 66, 111–124. [Google Scholar] [CrossRef]
- Berjanskii, M.; Tang, P.; Liang, J.; Cruz, J.A.; Zhou, J.; Zhou, Y.; Bassett, E.; MacDonell, C.; Lu, P.; Lin, G.; et al. GeNMR: A Web Server for Rapid NMR-Based Protein Structure Determination. Nucleic Acids Res. 2009, 37, W670–W677. [Google Scholar] [CrossRef]
- Allain, F.; Mareuil, F.; Ménager, H.; Nilges, M.; Bardiaux, B. ARIAweb: A Server for Automated NMR Structure Calculation. Nucleic Acids Res. 2020, 48, W41–W47. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Stark, J.L.; Markley, J.L. PONDEROSA-C/S: Client–Server Based Software Package for Automated Protein 3D Structure Determination. J. Biomol. NMR 2014, 60, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Bender, B.J.; Cisneros, A., 3rd; Duran, A.M.; Finn, J.A.; Fu, D.; Lokits, A.D.; Mueller, B.K.; Sangha, A.K.; Sauer, M.F.; Sevy, A.M.; et al. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016, 55, 4748–4763. [Google Scholar] [CrossRef]
- Shen, Y.; Lange, O.; Delaglio, F.; Rossi, P.; Aramini, J.M.; Liu, G.H.; Eletsky, A.; Wu, Y.B.; Singarapu, K.K.; Lemak, A.; et al. Consistent Blind Protein Structure Generation from NMR Chemical Shift Data. Proc. Natl. Acad. Sci. USA 2008, 105, 4685–4690. [Google Scholar] [CrossRef]
- Shen, Y.; Vernon, R.; Baker, D.; Bax, A. De Novo Protein Structure Generation from Incomplete Chemical Shift Assignments. J. Biomol. NMR 2009, 43, 63–78. [Google Scholar] [CrossRef]
- Raman, S.; Lange, O.F.; Rossi, P.; Tyka, M.; Wang, X.; Aramini, J.; Liu, G.; Ramelot, T.A.; Eletsky, A.; Szyperski, T.; et al. NMR Structure Determination for Larger Proteins Using Backbone-Only Data. Science 2010, 327, 1014–1018. [Google Scholar] [CrossRef]
- Lange, O.F.; Rossi, P.; Sgourakis, N.G.; Song, Y.; Lee, H.W.; Aramini, J.M.; Ertekin, A.; Xiao, R.; Acton, T.B.; Montelione, G.T.; et al. Determination of Solution Structures of Proteins up to 40 KDa Using CS-Rosetta with Sparse NMR Data from Deuterated Samples. Proc. Natl. Acad. Sci. USA 2012, 109, 10873–10878. [Google Scholar] [CrossRef]
- Ovchinnikov, S.; Park, H.; Kim, D.E.; Liu, Y.; Wang, R.Y.; Baker, D. Structure Prediction Using Sparse Simulated NOE Restraints with Rosetta in CASP11. Proteins 2016, 84 (Suppl. S1), 181–188. [Google Scholar] [CrossRef] [PubMed]
- Kuenze, G.; Meiler, J. Protein Structure Prediction Using Sparse NOE and RDC Restraints with Rosetta in CASP13. Proteins 2019, 87, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Kudryashev, M.; Li, X.; Egelman, E.H.; Basler, M.; Cheng, Y.; Baker, D.; DiMaio, F. De Novo Protein Structure Determination from Near-Atomic-Resolution Cryo-EM Maps. Nat. Methods 2015, 12, 335–338. [Google Scholar] [CrossRef]
- DiMaio, F.; Song, Y.; Li, X.; Brunner, M.J.; Xu, C.; Conticello, V.; Egelman, E.; Marlovits, T.C.; Cheng, Y.; Baker, D. Atomic-Accuracy Models from 4.5-Å Cryo-Electron Microscopy Data with Density-Guided Iterative Local Refinement. Nat. Methods 2015, 12, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Song, Y.; Barad, B.A.; Cheng, Y.; Fraser, J.S.; DiMaio, F. Automated Structure Refinement of Macromolecular Assemblies from Cryo-EM Maps Using Rosetta. eLife 2016, 5, e17219. [Google Scholar] [CrossRef] [PubMed]
- Frenz, B.; Walls, A.C.; Egelman, E.H.; Veesler, D.; DiMaio, F. RosettaES: A Sampling Strategy Enabling Automated Interpretation of Difficult Cryo-EM Maps. Nat. Methods 2017, 14, 797–800. [Google Scholar] [CrossRef]
- DiMaio, F.; Terwilliger, T.C.; Read, R.J.; Wlodawer, A.; Oberdorfer, G.; Wagner, U.; Valkov, E.; Alon, A.; Fass, D.; Axelrod, H.L.; et al. Improved Molecular Replacement by Density- and Energy-Guided Protein Structure Optimization. Nature 2011, 473, 540–543. [Google Scholar] [CrossRef]
- DiMaio, F.; Echols, N.; Headd, J.J.; Terwilliger, T.C.; Adams, P.D.; Baker, D. Improved Low-Resolution Crystallographic Refinement with Phenix and Rosetta. Nat. Methods 2013, 10, 1102–1104. [Google Scholar] [CrossRef]
- Rossi, P.; Shi, L.; Liu, G.; Barbieri, C.M.; Lee, H.W.; Grant, T.D.; Luft, J.R.; Xiao, R.; Acton, T.B.; Snell, E.H.; et al. A Hybrid NMR/SAXS-Based Approach for Discriminating Oligomeric Protein Interfaces Using Rosetta. Proteins 2015, 83, 309–317. [Google Scholar] [CrossRef]
- Sønderby, P.; Rinnan, Å.; Madsen, J.J.; Harris, P.; Bukrinski, J.T.; Peters, G.H.J. Small-Angle X-Ray Scattering Data in Combination with RosettaDock Improves the Docking Energy Landscape. J. Chem. Inf. Model. 2017, 57, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Marzolf, D.R.; Seffernick, J.T.; Lindert, S. Protein Structure Prediction from NMR Hydrogen–Deuterium Exchange Data. J. Chem. Theory Comput. 2021, 17, 2619–2629. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Marzolf, D.R.; Seffernick, J.T.; Heinze, S.; Lindert, S. Protein Structure Prediction Using Residue-Resolved Protection Factors from Hydrogen-Deuterium Exchange NMR. Structure 2022, 30, 313–320.e3. [Google Scholar] [CrossRef]
