Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle
Abstract
:1. Introduction
2. Results
2.1. RNA Sequencing and Identification of Differentially Expressed Genes
2.2. Enrichment Analysis of Differential Genes
2.3. Overview of Metabolomic Profiling
2.4. Enrichment Analysis of Differential Metabolites
2.5. Association Analysis between Transcriptomic and Metabolomic Data
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Animals and Sample Collection
4.3. Experimental Design
4.4. Transcriptome Sequencing and Analysis
4.5. Metabolomic Analysis
4.6. Conjoint Analysis of Metabolome and Transcriptome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsakas, A.; Diel, P. The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis. Int. J. Sport. Med. 2005, 26, 83–89. [Google Scholar] [CrossRef]
- Grobet, L.; Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J.; et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Stinckens, A.; Georges, M.; Buys, N. Mutations in the myostatin gene leading to hypermuscularity in mammals: Indications for a similar mechanism in fish? Anim. Genet. 2011, 42, 229–234. [Google Scholar] [CrossRef]
- Clop, A.; Marcq, F.; Takeda, H.; Pirottin, D.; Tordoir, X.; Bibé, B.; Bouix, J.; Caiment, F.; Elsen, J.M.; Eychenne, F.; et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38, 813–818. [Google Scholar] [CrossRef]
- Kambadur, R.; Sharma, M.; Smith, T.P.; Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7, 910–916. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef]
- Mosher, D.S.; Quignon, P.; Bustamante, C.D.; Sutter, N.B.; Mellersh, C.S.; Parker, H.G.; Ostrander, E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007, 3, e79. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, C.; Carlson, D.F.; Huddart, R.; Long, C.R.; Pryor, J.H.; King, T.J.; Lillico, S.G.; Mileham, A.J.; McLaren, D.G.; Whitelaw, C.B.; et al. Genome edited sheep and cattle. Transgenic Res. 2015, 24, 147–153. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, T.; Jiang, L.; Zhou, M.; Wu, D.; Mei, J.; Cheng, Y. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci. Rep. 2018, 38, BSR20180742–BSR20180747. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Lei, A.; Zhou, J.; Zeng, W.; Zhu, H.; Dong, Z.; Niu, Y.; Shi, B.; Cai, B.; et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep. 2015, 5, 13878. [Google Scholar] [CrossRef]
- Crispo, M.; Mulet, A.P.; Tesson, L.; Barrera, N.; Cuadro, F.; dos Santos-Neto, P.C.; Nguyen, T.H.; Crénéguy, A.; Brusselle, L.; Anegón, I.; et al. Efficient generation of myostatin knock-out Sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE 2015, 10, e0136690. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ouyang, H.; Xie, Z.; Yao, C.; Guo, N.; Li, M.; Jiao, H.; Pang, D. Efficient generation of Myostatin mutations in pigs using the CRISPR/Cas9 system. Sci. Rep. 2015, 5, 16623. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tang, X.; Xie, Z.; Zou, X.; Li, M.; Yuan, H.; Guo, N.; Ouyang, H.; Jiao, H.; Pang, D. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res. 2017, 26, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Wang, X.; Liu, Y.; Ouyang, Z.; Long, H.; Wei, S.; Xin, J.; Zhao, B.; Lai, S.; Shen, J.; et al. Generation of gene-target dogs using CRISPR/Cas9 system. J. Mol. Cell. Biol. 2015, 7, 580–583. [Google Scholar] [CrossRef]