- Aprahamian, M.L.; Chea, E.E.; Jones, L.M.; Lindert, S. Rosetta Protein Structure Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data. Anal. Chem. 2018, 90, 7721–7729. [Google Scholar] [CrossRef] [PubMed]
- Drake, Z.C.; Seffernick, J.T.; Lindert, S. Protein Complex Prediction Using Rosetta, AlphaFold, and Mass Spectrometry Covalent Labeling. Nat. Commun. 2022, 13, 7846. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein Structure Prediction and Analysis Using the Robetta Server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef]
- London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock Web Server—High Resolution Modeling of Peptide–Protein Interactions. Nucleic Acids Res. 2011, 39, W249–W253. [Google Scholar] [CrossRef]
- Moretti, R.; Lyskov, S.; Das, R.; Meiler, J.; Gray, J.J. Web-Accessible Molecular Modeling with Rosetta: The Rosetta Online Server That Includes Everyone (ROSIE). Protein Sci. 2018, 27, 259–268. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The TrRosetta Server for Fast and Accurate Protein Structure Prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef]
- Simons, K.T.; Kooperberg, C.; Huang, E.; Baker, D. Assembly of Protein Tertiary Structures from Fragments with Similar Local Sequences Using Simulated Annealing and Bayesian Scoring Functions. J. Mol. Biol. 1997, 268, 209–225. [Google Scholar] [CrossRef]
- Song, Y.; DiMaio, F.; Wang, R.Y.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution Comparative Modeling with RosettaCM. Structure 2013, 21, 1735–1742. [Google Scholar] [CrossRef]
- Meiler, J.; Baker, D. ROSETTALIGAND: Protein-Small Molecule Docking with Full Side-Chain Flexibility. Proteins 2006, 65, 538–548. [Google Scholar] [CrossRef]
- Gray, J.J.; Moughon, S.; Wang, C.; Schueler-Furman, O.; Kuhlman, B.; Rohl, C.A.; Baker, D. Protein-Protein Docking with Simultaneous Optimization of Rigid-Body Displacement and Side-Chain Conformations. J. Mol. Biol. 2003, 331, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Raveh, B.; London, N.; Schueler-Furman, O. Sub-Angstrom Modeling of Complexes between Flexible Peptides and Globular Proteins. Proteins 2010, 78, 2029–2040. [Google Scholar] [CrossRef]
- Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved Protein Structure Prediction Using Predicted Interresidue Orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Humphreys, I.R.; Pei, J.; Baek, M.; Krishnakumar, A.; Anishchenko, I.; Ovchinnikov, S.; Zhang, J.; Ness, T.J.; Banjade, S.; Bagde, S.R.; et al. Computed Structures of Core Eukaryotic Protein Complexes. Science 2021, 374, eabm4805. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.F.; Leaver-Fay, A.; Jeliazkov, J.R.; O’Meara, M.J.; DiMaio, F.P.; Park, H.; Shapovalov, M.V.; Renfrew, P.D.; Mulligan, V.K.; Kappel, K.; et al. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J. Chem. Theory Comput. 2017, 13, 3031–3048. [Google Scholar] [CrossRef]
- Chou, F.-C.; Kladwang, W.; Kappel, K.; Das, R. Blind Tests of RNA Nearest-Neighbor Energy Prediction. Proc. Natl. Acad. Sci. USA 2016, 113, 8430–8435. [Google Scholar] [CrossRef]
- Yarov-Yarovoy, V.; Schonbrun, J.; Baker, D. Multipass Membrane Protein Structure Prediction Using Rosetta. Proteins 2006, 62, 1010–1025. [Google Scholar] [CrossRef]
- Barth, P.; Schonbrun, J.; Baker, D. Toward High-Resolution Prediction and Design of Transmembrane Helical Protein Structures. Proc. Natl. Acad. Sci. USA 2007, 104, 15682–15687. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.F.; Leman, J.K.; Weitzner, B.D.; Duran, A.M.; Tilley, D.C.; Elazar, A.; Gray, J.J. An Integrated Framework Advancing Membrane Protein Modeling and Design. PLoS Comput. Biol. 2015, 11, e1004398. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.F.; Fleming, P.J.; Fleming, K.G.; Gray, J.J. Protein Structure Prediction and Design in a Biologically Realistic Implicit Membrane. Biophys. J. 2020, 118, 2042–2055. [Google Scholar] [CrossRef] [PubMed]
- Labonte, J.W.; Adolf-Bryfogle, J.; Schief, W.R.; Gray, J.J. Residue-Centric Modeling and Design of Saccharide and Glycoconjugate Structures. J. Comput. Chem. 2017, 38, 276–287. [Google Scholar] [CrossRef]
- Bowers, P.M.; Strauss, C.E.M.; Baker, D. Denovo Protein Structure Determination Using Sparse NMR Data. J. Biomol. NMR 2000, 18, 311–318. [Google Scholar] [CrossRef]
- Rohl, C.A.; Baker, D. De Novo Determination of Protein Backbone Structure from Residual Dipolar Couplings Using Rosetta. J. Am. Chem. Soc. 2002, 124, 2723–2729. [Google Scholar] [CrossRef]
- Meiler, J.; Baker, D. Rapid Protein Fold Determination Using Unassigned NMR Data. Proc. Natl. Acad. Sci. USA 2003, 100, 15404–15409. [Google Scholar] [CrossRef]
- Sgourakis, N.G.; Lange, O.F.; DiMaio, F.; Andre, I.; Fitzkee, N.C.; Rossi, P.; Montelione, G.T.; Bax, A.; Baker, D. Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings. J. Am. Chem. Soc. 2011, 133, 6288–6298. [Google Scholar] [CrossRef]
- Thompson, J.M.; Sgourakis, N.G.; Liu, G.; Rossi, P.; Tang, Y.; Mills, J.L.; Szyperski, T.; Montelione, G.T.; Baker, D. Accurate Protein Structure Modeling Using Sparse NMR Data and Homologous Structure Information. Proc. Natl. Acad. Sci. USA 2012, 109, 9875–9880. [Google Scholar] [CrossRef]
- Shen, Y.; Bax, A. Homology Modeling of Larger Proteins Guided by Chemical Shifts. Nat. Methods 2015, 12, 747–750. [Google Scholar] [CrossRef]
- Lange, O.F.; Baker, D. Resolution-Adapted Recombination of Structural Features Significantly Improves Sampling in Restraint-Guided Structure Calculation. Proteins Struct. Funct. Bioinform. 2012, 80, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Vernon, R.; Otting, G.; Baker, D.; Huber, T. Protein Structure Determination from Pseudocontact Shifts Using ROSETTA. J. Mol. Biol. 2012, 416, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Yagi, H.; Pilla, K.B.; Maleckis, A.; Graham, B.; Huber, T.; Otting, G. Three-Dimensional Protein Fold Determination from Backbone Amide Pseudocontact Shifts Generated by Lanthanide Tags at Multiple Sites. Structure 2013, 21, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Kuenze, G.; Bonneau, R.; Leman, J.K.; Meiler, J. Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints. Structure 2019, 27, 1721–1734.e5. [Google Scholar] [CrossRef]
- Hartlmüller, C.; Göbl, C.; Madl, T. Prediction of Protein Structure Using Surface Accessibility Data. Angew. Chem. Int. Ed. 2016, 55, 11970–11974. [Google Scholar] [CrossRef]
- Sripakdeevong, P.; Cevec, M.; Chang, A.T.; Erat, M.C.; Ziegeler, M.; Zhao, Q.; Fox, G.E.; Gao, X.; Kennedy, S.D.; Kierzek, R.; et al. Structure Determination of Noncanonical RNA Motifs Guided by 1H NMR Chemical Shifts. Nat. Methods 2014, 11, 413–416. [Google Scholar] [CrossRef]
- Rosato, A.; Bagaria, A.; Baker, D.; Bardiaux, B.; Cavalli, A.; Doreleijers, J.F.; Giachetti, A.; Guerry, P.; Güntert, P.; Herrmann, T.; et al. CASD-NMR: Critical Assessment of Automated Structure Determination by NMR. Nat. Methods 2009, 6, 625–626. [Google Scholar] [CrossRef]
- Rosato, A.; Vranken, W.; Fogh, R.H.; Ragan, T.J.; Tejero, R.; Pederson, K.; Lee, H.-W.; Prestegard, J.H.; Yee, A.; Wu, B.; et al. The Second Round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013. J. Biomol. NMR 2015, 62, 413–424. [Google Scholar] [CrossRef]
- Vernon, R.; Shen, Y.; Baker, D.; Lange, O.F. Improved Chemical Shift Based Fragment Selection for CS-Rosetta Using Rosetta3 Fragment Picker. J. Biomol. NMR 2013, 57, 117–127. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Tang, S.; Ma, S.; Shen, Y.; Chen, Y.; Tong, Q.; Li, Y.; Yang, J. Hydrophobic Gate of Mechanosensitive Channel of Large Conductance in Lipid Bilayers Revealed by Solid-State NMR Spectroscopy. J. Phys. Chem. B 2021, 125, 2477–2490. [Google Scholar] [CrossRef]
- Ye, Y.; Tyndall, E.R.; Bui, V.; Tang, Z.; Shen, Y.; Jiang, X.; Flanagan, J.M.; Wang, H.-G.; Tian, F. An N-Terminal Conserved Region in Human Atg3 Couples Membrane Curvature Sensitivity to Conjugase Activity during Autophagy. Nat. Commun. 2021, 12, 374. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.; Meiler, J. Expanding the Utility of NMR Restraints with Paramagnetic Compounds: Background and Practical Aspects. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 360–389. [Google Scholar] [CrossRef] [PubMed]
- Pilla, K.B.; Otting, G.; Huber, T. Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large Proteins. J. Mol. Biol. 2016, 428, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.N.; Nitsche, C.; Pilla, K.B.; Graham, B.; Huber, T.; Klein, C.D.; Otting, G. Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. J. Am. Chem. Soc. 2016, 138, 4539–4546. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.; Pardi, A.; Wuethrich, K. Hydrogen Bond Length and Proton NMR Chemical Shifts in Proteins. J. Am. Chem. Soc. 1983, 105, 5948–5949. [Google Scholar] [CrossRef]
- Mielke, S.P.; Krishnan, V.V. Characterization of Protein Secondary Structure from NMR Chemical Shifts. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 54, 141–165. [Google Scholar] [CrossRef]