- Lv, Q.; Yuan, L.; Deng, J.; Chen, M.; Wang, Y.; Zeng, J.; Li, Z.; Lai, L. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci. Rep. 2016, 6, 25029. [Google Scholar] [CrossRef]
- Li, G.; Bai, C.; We, Z.; Su, G.; Wu, Y.; Han, L.; Yang, L.; Liu, X.; Zhao, Y.; Song, E.; et al. Myostatin gene editing in yellow cattle. J. Inn. Mong. Univ. Nat. Sci. Ed. 2020, 51, 12–32. [Google Scholar] [CrossRef]
- Verzola, D.; Milanesi, S.; Bertolotto, M.; Garibaldi, S.; Villaggio, B.; Brunelli, C.; Balbi, M.; Ameri, P.; Montecucco, F.; Palombo, D.; et al. Myostatin mediates abdominal aortic atherosclerosis progression by inducing vascular smooth muscle cell dysfunction and monocyte recruitment. Sci. Rep. 2017, 7, 46362. [Google Scholar] [CrossRef]
- Yuan, H.; Ruan, Y.; Tan, Y.; Reed-Maldonado, A.B.; Chen, Y.; Zhao, D.; Wang, Z.; Zhou, F.; Peng, D.; Banie, L.; et al. Regenerating Urethral Striated Muscle by CRISPRi/dCas9-KRAB-Mediated Myostatin Silencing for Obesity-Associated Stress Urinary Incontinence. Cris. J. 2020, 3, 562–572. [Google Scholar] [CrossRef]
- Lee, S.J. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J. Clin. Investig. 2021, 131, e148372–e148380. [Google Scholar] [CrossRef]
- Chen, M.M.; Zhao, Y.P.; Zhao, Y.; Deng, S.L.; Yu, K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front. Cell. Dev. Biol. 2021, 9, 785712. [Google Scholar] [CrossRef]
- Jin, Z.; Choe, H.M.; Lv, S.; Chang, S.; Yin, X. Esophageal striated muscle hypertrophy and muscle fiber type transformation in MSTN knockout pigs. Transgenic Res. 2022, 31, 341–349. [Google Scholar] [CrossRef]
- Choe, H.M.; Gao, K.; Paek, H.J.; Liu, X.Y.; Li, Z.Y.; Quan, B.H.; Yin, X.J. Silencing myostatin increases area fraction of smooth muscle in the corpus cavernosum of pigs. Anim. Reprod. Sci. 2022, 247, 107077. [Google Scholar] [CrossRef]
- Liu, X.Y.; Choe, H.M.; Li, Z.Y.; Jin, Z.Y.; Chang, S.Y.; Kang, J.D.; Yin, X.J.; Quan, B.H. Positive growth of smooth muscle in uterine horns of myostatin homozygous mutant gilt. Res. Vet. Sci. 2022, 152, 228–235. [Google Scholar] [CrossRef]
- Kuo, I.Y.; Ehrlich, B.E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 2015, 7, a006023. [Google Scholar] [CrossRef] [PubMed]
- Donadon, M.; Santoro, M.M. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021, 148, dev197384–dev197400. [Google Scholar] [CrossRef] [PubMed]
- Hill-Eubanks, D.C.; Werner, M.E.; Heppner, T.J.; Nelson, M.T. Calcium signaling in smooth muscle. Cold Spring Harb. Perspect. Biol. 2011, 3, a004549. [Google Scholar] [CrossRef]
- Chen, W.Q.; Liu, D.P.; Li, Z.X.; Chen, K.; Luo, J.; Xu, J.L. Transcriptome analysis of knockout mutants of rice seed dormancy gene OsVP1 and Sdr4. Plant. Cell. Rep. 2023, 42, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Luan, G.; Wang, M.; Yuan, J.; Bu, X.; Song, J.; Wang, C.; Zhang, L. Regulatory network identified by pulmonary transcriptome and proteome profiling reveals extensive change of tumor-related genes in microRNA-21 knockout mice. J. Cancer Res. Clin. Oncol. 2022, 148, 1919–1929. [Google Scholar] [CrossRef]
- Kim, S.; Li, L.; Zhang, J.; Jiang, C.; Lü, J. Aqueous metabolome of tissue-specific conditional Pten-knockout mouse prostate cancer and TRAMP neuroendocrine carcinoma. Prostate 2022, 82, 154–166. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass. Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Cadavid, N.F.; Bhasin, S. Role of myostatin in metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 451–457. [Google Scholar] [CrossRef] [PubMed]
- McCroskery, S.; Thomas, M.; Maxwell, L.; Sharma, M.; Kambadur, R. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell. Biol. 2003, 162, 1135–1147. [Google Scholar] [CrossRef]
- Parsons, L.; Ren, Y.; Yobi, A.; Hurst, P.; Angelovici, R.; Rodriguez, O.; Holding, D.R. Production and Selection of Quality Protein Popcorn Hybrids Using a Novel Ranking System and Combining Ability Estimates. Front. Plant. Sci. 2020, 11, 698. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Histidine Metabolism and Function. J. Nutr. 2020, 150, 2570s–2575s. [Google Scholar] [CrossRef]
- Moro, J.; Tomé, D.; Schmidely, P.; Demersay, T.C.; Azzout-Marniche, D. Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev. 2008, 88, 1183–1241. [Google Scholar] [CrossRef]
- Daignan-Fornier, B.; Pinson, B. Yeast to Study Human Purine Metabolism Diseases. Cells 2019, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, H.; Zhang, L.; Tang, Z.; Yu, X.; Wu, J.; Zeng, F. Metabolome and Transcriptome Association Analysis Reveals Dynamic Regulation of Purine Metabolism and Flavonoid Synthesis in Transdifferentiation during Somatic Embryogenesis in Cotton. Int. J. Mol. Sci. 2019, 20, 2070. [Google Scholar] [CrossRef]
- Dammer, E.B.; Göttle, M.; Duong, D.M.; Hanfelt, J.; Seyfried, N.T.; Jinnah, H.A. Consequences of impaired purine recycling on the proteome in a cellular model of Lesch-Nyhan disease. Mol. Genet. Metab. 2015, 114, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Giannesini, B.; Vilmen, C.; Amthor, H.; Bernard, M.; Bendahan, D. Lack of myostatin impairs mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in vivo. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E33–E40. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, C.; Huang, L.; Zeng, K.; Cao, X.; Gao, J. Inefficient ATP synthesis by inhibiting mitochondrial respiration causes lipids to decrease in MSTN-lacking muscles of loach Misgurnus anguillicaudatus. Funct. Integr. Genom. 2019, 19, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Han, T.L.; Cannon, R.D.; Gallo, S.M.; Villas-Bôas, S.G. A metabolomic study of the effect of Candida albicans glutamate dehydrogenase deletion on growth and morphogenesis. NPJ Biofilms Microbiomes 2019, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Gumy, C.; Blatter, E.; Boeffel, S.; Fricke, W.; Rentsch, D. In planta function of compatible solute transporters of the AtProT family. J. Exp. Bot. 2011, 62, 787–796. [Google Scholar] [CrossRef]