- Wishart, D.S. Interpreting Protein Chemical Shift Data. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 58, 62–87. [Google Scholar] [CrossRef]
- Wishart, D.S.; Sykes, B.D.; Richards, F.M. The Chemical Shift Index: A Fast and Simple Method for the Assignment of Protein Secondary Structure through NMR Spectroscopy. Biochemistry 1992, 31, 1647–1651. [Google Scholar] [CrossRef]
- Wishart, D.S.; Sykes, B.D. The 13C Chemical-Shift Index: A Simple Method for the Identification of Protein Secondary Structure Using 13C Chemical-Shift Data. J. Biomol. NMR 1994, 4, 171–180. [Google Scholar] [CrossRef]
- Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. 1H, 13C, and 15N Random Coil NMR Chemical Shifts of the Common Amino Acids. I. Investigations of Nearest-Neighbor Effects. J. Biomol. NMR 1995, 5, 67–81. [Google Scholar] [CrossRef]
- Shen, Y.; Bax, A. SPARTA+: A Modest Improvement in Empirical NMR Chemical Shift Prediction by Means of an Artificial Neural Network. J. Biomol. NMR 2010, 48, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liu, Y.; Ginzinger, S.W.; Wishart, D.S. SHIFTX2: Significantly Improved Protein Chemical Shift Prediction. J. Biomol. NMR 2011, 50, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Meiler, J. PROSHIFT: Protein Chemical Shift Prediction Using Artificial Neural Networks. J. Biomol. NMR 2003, 26, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Lange, O.F. Automatic NOESY Assignment in CS-RASREC-Rosetta. J. Biomol. NMR 2014, 59, 147–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Porter, J.; Tripsianes, K.; Lange, O.F. Robust and Highly Accurate Automatic NOESY Assignment and Structure Determination with Rosetta. J. Biomol. NMR 2014, 59, 135–145. [Google Scholar] [CrossRef]
- Herrmann, T.; Güntert, P.; Wüthrich, K. Protein NMR Structure Determination with Automated NOE Assignment Using the New Software CANDID and the Torsion Angle Dynamics Algorithm DYANA. J. Mol. Biol. 2002, 319, 209–227. [Google Scholar] [CrossRef]
- Nilges, M.; Macias, M.J.; O’Donoghue, S.I.; Oschkinat, H. Automated NOESY Interpretation with Ambiguous Distance Restraints: The Refined NMR Solution Structure of the Pleckstrin Homology Domain from b-Spectrin. J. Mol. Biol. 1997, 269, 408–422. [Google Scholar] [CrossRef]
- Chen, K.; Tjandra, N. The Use of Residual Dipolar Coupling in Studying Proteins by NMR. In NMR of Proteins and Small Biomolecules; Zhu, G., Ed.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–67. ISBN 978-3-642-28917-0. [Google Scholar]
- Tjandra, N.; Omichinski, J.G.; Gronenborn, A.M.; Clore, G.M.; Bax, A. Use of Dipolar 1H-15N and 1H-13C Couplings in the Structure Determination of Magnetically Oriented Macromolecules in Solution. Nat. Struct. Biol. 1997, 4, 732–738. [Google Scholar] [CrossRef]
- Hus, J.-C.; Marion, D.; Blackledge, M. De Novo Determination of Protein Structure by NMR Using Orientational and Long-Range Order Restraints. J. Mol. Biol. 2000, 298, 927–936. [Google Scholar] [CrossRef]
- Hus, J.C.; Marion, D.; Blackledge, M. Determination of Protein Backbone Structure Using Only Residual Dipolar Couplings. J. Am. Chem. Soc. 2001, 123, 1541–1542. [Google Scholar] [CrossRef]
- Clore, G.M.; Iwahara, J. Theory, Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of Transient Low-Population States of Biological Macromolecules and Their Complexes. Chem. Rev. 2009, 109, 4108–4139. [Google Scholar] [CrossRef] [PubMed]
- Hartlmüller, C.; Spreitzer, E.; Göbl, C.; Falsone, F.; Madl, T. NMR Characterization of Solvent Accessibility and Transient Structure in Intrinsically Disordered Proteins. J. Biomol. NMR 2019, 73, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Lenard, A.J.; Mulder, F.A.A.; Madl, T. Solvent Paramagnetic Relaxation Enhancement as a Versatile Method for Studying Structure and Dynamics of Biomolecular Systems. Prog. Nucl. Magn. Reson. Spectrosc. 2022, 132–133, 113–139. [Google Scholar] [CrossRef]
- Miao, Q.; Nitsche, C.; Orton, H.; Overhand, M.; Otting, G.; Ubbink, M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem. Rev. 2022, 122, 9571–9642. [Google Scholar] [CrossRef] [PubMed]
- Joss, D.; Häussinger, D. Design and Applications of Lanthanide Chelating Tags for Pseudocontact Shift NMR Spectroscopy with Biomacromolecules. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114–115, 284–312. [Google Scholar] [CrossRef]
- Widder, P.; Berner, F.; Summerer, D.; Drescher, M. Double Nitroxide Labeling by Copper-Catalyzed Azide–Alkyne Cycloadditions with Noncanonical Amino Acids for Electron Paramagnetic Resonance Spectroscopy. ACS Chem. Biol. 2019, 14, 839–844. [Google Scholar] [CrossRef]
- Otting, G. Protein NMR Using Paramagnetic Ions. Annu. Rev. Biophys. 2010, 39, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. TALOS+: A Hybrid Method for Predicting Protein Backbone Torsion Angles from NMR Chemical Shifts. J. Biomol. NMR 2009, 44, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Bax, A. Protein Backbone and Sidechain Torsion Angles Predicted from NMR Chemical Shifts Using Artificial Neural Networks. J. Biomol. NMR 2013, 56, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Nerli, S.; Sgourakis, N.G. CS-ROSETTA. Methods Enzymol. 2019, 614, 321–362. [Google Scholar] [CrossRef]
- Nerli, S.; McShan, A.C.; Sgourakis, N.G. Chemical Shift-Based Methods in NMR Structure Determination. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 106–107, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A Multidimensional Spectral Processing System Based on UNIX Pipes. J. Biomol. NMR 1995, 6, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Söding, J. Protein Homology Detection by HMM–HMM Comparison. Bioinformatics 2005, 21, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Holm, L. DALI and the Persistence of Protein Shape. Protein Sci. 2020, 29, 128–140. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, H.; Wang, L.; Shen, Y.; Chen, W.; Song, B.; Zhang, Z.; Zheng, A.; Lin, Q.; Fu, R.; et al. Gating Mechanism of Aquaporin Z in Synthetic Bilayers and Native Membranes Revealed by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2018, 140, 7885–7895. [Google Scholar] [CrossRef]
- Li, J.; Shen, Y.; Chen, Y.; Zhang, Z.; Ma, S.; Wan, Q.; Tong, Q.; Glaubitz, C.; Liu, M.; Yang, J. Structure of Membrane Diacylglycerol Kinase in Lipid Bilayers. Commun. Biol. 2021, 4, 282. [Google Scholar] [CrossRef]
- Bender, B.J.; Vortmeier, G.; Ernicke, S.; Bosse, M.; Kaiser, A.; Els-Heindl, S.; Krug, U.; Beck-Sickinger, A.; Meiler, J.; Huster, D. Structural Model of Ghrelin Bound to Its G Protein-Coupled Receptor. Structure 2019, 27, 537–544. [Google Scholar] [CrossRef]
- Frieden, C.; Hoeltzli, S.D.; Ropson, I.J. NMR and Protein Folding: Equilibrium and Stopped-Flow Studies. Protein Sci. 1993, 2, 2007–2014. [Google Scholar] [CrossRef]
- Vilar, M.; Wang, L.; Riek, R. Structural Studies of Amyloids by Quenched Hydrogen–Deuterium Exchange by NMR. In Amyloid Proteins: Methods and Protocols; Sigurdsson, E.M., Calero, M., Gasset, M., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; pp. 185–198. ISBN 978-1-61779-551-0. [Google Scholar]
- Olofsson, A.; Sauer-Eriksson, A.E.; Öhman, A. Amyloid Fibril Dynamics Revealed by Combined Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance. Anal. Biochem. 2009, 385, 374–376. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Ptak, C.P.; Fenwick, M.K.; Hsieh, C.-L.; Weiland, G.A.; Oswald, R.E. Dynamics of Cleft Closure of the GluA2 Ligand-Binding Domain in the Presence of Full and Partial Agonists Revealed by Hydrogen-Deuterium Exchange. J. Biol. Chem. 2013, 288, 27658–27666. [Google Scholar] [CrossRef]
- Dyson, H.J.; Kostic, M.; Liu, J.; Martinez-Yamout, M.A. Hydrogen–Deuterium Exchange Strategy for Delineation of Contact Sites in Protein Complexes. FEBS Lett. 2008, 582, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Yagi-Utsumi, M.; Chandak, M.S.; Yanaka, S.; Hiranyakorn, M.; Nakamura, T.; Kato, K.; Kuwajima, K. Residual Structure of Unfolded Ubiquitin as Revealed by Hydrogen/Deuterium-Exchange 2D NMR. Biophys. J. 2020, 119, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Hilser, V.J.; Freire, E. Structure-Based Calculation of the Equilibrium Folding Pathway of Proteins. Correlation with Hydrogen Exchange Protection Factors. J. Mol. Biol. 1996, 262, 756–772. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Vendruscolo, M. Structural Interpretation of Hydrogen Exchange Protection Factors in Proteins: Characterization of the Native State Fluctuations of CI2. Structure 2006, 14, 97–106. [Google Scholar] [CrossRef] [PubMed]
- McAllister, R.G.; Konermann, L. Challenges in the Interpretation of Protein H/D Exchange Data: A Molecular Dynamics Simulation Perspective. Biochemistry 2015, 54, 2683–2692. [Google Scholar] [CrossRef] [PubMed]
- Petruk, A.A.; Defelipe, L.A.; Limardo, R.G.R.; Bucci, H.; Marti, M.; Turjanski, A.G. Molecular Dynamics Simulations Provide Atomistic Insight into Hydrogen Exchange Mass Spectrometry Experiments. J. Chem. Theory Comput. 2013, 9, 658–669. [Google Scholar] [CrossRef]