- Pinheiro, T.; Lip, K.Y.F.; García-Ríos, E.; Querol, A.; Teixeira, J.; van Gulik, W.; Guillamón, J.M.; Domingues, L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci. Rep. 2020, 10, 22329. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gu, M.; Zhu, L.; Wu, D.; Yang, M.; Gao, Y.; Wang, X.; Bai, C.; Wei, Z.; Yang, L.; et al. Comparison of microbial community and metabolites in four stomach compartments of Myostatin-gene-edited and non-edited cattle. Front. Microbiol. 2022, 13, 844962. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Ma, J.; Yu, Q.; Han, L. iTRAQ-mediated analysis of the relationship between proteomic changes and yak longissimus lumborum tenderness over the course of postmortem storage. Sci. Rep. 2021, 11, 10450. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T.R.; Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012, 84, 283–289. [Google Scholar] [CrossRef]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. MetaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Data | Valid Date | Valid Ratio (Reads) | Mapped Reads | Q20% | Q30% | GC Content% | |||
---|---|---|---|---|---|---|---|---|---|---|
Read | Base | Read | Base | |||||||
MK | MK_SM_1 | 56,174,110 | 8.43 G | 53,357,872 | 8.00 G | 94.99 | 51,717,009 (96.92%) | 99.98 | 97.80 | 55 |
MK_SM_2 | 61,375,252 | 9.21 G | 56,467,142 | 8.47 G | 92.00 | 54,543,271 (96.59%) | 99.98 | 97.80 | 53 | |
MK_SM_3 | 48,954,976 | 7.34 G | 46,576,650 | 6.99 G | 95.14 | 44,966,614 (96.54%) | 99.98 | 97.52 | 55 | |
MK_SM_4 | 47,170,368 | 7.08 G | 44,582,584 | 6.69 G | 94.51 | 43,069,247 (96.61%) | 99.98 | 97.63 | 53.50 | |
MK_SM_5 | 48,462,004 | 7.27 G | 46,238,274 | 6.94 G | 95.41 | 44,849,512 (97.00%) | 99.98 | 97.95 | 53 | |
WT | WT_SM_1 | 59,383,830 | 8.91 G | 55,872,426 | 8.38 G | 94.09 | 54,208,590 (97.02%) | 99.98 | 97.69 | 53.50 |
WT_SM_2 | 61,905,908 | 9.29 G | 58,183,966 | 8.73 G | 93.99 | 56,488,445 (97.09%) | 99.98 | 97.74 | 52.50 | |
WT_SM_3 | 58,039,162 | 8.71 G | 54,405,778 | 8.16 G | 93.74 | 52,466,230 (96.44%) | 99.98 | 97.86 | 52 | |
WT_SM_4 | 57,335,900 | 8.60 G | 54,514,652 | 8.18 G | 95.08 | 52,970,312 (97.17%) | 99.98 | 97.61 | 52.50 | |
WT_SM_5 | 41,341,780 | 6.20 G | 39,744,658 | 5.96 G | 96.14 | 38,508,054 (96.89%) | 99.98 | 97.75 | 52.50 |
Gene Name | p-Value | Log2 FC | Regulation |
---|---|---|---|
ENSBTAG00000005146 | 4.95795 × 10−63 | −6.205321499 | down |
GRB14 | 8.1387 × 10−23 | 1.821394148 | up |
ENSBTAG00000033252 | 9.26458 × 10−15 | −1.633757199 | down |
PRSS2 | 3.19021 × 10−14 | 14.3133367 | up |
BOLA-DQB | 2.02928 × 10−13 | −11.41895795 | down |
ENSBTAG00000054045 | 2.14561 × 10−12 | −13.78520376 | down |
TPM1 | 2.97093 × 10−12 | −1.096697574 | down |
PHTF1 | 8.66165 × 10−12 | 1.404694988 | up |
ACTN3 | 5.40909 × 10−11 | −1.223344485 | down |
KRT75 | 1.02098 × 10−9 | −2.809575033 | down |
GO ID | GO Term | GO Category | Q-Value |
---|---|---|---|
GO:0005615 | extracellular space | Cellular Component | 3.91405 × 10−9 |
GO:0005576 | extracellular region | Cellular Component | 1.38529 × 10−6 |
GO:0055010 | ventricular cardiac muscle tissue morphogenesis | Biological Process | 1.83908 × 10−5 |
GO:0014883 | transition between fast and slow fiber | Biological Process | 5.20773 × 10−5 |
GO:0005509 | calcium ion binding | Molecular Function | 5.20773 × 10−5 |
GO:0005887 | integral component of the plasma membrane | Cellular Component | 0.000143987 |
GO:0005886 | plasma membrane | Cellular Component | 0.001620284 |
GO:0097512 | cardiac myofibril | Cellular Component | 0.00192043 |
GO:0098978 | glutamatergic synapse | Cellular Component | 0.00255813 |
GO:0016020 | membrane | Cellular Component | 0.005612478 |