- Mohammadiarani, H.; Shaw, V.S.; Neubig, R.R.; Vashisth, H. Interpreting Hydrogen–Deuterium Exchange Events in Proteins Using Atomistic Simulations: Case Studies on Regulators of G-Protein Signaling Proteins. J. Phys. Chem. B 2018, 122, 9314–9323. [Google Scholar] [CrossRef]
- Martens, C.; Shekhar, M.; Lau, A.M.; Tajkhorshid, E.; Politis, A. Integrating Hydrogen–Deuterium Exchange Mass Spectrometry with Molecular Dynamics Simulations to Probe Lipid-Modulated Conformational Changes in Membrane Proteins. Nat. Protoc. 2019, 14, 3183–3204. [Google Scholar] [CrossRef]
- Tran, M.H.; Schoeder, C.T.; Schey, K.L.; Meiler, J. Computational Structure Prediction for Antibody-Antigen Complexes from Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook. Front. Immunol. 2022, 13, 859964. [Google Scholar] [CrossRef]
- Pandit, D.; Tuske, S.J.; Coales, S.J.; E, S.Y.; Liu, A.; Lee, J.E.; Morrow, J.A.; Nemeth, J.F.; Hamuro, Y. Mapping of Discontinuous Conformational Epitopes by Amide Hydrogen/Deuterium Exchange Mass Spectrometry and Computational Docking. J. Mol. Recognit. 2012, 25, 114–124. [Google Scholar] [CrossRef]
- Roberts, V.A.; Pique, M.E.; Hsu, S.; Li, S. Combining H/D Exchange Mass Spectrometry and Computational Docking to Derive the Structure of Protein–Protein Complexes. Biochemistry 2017, 56, 6329–6342. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Seffernick, J.T.; Lindert, S. Accurately Predicting Disordered Regions of Proteins Using Rosetta ResidueDisorder Application. J. Phys. Chem. B 2018, 122, 3920–3930. [Google Scholar] [CrossRef] [PubMed]
- Seffernick, J.T.; Ren, H.; Kim, S.S.; Lindert, S. Measuring Intrinsic Disorder and Tracking Conformational Transitions Using Rosetta ResidueDisorder. J. Phys. Chem. B 2019, 123, 7103–7112. [Google Scholar] [CrossRef]
- Hass, M.A.; Ubbink, M. Structure Determination of Protein–Protein Complexes with Long-Range Anisotropic Paramagnetic NMR Restraints. Curr. Opin. Struct. Biol. 2014, 24, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, C.; Otting, G. Pseudocontact Shifts in Biomolecular NMR Using Paramagnetic Metal Tags. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 98–99, 20–49. [Google Scholar] [CrossRef]
- Softley, C.A.; Bostock, M.J.; Popowicz, G.M.; Sattler, M. Paramagnetic NMR in Drug Discovery. J. Biomol. NMR 2020, 74, 287–309. [Google Scholar] [CrossRef]
- Ravera, E.; Gigli, L.; Fiorucci, L.; Luchinat, C.; Parigi, G. The Evolution of Paramagnetic NMR as a Tool in Structural Biology. Phys. Chem. Chem. Phys. 2022, 24, 17397–17416. [Google Scholar] [CrossRef]
- Müntener, T.; Joss, D.; Häussinger, D.; Hiller, S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem. Rev. 2022, 122, 9422–9467. [Google Scholar] [CrossRef]
- Allegrozzi, M.; Bertini, I.; Janik, M.B.L.; Lee, Y.-M.; Liu, G.; Luchinat, C. Lanthanide-Induced Pseudocontact Shifts for Solution Structure Refinements of Macromolecules in Shells up to 40 Å from the Metal Ion. J. Am. Chem. Soc. 2000, 122, 4154–4161. [Google Scholar] [CrossRef]
- Pilla, K.B.; Leman, J.K.; Otting, G.; Huber, T. Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data. PLoS ONE 2015, 10, e0127053. [Google Scholar] [CrossRef]
- Hartlmüller, C.; Günther, J.C.; Wolter, A.C.; Wöhnert, J.; Sattler, M.; Madl, T. RNA Structure Refinement Using NMR Solvent Accessibility Data. Sci. Rep. 2017, 7, 5393. [Google Scholar] [CrossRef] [PubMed]
- Loquet, A.; Sgourakis, N.G.; Gupta, R.; Giller, K.; Riedel, D.; Goosmann, C.; Griesinger, C.; Kolbe, M.; Baker, D.; Becker, S.; et al. Atomic Model of the Type III Secretion System Needle. Nature 2012, 486, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Andre, I.; Shen, Y.; Wu, Y.; Lemak, A.; Bansal, S.; Arrowsmith, C.H.; Szyperski, T.; Baker, D. Simultaneous Prediction of Protein Folding and Docking at High Resolution. Proc. Natl. Acad. Sci. USA 2009, 106, 18978–18983. [Google Scholar] [CrossRef] [PubMed]
- Demers, J.P.; Habenstein, B.; Loquet, A.; Kumar Vasa, S.; Giller, K.; Becker, S.; Baker, D.; Lange, A.; Sgourakis, N.G. High-Resolution Structure of the Shigella Type-III Secretion Needle by Solid-State NMR and Cryo-Electron Microscopy. Nat. Commun. 2014, 5, 4976. [Google Scholar] [CrossRef]
- Morag, O.; Sgourakis, N.G.; Baker, D.; Goldbourt, A. The NMR–Rosetta Capsid Model of M13 Bacteriophage Reveals a Quadrupled Hydrophobic Packing Epitope. Proc. Natl. Acad. Sci. USA 2015, 112, 971–976. [Google Scholar] [CrossRef]
- Chou, H.-T.; Apelt, L.; Farrell, D.P.; White, S.R.; Woodsmith, J.; Svetlov, V.; Goldstein, J.S.; Nager, A.R.; Li, Z.; Muller, J.; et al. The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach. Structure 2019, 27, 1384–1394. [Google Scholar] [CrossRef]
- Mashtalir, N.; Suzuki, H.; Farrell, D.P.; Sankar, A.; Luo, J.; Filipovski, M.; D’Avino, A.R.; St. Pierre, R.; Valencia, A.M.; Onikubo, T.; et al. A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell 2020, 183, 802–817. [Google Scholar] [CrossRef]
- Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118. [Google Scholar] [CrossRef]
- Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-Resolution de Novo Structure Prediction from Primary Sequence. bioRxiv 2022. [Google Scholar] [CrossRef]
- Zweckstetter, M. NMR Hawk-Eyed View of AlphaFold2 Structures. Protein Sci. 2021, 30, 2333–2337. [Google Scholar] [CrossRef]
- Tejero, R.; Huang, Y.J.; Ramelot, T.A.; Montelione, G.T. AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures. Front. Mol. Biosci. 2022, 9, 877000. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Graziadei, A.; Dau, T.; Brock, O.; Rappsilber, J. Protein Structure Prediction with in-Cell Photo-Crosslinking Mass Spectrometry and Deep Learning. Nat. Biotechnol. 2023; ahead of print. [Google Scholar] [CrossRef]
- Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. Broadly Applicable and Accurate Protein Design by Integrating Structure Prediction Networks and Diffusion Generative Models. bioRxiv 2022. [Google Scholar] [CrossRef]
- del Alamo, D.; Sala, D.; Mchaourab, H.S.; Meiler, J. Sampling Alternative Conformational States of Transporters and Receptors with AlphaFold2. eLife 2022, 11, e75751. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.A.; Mchaourab, H.S. SPEACH_AF: Sampling Protein Ensembles and Conformational Heterogeneity with Alphafold2. PLoS Comput. Biol. 2022, 18, e1010483. [Google Scholar] [CrossRef]
- Heo, L.; Feig, M. Multi-State Modeling of G-Protein Coupled Receptors at Experimental Accuracy. Proteins Struct. Funct. Bioinform. 2022, 90, 1873–1885. [Google Scholar] [CrossRef]
- Laurents, D.V. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front. Mol. Biosci. 2022, 9, 906437. [Google Scholar] [CrossRef]
- Sauerwein, A.C.; Hansen, D.F. Relaxation Dispersion NMR Spectroscopy. In Protein NMR: Modern Techniques and Biomedical Applications; Berliner, L., Ed.; Biological Magnetic Resonance; Springer: Boston, MA, USA, 2015; pp. 75–132. ISBN 978-1-4899-7621-5. [Google Scholar]
- Fenwick, R.B.; Oyen, D.; van den Bedem, H.; Dyson, H.J.; Wright, P.E. Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion. Biophys. J. 2021, 120, 296–305. [Google Scholar] [CrossRef]
- Hass, M.A.S.; Liu, W.-M.; Agafonov, R.V.; Otten, R.; Phung, L.A.; Schilder, J.T.; Kern, D.; Ubbink, M. A Minor Conformation of a Lanthanide Tag on Adenylate Kinase Characterized by Paramagnetic Relaxation Dispersion NMR Spectroscopy. J. Biomol. NMR 2015, 61, 123–136. [Google Scholar] [CrossRef]
- Ma, R.S.; Li, Q.F.; Wang, A.D.; Zhang, J.H.; Liu, Z.J.; Wu, J.H.; Su, X.C.; Ruan, K. Determination of Pseudocontact Shifts of Low-Populated Excited States by NMR Chemical Exchange Saturation Transfer. Phys. Chem. Chem. Phys. 2016, 18, 13794–13798. [Google Scholar] [CrossRef]
- Vallurupalli, P.; Kay, L.E. Complementarity of Ensemble and Single-Molecule Measures of Protein Motion: A Relaxation Dispersion NMR Study of an Enzyme Complex. Proc. Natl. Acad. Sci. USA 2006, 103, 11910–11915. [Google Scholar] [CrossRef] [PubMed]
- Zintsmaster, J.S.; Wilson, B.D.; Peng, J.W. Dynamics of Ligand Binding from 13C NMR Relaxation Dispersion at Natural Abundance. J. Am. Chem. Soc. 2008, 130, 14060–14061. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.J.; Sodhi, J.S.; McGuffin, L.J.; Buxton, B.F.; Jones, D.T. Prediction and Functional Analysis of Native Disorder in Proteins from the Three Kingdoms of Life. J. Mol. Biol. 2004, 337, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Pentony, M.M.; Jones, D.T. Modularity of Intrinsic Disorder in the Human Proteome. Proteins Struct. Funct. Bioinform. 2010, 78, 212–221. [Google Scholar] [CrossRef]
- Wilson, C.J.; Choy, W.-Y.; Karttunen, M. AlphaFold2: A Role for Disordered Protein/Region Prediction? IJMS 2022, 23, 4591. [Google Scholar] [CrossRef]
- Martin, E.W.; Hopkins, J.B.; Mittag, T. Chapter Seven—Small-Angle X-Ray Scattering Experiments of Monodisperse Intrinsically Disordered Protein Samples Close to the Solubility Limit. In Methods in Enzymology; Keating, C.D., Ed.; Liquid-Liquid Phase Coexistence and Membraneless Organelles; Academic Press: Cambridge, MA, USA, 2021; Volume 646, pp. 185–222. [Google Scholar]
- Murthy, A.C.; Fawzi, N.L. The (Un)Structural Biology of Biomolecular Liquid-Liquid Phase Separation Using NMR Spectroscopy. J. Biol. Chem. 2020, 295, 2375–2384. [Google Scholar] [CrossRef]