Pathway ID | Pathway Name | Q-Value |
---|---|---|
bta04514 | Cell adhesion molecules | 1.16768 × 10−7 |
bta04261 | Adrenergic signaling in cardiomyocytes | 5.81554 × 10−7 |
bta05416 | Viral myocarditis | 1.86876 × 10−6 |
bta04260 | Cardiac muscle contraction | 2.56598 × 10−6 |
bta04612 | Antigen processing and presentation | 3.23385 × 10−6 |
bta04940 | Type I diabetes mellitus | 3.23385 × 10−6 |
bta05169 | Epstein–Barr virus infection | 1.13874 × 10−5 |
bta05332 | Graft-versus-host disease | 1.86997 × 10−5 |
bta05330 | Allograft rejection | 2.53395 × 10−5 |
bta05320 | Autoimmune thyroid disease | 4.24502 × 10−5 |
Metabolite | KEGG ID | Log2 FC | VIP | p-Value |
---|---|---|---|---|
Glutamic acid | C19670 | −2.294068752 | 42.55932058 | 2.43 × 10−5 |
Geranylcitronellol | null | −1.49330268 | 12.73319428 | 1.46 × 10−5 |
Palmitamide | NA | −1.107149268 | 9.77579363 | 8.89 × 10−5 |
Acetyl-DL-carnitine | NA | 1.349414731 | 9.003102831 | 0.001746422 |
Stearamide | C13846 | −1.317560034 | 7.297357056 | 0.002100988 |
L-Carnitine | C00318 | 1.416771295 | 6.926858962 | 0.001779882 |
L-Glutathione, reduced | C00051 | −2.192035897 | 6.101367138 | 0.001271132 |
LysoPC 16:0 | C04230 | −1.878247824 | 4.295401189 | 0.000139281 |
cis-5,8,11,14-Eicosatetraenoic acid | C00219 | −2.805619747 | 4.076439099 | 0.000268185 |
Isopropyl tiglate | null | 1.860302559 | 3.83487271 | 0.000437783 |
Pathway ID | Pathway Name | p-Value |
---|---|---|
map00564 | Glycerophospholipid metabolism | 1.97 × 10−5 |
map00340 | Histidine metabolism | 1.64 × 10−5 |
map00970 | Aminoacyl-tRNA biosynthesis | 0.000136979 |
map01100 | Metabolic pathways | 0.000204554 |
map02010 | ABC transporters | 0.000278192 |
map00480 | Glutathione metabolism | 0.000335696 |
map04730 | Long-term depression | 0.00046444 |
map05014 | Amyotrophic lateral sclerosis (ALS) | 0.000579276 |
map04742 | Taste transduction | 0.000997487 |
map01064 | Biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid | 0.001782761 |
KEGG Pathway | KEGG ID |
---|---|
Vascular smooth muscle contraction | 04270 |
Leishmaniasis | 05140 |
Histidine metabolism | 00340 |
Purine metabolism | 00230 |
Gap junction | 04540 |
Arginine and proline metabolism | 00330 |
Chagas disease | 05142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, M.; Wang, S.; Di, A.; Wu, D.; Hai, C.; Liu, X.; Bai, C.; Su, G.; Yang, L.; Li, G. Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. Int. J. Mol. Sci. 2023, 24, 8120. https://doi.org/10.3390/ijms24098120
Gu M, Wang S, Di A, Wu D, Hai C, Liu X, Bai C, Su G, Yang L, Li G. Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. International Journal of Molecular Sciences. 2023; 24(9):8120. https://doi.org/10.3390/ijms24098120
Chicago/Turabian StyleGu, Mingjuan, Song Wang, Anqi Di, Di Wu, Chao Hai, Xuefei Liu, Chunling Bai, Guanghua Su, Lei Yang, and Guangpeng Li. 2023. "Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle" International Journal of Molecular Sciences 24, no. 9: 8120. https://doi.org/10.3390/ijms24098120
APA StyleGu, M., Wang, S., Di, A., Wu, D., Hai, C., Liu, X., Bai, C., Su, G., Yang, L., & Li, G. (2023). Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. International Journal of Molecular Sciences, 24(9), 8120. https://doi.org/10.3390/ijms24098120