- Wang, R.Y.-R.; Han, Y.; Krassovsky, K.; Sheffler, W.; Tyka, M.; Baker, D. Modeling Disordered Regions in Proteins Using Rosetta. PLoS ONE 2011, 6, e22060. [Google Scholar] [CrossRef]
- Kleiger, G.; Saha, A.; Lewis, S.; Kuhlman, B.; Deshaies, R.J. Rapid E2–E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates. Cell 2009, 139, 957–968. [Google Scholar] [CrossRef]
- Ferrie, J.J.; Petersson, E.J. A Unified De Novo Approach for Predicting the Structures of Ordered and Disordered Proteins. J. Phys. Chem. B 2020, 124, 5538–5548. [Google Scholar] [CrossRef]
- Christoffer, C.; Kihara, D. IDP-LZerD: Software for Modeling Disordered Protein Interactions. In Protein Structure Prediction; Kihara, D., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; pp. 231–244. ISBN 978-1-07-160708-4. [Google Scholar]
- Scheres, S.H.; Zhang, W.; Falcon, B.; Goedert, M. Cryo-EM Structures of Tau Filaments. Curr. Opin. Struct. Biol. 2020, 64, 17–25. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, W.; Yang, Y.; Murzin, A.G.; Falcon, B.; Kotecha, A.; van Beers, M.; Tarutani, A.; Kametani, F.; Garringer, H.J.; et al. Structure-Based Classification of Tauopathies. Nature 2021, 598, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Paravastu, A.K.; Leapman, R.D.; Yau, W.-M.; Tycko, R. Molecular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2008, 105, 18349–18354. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-X.; Qiang, W.; Yau, W.-M.; Schwieters, C.D.; Meredith, S.C.; Tycko, R. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 2013, 154, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Sgourakis, N.G.; Yau, W.-M.; Qiang, W. Modeling an In-Register, Parallel “Iowa” Aβ Fibril Structure Using Solid-State NMR Data from Labeled Samples with Rosetta. Structure 2015, 23, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J.; Covell, D.J.; Berthold, D.A.; Kloepper, K.D.; Courtney, J.M.; Kim, J.K.; Barclay, A.M.; Kendall, A.; et al. Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein. Nat. Struct. Mol. Biol. 2016, 23, 409–415. [Google Scholar] [CrossRef] [PubMed]
NMR Data Type | Implementation Type in Rosetta | References— Original Method | References— Other Examples |
---|---|---|---|
CSs | Selection of protein backbone fragments for Rosetta fragment assembly algorithm. Scoring of protein structures by comparison of experimental and back-calculated CSs. | [30,81] | [31,32,33,70] |
CSs | Identification of template structures for Rosetta comparative modeling by matching of experimental and back-calculated CS assignments. | [72] | [82,83] |
HDX | Scoring of protein structures by comparison of experimental and model-predicted protection factors or HDX strength categories. HDX score is a linear combination of residue flexibility and solvent exposure metrics. | [44,45] | |
NOEs/PREs | Rosetta distance constraints with user-defined distance range and potential function. Grouping of constraints into ambiguous distance constraints is possible. | [32,33,67] | [34,35] |
PCSs | Scoring of protein structures by comparison of experimental and back-calculated PCSs. Determination of lanthanide position and Δχ tensor via grid search and singular value decomposition or least squares fitting procedure. | [74,75,76] | [84,85,86] |
PCSs | Iterative regeneration of a backbone fragment library from models with good fit to PCS data for successive rounds of de novo folding. | [85] | |
RDCs | Scoring of protein structures by comparison of experimental and back-calculated RDCs. Determination of alignment tensor by singular value decomposition or least-squares fitting procedure. | [32,33,68] | [42,70,71] |
sPREs | Scoring of protein structures by calculating the correlation between experimental and back-calculated sPREs. The predicted sPREs are obtained by r−6 summation over all grid positions around a protein structure, which are accessible to the paramagnetic probe. | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koehler Leman, J.; Künze, G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int. J. Mol. Sci. 2023, 24, 7835. https://doi.org/10.3390/ijms24097835
Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. International Journal of Molecular Sciences. 2023; 24(9):7835. https://doi.org/10.3390/ijms24097835
Chicago/Turabian StyleKoehler Leman, Julia, and Georg Künze. 2023. "Recent Advances in NMR Protein Structure Prediction with ROSETTA" International Journal of Molecular Sciences 24, no. 9: 7835. https://doi.org/10.3390/ijms24097835
APA StyleKoehler Leman, J., & Künze, G. (2023). Recent Advances in NMR Protein Structure Prediction with ROSETTA. International Journal of Molecular Sciences, 24(9), 7835. https://doi.org/10.3390/ijms24097835